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A simulation has been performed to reveal the detailed dynamics and statistical behavior of a Maxwell
demon of the simplest kind, a trap door held over by a spring inside a box filled with gas molecules. The role
of such a demon can be controlled by tuning Smoluchowski’s fluctuations. When the demon is in thermal
equilibrium with the rest of the system, it fails to function as designed, and when it is separately subjected to
a thermal bath with a different temperature, it creates a temperature or density gradient between the two
chambers of the box it divides. As a Maxwell demon, the trap-door device creates more readily a density
gradient than that of temperature.
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I. INTRODUCTION

In his 1871 book �1�, Theory of Heat, Maxwell introduced
the celebrated demon, in his own words, “… a being whose
faculties are so sharpened that he can follow every molecule
in its course, whose attributes are still as essentially finite as
our own, would be able to do what is at present impossible to
us.” Thomson later nicknamed Maxwell’s fictitious being of
molecular size “Maxwell’s intelligent demon” �2�. He stated
that “the definition of a demon, is an intelligent being en-
dowed with free will and fine enough tactile and perceptive
organization to give him the faculty of observing and influ-
encing individual molecules of matter.” Maxwell introduced
the demon to illustrate the statistical nature of the second law
of thermodynamics. Subsequently, there have been many de-
bates on whether such a demon exists and whether it would
function as designed. Most recently, with the advent of na-
nomachinery devices, the prospect of testing fundamental
hypotheses of thermodynamics and realizing Maxwell’s de-
mons at the nanoscale has been contemplated �3�.

In 1912 Smoluchowski pointed out that thermal fluctua-
tions would prevent any automatic device from operating
successfully as a Maxwell demon in a lecture entitled “Ex-
perimentally Verifiable Molecular Phenomena that Contra-
dict Ordinary Thermodynamics” �4�. Based on this, Feynman
proposed the now-celebrated ratchet-and-pawl system and
showed that no net work can be extracted from a single heat
source using the ratchet and pawl �5�. In addition, he dem-
onstrated that as soon as a second heat bath with a different
temperature is introduced, the ratchet rotates clockwise or
counterclockwise depending on the temperature difference
between the two baths. Most of the investigations of Max-
well’s demon have been thought experiments. Despite in-
tense, lasting interest in Maxwell’s demons and an incessant
quest for them as documented in the literature, only a few

microscopic simulations have been carried out to examine
Maxwell’s demons. Zhang and Zhang �6� formulated a set of
sufficient conditions for the survival of a Maxwell’s demon:
�i� a device can be used to generate and sustain a robust
momentum flow inside an isolated system, and �ii� a system
with an invariant phase volume is capable of supporting such
a flow. However, they provided no realistic models and simu-
lations. In 1992 a trap-door device was studied for the first
time via numerical simulation by Skordos and Zurek �7�
showing that the trap door, acting only as a pump, cannot
extract useful work from the thermal motion of the mol-
ecules. Skordos later �8� analyzed a membrane system and
stated that the second law of thermodynamics requires the
incompressibility of microscopic dynamics or an appropriate
energy cost for compressible microscopic dynamics. Jarzyn-
ski and Mazonka �9� introduced a simple realization of Fey-
nman’s ratchet-and-pawl system and indicated that their
model can act both as a heat engine and as a refrigerator.
However, there is no molecular dynamics result to support
their conclusion. Meurs and co-workers �10� have mentioned
several models to show rectifications of thermal fluctuations,
but only analytical results were presented. Other previous
attempts include employing the overdamped Fokker-Planck
equations with stochastic variables to simulate Feynman’s
ratchet and pawl �11� and modeling asymmetric Brownian
particles immersed in thermal baths made of gaseous mol-
ecules that are treated explicitly �12�. The former overly sim-
plifies the gas-particle dynamics, and the latter has no well-
defined Maxwell’s demon. To our knowledge, few realistic
microscopic simulations have been systematically carried out
to examine the detailed dynamics of Maxwell’s demons.

