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Abstract: We prove that the electron density function of a time-dependent real physical
system can be uniquely determined by its values on any finite subsystem. By introducing
a new density functional for dissipative interactions between the reduced system and its
environment, we subsequently develop a time-dependent density-functional theory which
depends in principle only on the electron density of the reduced system.
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Density-functional theory (DFT) has been widely used as a research tool in condensed matter
physics, chemistry, materials science, and nanoscience. The Hohenberg-Kohn theorem [1] lays the
foundation of DFT. The Kohn-Sham formalism [2] provides a practical solution to calculate the
ground state properties of electronic systeins. Runge and Gross extended DI'T further to calculate
the time-dependent properties and hence the excited state properties of any electronic systems [3].
The accuracy of DFT or time-dependent DFT (TDDFT) is determined by the exchange-correlation
(XC) functional. If the exact XC functional were known, the Kohn-Sham formalism would have
provided the exact ground state properties, and the Runge-Gross extension, TDDFT, would have
yielded the exact time-dependent and excited states properties. Despite their wide range of appli-
cations, DF'T' and TDDFT have been mostly limited to isolated systems.

Many systems of current research interest are open systems. A molecular clectronic device is
one such system. DFT-based simulations have been carried out on such devices [4, 5]. In these
simulations the Kohn-Sham Fock operator is taken as the effective single-electron model Hamil-
tonian, and the transmission coefficients are calculated within the noninteracting electron model.
The investigated systems are not in their ground states, and applying ground state DF'T formalism
for such systems is only an approximation. DFT formalisms adapted for current-carrying systems
have also been proposed recently [6, 7]. However, practical implementation of these formalisms
requires the electron density function of the entire system. In this paper, we present a DI'T formal-
ism for open electronic systems, which depends in principle only on the electron density function
of the reduced system.

As carly as in 1981, Riess and Miinch [8] discovered the holographic clectron density theorem
which states that any nonzero volume piece of the ground state electron densily determines the
electron density of a molecular system. This is based on that the electron density functions of
atomic and molecular eigenfunctions are real analytic away from nuclei. In 1999 Mezey extended
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the holographic electron density theorem [9]. And in 2004 Fournais et al. proved again the real
analyticity of the electron density functions of any atomic or molecular eigenstates [10]. Therefore,
for a time-independent real physical system made of atoms and molecules, its electron density
function is real analytic (except at nuclei) when the system is in its ground state, any of its excited
eigenstates, or any state which is a linear combination of finite number of its eigenstates; and
the ground state electron density on any finite subsystem determines completely the electronic
properties of the entire system.

As for time-dependent systems, the issue is less clear. Although it seems intuitive that the
electron density function of any time-dependent real physical system is real analytic (except for
isolated points in space-time), it turns out quite difficult to prove the analyticity rigorously. IFortu-
nately we are able to establish a one-to-one correspondence between the electron density function
of any finite subsystem and the external potential field which is real analytic in both ¢-space and
r-space, and thus circumvent the difficulty concerning the analyticity of time-dependent electron
density function. For time-dependent real physical systems, we have the {ollowing theorem:

Theorem: If the electron density function of a real physical system at ¢y, p(r, %), is real analytic
in r-space, the corresponding wave function is ®(¢y), and the system is subjected to a real analytic
(in both t-space and r-space) external potential field »(r,t), the time-dependent clectron density
function on any finite subspace D, pp(r,t), has a one-to-one correspondence with v(r.t) and
determines uniquely all electronic properties of the entire time-dependent system.

Proof: Let v(r,t) and v/'(r,t) be two recal analytic potentials in both t-space and r-space which
differ by more than a constant at any time { > (g, and their corresponding electron density [unctions
are p(r,t) and p'(r,t), respectively. Therefore, there exists a minimal nonnegative integer k£ such
that the k-th order derivative differentiates these two potentials at ty:

A 4. i
Py lv(r, t) — faf(r._ t)] £ const. oy

t=tp

Following exactly the Eqs. (3)-(6) of Ref. [3], we have

Hk+2 f
kT2 p(r,t) — p'(x,t)] = =V - u(r), (2)
’ =1ty
where
¢ ak ™
(GRS i A RV 7% [o(r,t) — o' (r, t)] 2 (3)
\ t=lo )