Figure 1�a� depicts a trap door held over by a spring, a
device termed by Feynman in his famous lecture notes as the
simplest Maxwell demon �5�. Fast-moving molecules from
the right chamber can come through because they are able to
lift the trap door, and their slow-moving counterparts in the
left chamber are bounced back. As time goes on, the particles
in the left compartment will have a higher temperature �and
a higher particle density� than that of the right, and the
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simple trap door in Fig. 1�a� therefore fulfills the role of a
Maxwell demon. In this work we shall simulate precisely
such a realistic version of Maxwell’s demons by employing
molecular dynamics with the aim to probe the underlying
nature of statistical mechanics at a microscopic scale.

In Fig. 1�a�, two chambers of gaseous particles are sepa-
rated by a solid wall with a built-in door which opens only
inside the left chamber. Fast-moving particles are able to
migrate from the right chamber to the left thanks to their
ability to lift the trap door upon collisions, while their slow-
moving counterparts are confined to their respective cham-
bers due to lack of collision impact. The average temperature
of the two chambers is T1, and those for the left and right
chambers are TL and TR, respectively. In Fig. 1�b�, the trap
door is connected to another door in a third chamber of tem-
perature T2 such that the two doors have to move in unison.
The temperature of the trap door can therefore be tuned by
adjusting T2. For the purpose of comparison with the trap-
door Maxwell demon, an alternative Maxwell demon made
of a logic gate has also been devised. The logic gate is placed
between two particle chambers examining the velocities of
incoming particles vgas. A particle in the right �left� chamber
is only allowed to pass into the other chamber if vgas is
greater �smaller� than a preset threshold vc. This particular
setup of Maxwell’s demon is termed the logic-gate demon.

II. THE MODEL

The system we have simulated contains two identical
chambers, with a trap door placed in between. The gas mol-
ecules are hard dishes moving inside a two-dimensional
space and colliding with each other. All collisions of gas
molecules are energy and momentum conserving. After
particle-wall collisions, the particle momentum reverses its
component perpendicular to the wall. Geometrically, the trap
door is a line segment of zero width impenetrable by the

molecules. A spring with a force constant K� is placed be-
tween the trap door and the lower part of the middle wall. In
the equilibrium position, the door is fully closed.

The Lagrangian of the system can be written as

L =
1

2�
i=1

N

mgasvi
2 +

1

2
Idoor�̇

2 −
1

2
K��� − �0�2 − Vint, �1�

where vi is the velocity magnitude of the ith gas particle, �

��0� is the door angle �the equilibrium door angle�, �̇ is an-
gular velocity, K� is the elastic constant of the door spring,
mgas and Idoor are the mass of the gaseous particles and the
momentum of inertia of the door, respectively, and Vint is the
interaction potential energy among all rigid bodies in the
system, which is constant except when particle-door colli-
sions occur. The third term on the right-hand side of Eq. �1�
describes the interaction between the spring and the trap
door. Equations of motion for the particle velocities and the
door angle � are then derived from the Lagrangian. For in-
stance, in the absence of collisions, the door angle ��t� fol-
lows

��t� = �0 + ���ti� − �0�cos�� K�

Idoor
�t − ti��

+ �̇�ti��Idoor

K�

sin�� K�

Idoor
�t − ti�� �2�

for t� ti, where ti denotes the starting time.

III. MOLECULAR DYNAMICS SIMULATION

In the simulation, the diameter �mass� of the gas particles
is taken as the length �mass� unit and the Boltzmann constant
kB is set to unity. Various values for the chamber size and the
trap door length have been experimented with, and a set of
parameters is chosen as follows: the number of particles in
each chamber, N=30; the size of each chamber, S=200
�200; the equilibrium door angle �0=0; the length of the
trap door, Rdoor=50; the momentum of inertia of the trap
door, Idoor=0.2; and the force constant K�=10. Our simula-
tion takes typically several hours using a standard Pentium 4
processor, and the fluctuation in the total energy of the sys-
tem is kept below 10−10.

The gas molecules are given random initial positions, and
their velocities are initialized according to the Boltzmann
distribution. The time evolution of the system of the mol-
ecules and the trap door is simulated by adopting the follow-
ing algorithm: to minimize numerical errors, adaptable time
steps are used. There are two kinds of time steps in this
simulation. Our program iterates a main cycle which starts
from t0 to the end of simulation with a time step �t=10−3.
Within each cycle, the velocities and positions of all particles
and the trap door are updated assuming no collision takes
place; a subroutine is then called to examine collision events
that may have been overlooked. Four types of collision
events are involved: particle-particle collisions, particle-wall
collisions, trap-door–wall collisions, and particle–trap-door
collisions. Information of the previous step is recorded so

FIG. 1. �a� An illustration of the trap-door Maxwell demon. The
hinged door between the two compartments can only open inside
the left chamber so that fast-moving gaseous particles from the right
chamber can move into the left one by lifting the door with signifi-
cant collision impact. The average temperature of the two chambers
is T1, and those for the left and right chambers are TL and TR,
respectively. �b� The trap door may be connected to another door in
a third chamber with temperature T2 such that the two doors have to
move in unison.
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that we can restore a current state to one that precedes it. The
collision criteria are �i� particle-particle collisions—the dis-
tance between two particles is less than the diameter of a
particle; �ii� particle-wall collisions—the distance between
particle and wall is less than the radius of a particle; �iii�
trap-door-wall collisions: � is smaller than 0 or larger than �;
�iv� particle–trap-door collisions—the center of a particle en-
ters the area near around the trap door as shown in Fig. 5 in
Appendix B.

We take a particle-particle collision as an example. At the
end of each time step, the center-of-mass distance between
two particles is measured to determine whether a collision
has taken place. If there is no collision, the simulation is
carried on to the next time step. Otherwise, collisions need to
be accounted for. In this case, the simulation is restored to
the recorded previous state and the time step is reduced to
�t�=10−6. After the restoration, the program performs 103

steps using �t�. It means one regular step is divided into 103

steps in a collision event. After the collision, the simulation
returns to the main loop with the original time step �t. If a
three-body collision is to occur, our program records all the
relevant information and pauses. However, such a three-body
collision event has not been encountered in our system which
is composed of 60 particles with a time step �t� as small as
10−6.

We have carefully considered various collision events in-
cluding particle-particle collisions, particle-wall collisions,
and particle–trap-door collisions. Details on how these colli-
sion events are handled are explained in the Appendixes.
Collisions between particles are described in Appendix A.
For a particle-wall collision, the normal component of the
particle’s velocity reverses its direction while the tangential
counterpart remains unchanged. Extreme care has been taken
for particle–trap-door collisions, which are divided into two
categories: events with particles colliding with the end of the
trap door and those with particles colliding with the body of
the trap door. Details are given in Appendix B.

IV. RESULTS AND DISCUSSION

Figure 2 displays simulation results of the system de-
picted in Fig. 1�a�. The temperature of the gaseous molecules
in the left or right compartment is determined by fitting their
energy histogram to a Boltzmann distribution. The upper
panel is the energy histogram of the gaseous molecules in the
left compartment at a simulation time t=2000. The dashed
line is the Boltzmann distribution with a temperature T
=2000, and the temperature of the gas in the left compart-
ment is thus determined. The middle panel shows the tem-
peratures of the left and right compartments at various times
between t=0 and 80 000. Despite the fluctuations, no visible
temperature differentiation has been achieved by the trap
door for the duration of the simulation. This reflects the fact
that being hit frequently by the incoming particles the Max-
well demon is heated up, reaching thermal equilibrium with
the gaseous particles, and loses therefore its designated func-
tionality. This was pointed out precisely by Smoluchowski
one century ago. The particle-door system is in thermal equi-
librium and any temperature differentiation is in fact prohib-

ited by the second law of thermodynamics. How exactly do
Smoluchowski’s fluctuations prevent the demon from estab-
lishing a temperature gradient between the two chambers?
The lower panel in Fig. 2 reveals the underlying microscopic
process. The two microscopic states shown in �a� and �b� of
the panel are almost identical except that the velocities or
momenta of the molecule and the trap door have opposite
signs. The probabilities of the two microscopic states to oc-
cur are precisely the same. This is the so-called “principle of
microscopic reversibility” �13� which leads to zero net heat
flow between the two chambers.

One important issue is whether it is ever possible for the
Maxwell demon to perform its designated duty to direct the
heat flows. One way for the Maxwell demon to achieve that
end is to control Smoluchowski’s fluctuations. As shown in

FIG. 2. Upper panel: the energy histogram of the gaseous par-
ticles in the left chamber at simulation time t=2000; the dashed line
is the fitted Boltzmann distribution with T=2000. Middle panel:
temperatures of the two chambers as a function of time given that
the trap door is in a thermal equilibrium with the gaseous particles
it separates; solid circles, left chamber; open circles, right chamber;
solid and dashed lines are a guide for the eye. Lower panel: sche-
matic illustration of the principle of microreversibility; �a� a mol-
ecule is moving from the right chamber to the left while the trap
door rotates clockwise, and �b� the molecule is moving from the left
to the right while the trap door moves counterclockwise. Distance
�mass� is in the unit of the gas particle’s diameter �mass�, time is in
the arbitrary unit, and temperature is evaluated by T= 1

2mv2 with kB

set to 1.
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Fig. 1�b�, the trap door can be connected rigidly to another
particle-colliding door in a third compartment such that the
two doors have to move in unison; therefore, the door tem-
perature can be manipulated by varying the temperature of
the third chamber. In other words, Smoluchowski’s fluctua-
tions of the demon can be tuned by controlling the tempera-
ture of the third compartment, T2. In the simulation, the total
kinetic energy of the gaseous particles in the lower box is
kept constant. If the temperature of the door is kept suffi-
ciently low by external means, the simple trap-door device in
Fig. 1�b�, which is no longer strictly an equilibrated close
system, can actually function as designed; i.e., it can work as
a Maxwell demon. In this case, Smoluchowski’s fluctuations
are reduced. Shown in the upper panel of Fig. 3 is the tem-
perature difference between the two chambers as a function
of time after averaging over an ensemble of 10 000 indi-
vidual trajectories �30 particles in each chamber�. The trap
door is kept at a much lower temperature, T2=10, than the
initial temperature of the particle chambers, T1=2000. As
collisions in the simulation tend to cool the particles of the
lower two chambers, their average temperature is rescaled to
stay constant. The lower panel of Fig. 3 displays the number
of particles in the left chamber as a function of time.

Maxwell’s demon was originally a perceived being simi-
lar to a logic gate sitting between two chambers. Its function
that our trap door device has now assumed is quite clear-cut:
the particles in the right chamber with speeds above a thresh-
old �e.g., vc=14.1� are allowed to move to the left, while the
particles in the left chamber with speeds below the threshold
are allowed to move to the right. For the purpose of com-
parison with our trap-door demon, we also display in Fig. 3
results from the logic-gate demon using squares �averaged
over an ensemble of 10 000 trajectories�. Very similar behav-
ior is found for the two kinds of demons.

Figure 4 summarizes various factors that affect the ability
of the Maxwell demon to create interchamber temperature

differences. All data points in the figure are calculated by
averaging over 2000 individual trajectories. The origin in the
upper panel represents the result previously shown in Fig. 2
where the two chambers are at thermal equilibrium with the
trap door and no temperature differentiation happens. If the
trap door is cooled to a lower temperature, initially a tem-
perature difference is caused by the cooling effect of the
door—i.e., TL−TR�0. If the temperature of the trap door T2
is lowered further, the simple Maxwell demon starts to ex-
hibit its designed capability to modulate interchamber heat
flows. At log10�T1 /T2�=1.5, the cooling effect of the trap
door becomes overwhelmed by its designed demon effect,
and therefore, the temperature difference between the left
and right chambers is reversed—i.e., TL−TR	0—as the
door temperature T2 decreases. In the limit of zero door tem-
perature, the device acts as the perfect Maxwell demon. On
the other hand, if the trap door is heated up to a higher
temperature, it can only serve as a heater by raising the left
chamber temperature and no reverse temperature difference
�TL−TR�0� is found to exist, contrary to the the prediction
Feynman made for his ratchet-and-pawl system �5�. The

FIG. 3. Upper panel: temperature differences of the two cham-
bers are plotted as a function of time after averaging over an en-
semble of 10 000 trajectories; �a� the trap door demon ���, the
temperatures are rescaled to keep their average constant �T1

=2000�, and the door temperature is rescaled to remain at T2=10;
�b� the logic-gate Maxwell demon ���, no temperature rescaling is
needed. Lower panel: the number of particles in the left chamber as
a function of time; �a� the trap door demon ���; �b� the logic-gate
Maxwell demon ��� with a threshold velocity vc=14.1. Each cham-
ber initially contains 30 particles. The units are the same as in Fig.
2. FIG. 4. Upper panel: the rate of change of the temperature dif-

ference between the left and right chambers in the trap door device,
d�TL−TR� /dt, as a function of log10�T1 /T2�; dots, simulation re-
sults; solid line, a smooth fit to the simulation results that employs
an expression taking into account both the regular heat transfer in
the direction of temperature gradient, C�T2−T1�, and the Feynman
term �e−
/T1 −e−
/T2� /�, where C is a proportionality constant, � is
the characteristic time between two consecutive collisions, and 
 is
the energy required to lift the trap door �5�. Lower panel: the rate of
change of the particle-number difference between the left and right
chambers in the trap door device, d�NL−NR� /dt, as a function of
log10�T1 /T2�; dots, simulation results; solid line, a smooth fit to the
simulation results with Feynman’s expression D�e−
/T1 −e−
/T2� /�.
C=0.0033, �=0.104, 
=70, and D=0.0152. Data displayed are av-
eraged by an ensemble of 2000 trajectories. The units are the same
as in Fig. 2.
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simulation results in Fig. 1�a� have been fitted with an ex-
pression that takes into account both the regular heat transfer
in the direction of the temperature gradient, C�T2−T1�, and
the Feynman term �e−
/T1 −e−
/T2� /�, where C is the propor-
tionality constant in Fourier’s law of heat conduction, � is the
characteristic time between two consecutive collisions, and 

is the energy required to lift the trap door �5�. For T1=T2,
each chamber has 30 particles—i.e., NL=NR=30. As T2 is
lowered, more and more particles are found in the left cham-
ber at long times. If the trap door is warmer than the gaseous
particles, the trend is reversed; i.e., a smaller amount of par-
ticles are found in the left chamber. The rate of change of the
particle-number difference between the left and right cham-
bers in the trap door device, d�NL−NR� /dt, is shown as a
function of log10�T1 /T2� in the lower panel of Fig. 4, and a
smooth fit with Feynman’s expression �e−
/T1 −e−
/T2� /� is
also given. We conclude that it is much easier for the trap
door device to create a density gradient provided that its
temperature T2 is different from the average temperature T1
of the two lower chambers in Fig. 1�b�.

In their pioneering work �7� Skordos and Zurek explored
via numerical simulation quite a few issues that have been
discussed here, such as the cooled trap door as a rectifier.
Another remarkable work that only recently came to our at-
tention is modeling and simulation of Brownian refrigerators
by Van den Broeck and Kawai �14�. A Brownian motor that
is normally driven by a temperature gradient can also be-
come a refrigerator upon loading. The temperature gradient
created by a Brownian refrigerator, however, is different
from that created by the Maxwell demon discussed here as
the former is a form of negative feedback by the original
equilibrium system upon perturbation �14�.

In summary, a simulation has been performed to reveal
the detailed dynamics and statistical behavior of a Maxwell
demon in the presence of equilibrium or nonequilibrium
baths. The second law of thermodynamics dictates that no
temperature differentiation can happen when the trap door
and the chamber particles are in thermal equilibrium. This is
confirmed by our molecular dynamics simulation of the trap
door Maxwell demon. The temperature of the trap door can
be controlled in order to tune Smoluchowski’s fluctuations
and to further manage the role of the Maxwell demon. This
study reveals in great detail the intricacies among the second
law of thermodynamics, Maxwell’s demon, and Smolu-
chowski’s trap door.
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APPENDIX A: COLLISIONS BETWEEN PARTICLES

The phase-space coordinates �positions and velocities in a
Cartesian system� of particle 1 immediately before and after
a collision event are denoted as �x1 ,y1 , ẋ1i , ẏ1i� and
�x1 ,y1 , ẋ1f , ẏ1f�, respectively. Similarly for particle 2, we

have �x2 ,y2 , ẋ2i , ẏ2i� and �x2 ,y2 , ẋ2f , ẏ2f�. Changes in the par-
ticle velocities upon a collision event between particles 1 and
2 are quantified by

	
ẋ1f

ẏ1f

ẋ2f

ẏ2f


 = �
A2 − AB B2 AB

− AB B2 AB A2

B2 AB A2 − AB

AB A2 − AB B2
�	

ẋ1i

ẏ1i

ẋ2i

ẏ2i


 , �A1�

where

A  sin � =
y2 − y1

r
,

B  cos � =
x2 − x1

r
,

r  ��x2 − x1�2 + �y2 − y1�2. �A2�

Here � is the angle formed by the x axis and the line which
goes through the centers of the two particles.

APPENDIX B: PARTICLE–TRAP-DOOR COLLISIONS

The dashed line in Fig. 5 is the trajectory of the particle
center of mass that is closest to the trap door. The area en-
closing the trap door with a width equal to the diameter of
the particles �inside the dashed line� is divided into four
parts, labeled A, B, C, and D, respectively. Collisions are
expected whenever the particle center of mass enters this
area during simulation.

Collision events can be classified into four categories ac-
cording to the specific area accessed by the particle center of
mass: �i� for A, a collision between a particle and the body of
the trap door; �ii� for C, a collision between the particle and
the end of the trap door; �iii� for B, a collision between the
particle and the center wall; �iv� for D, a collision between
the particle and the joint of the trap door and the middle wall.

As shown in Fig. 6, the angle of the trap door in a polar
coordinate system is labeled as � and the coordinates of a gas

FIG. 5. A collision occurs when the center of mass of a particle
reaches the area labeled by a, b, c, d, e, or f .
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particle �x ,y�. The angular velocity of the trap door and the

particle’s velocity immediately after the collision, �̇ f and
�ẋf , ẏ f�, respectively, can be derived from Newton’s laws

�̇ f = �̇i +
��h

Idoor
�P , �B1�

ẋf = ẋi +
�xh

mgas
�P , �B2�

ẏ f = ẏi +
�yh

mgas
�P . �B3�

Here �̇i and �ẋi , ẏi� are the corresponding velocities immedi-
ately before the collision and �P is the impulse upon the
collision:

�P  − lim
t→0

�
ti

ti+t � �Vint

�h
�

h=R
dt

= − 2
��h�̇i + �xhẋi + �yhẏi

���h�2

Idoor
+

��xh�2

mgas
+

��yh�2

mgas

, �B4�

where ti is the time immediately before the collision. Equa-
tions �B1�–�B4� are valid for the aforementioned two catego-
ries.

1. Collisions with the trap-door body

In this case, h is distance between the particle center of
mass and the body of the trap door. Various quantities h, ��h,
�xh, and �yh can be be expressed as �see Fig. 6�

h = x sin � − y cos � + R ,

��h = x cos � + y sin � ,

�xh = sin � ,

�yh = − cos � , �B5�

where R is the radius of the particle.

2. Collisions with the trap-door edge

In this case, h is defined as the distance between the par-
ticle center of mass and the trap-door edge. Therefore, we
have

h = ��x − Rdoor cos ��2 + �y − Rdoor sin ��2 − R ,

��h =
Rdoor�x sin � − y cos ��

R
,

�xh =
x − Rdoor cos �

R
,

�yh =
y − Rdoor sin �

R
. �B6�
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