Due to the analyticity of p(r,ty), v(r,t) and v’(r,t), V- u(r) is also real analytic in r-space. It has
been proven in Ref. [3] that it is tmpossible to have V -u(r) = 0 on the entire r-space. Theretore 1t
is also impossible that V -u(r) = 0 everywhere in D because of analytical continuation of V - u(r).
Note that pp(r,t) = p(r,t) for r € D. We have thus

ok+2
otk+2 [;UD (I‘, t) 0 ,0:[)([', L)] 7£ 0 (4)

l=tp

for r € D. This confirms the existence of a one-to-one correspondence between v(r,t) and pp(r,1).
pp(r,t) thus determines uniquely all electronic properties of the entire system. This completes the
proof of the Theorem.

Note that if ®({g) is the ground state, any excited eigenstate, or any state as a linear combination
of finite number of eigenstates of a time-independent Hamiltonian, the prerequisite condition in
Theorem that the electron density function p(r,ty) be real analytic is automatically satisfied, as
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Figure 1: The experimental setup for quantum transport through a molecular device.

proven in Ref. [10]. As long as the electron density function at t = to, p(r.to), is real analytic,
it is guaranteed that pp(r,t) of the subsystem D determines all physical properties of the entire
system at any time t if the external potential v(r,t) is real analytic.

According to the above Theorem, the electron density function of any subsystem determines
all the electronic properties of the entire time-dependent physical system. This proves in principle
the existence of a DFT-type formalism for open clectronic systems. In principle all one needs to
know is the electron density of the reduced system. The challenge that remains is to develop a
practical first-principles formalism.

Fig. 1 depicts an open electronic system. Region D containing a molecular device is the reduced
system of our interests, and the electrodes L and I? are the environment. Altogether D, L and R
form the entire system. Taking Fig. 1 as an example, we develop a practical DI'T formalism for
the open systems. Within the TDDFT formalism, a closed equation of motion (EOM) has been
derived for the reduced single-electron density matrix o(¢) of the entire systemn [11]:

ia(t) = [h(t), o (1), (5)

where h(t) is the Kohn-Sham Fock matrix of the entire system, and the square bracket on the right-
hand side (RHS) denotes a commutator. The matrix element of o is defined as 0;;(t) = ({1};(!1) asll )y,

where a;(t) and a}(t) are the annihilation and creation operators for atomic orbitals ¢ and j at
time ¢, respectively. Expanded in the atomic orbital basis set, the matrix ¢ can be partitioned as:

&L orp, GLR
o= 2819 5 SRR 05 OpR |, ((’)
CREL -~ ORDTMER

where o1, o g and op represent the diagonal blocks corresponding to the left lead L, the right lead
R and the device region D, respectively; oy, p is the off-diagonal block between L and D; and ogrp,
orr. opL, opgr aud ogp are similarly defined. The Kohn-Sham Fock matrix h can be partitioned
in the same way with o replaced by A in Eq. (6). Thus, the EOM for op can be written as

Kod s — [}LD;(TD] -+ Z (hD&{T&D — (T[)ﬂhﬂg) = ULD._!{TD] — 1 Z (an (7)

a==0L.1" st bl o

where Q (Qr) is the dissipative term due to L (R). With the reduced system D and the leads L/R
spanned respectively by atomic orbitals {{} and single-electron states {kq}, Eq. (7) is equivalent
to:

T(Tﬂm = Z (hn,{ﬁgm = U'nth-im) = 3 Z Qa,nmn (8)

Qr:r._*r'::m = g Z (h*.r.!Jm_rgk,,?n ==k s hk;,_t'n'z.)& (9)
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where m and n correspond to the atomic orbitals in region D; k, corresponds to an electronic
state in the electrode o (o« = L or R). hpg. is the coupling matrix element between the atomic
orbital n and the clectronic state k. The current through the interfaces Sy or Sg (sce Fig. 1) can
be evaluated as follows,

Ja(t) = ~tr[Qa(®)]. (10

Based on the above Theorem, all physical quantities are explicit or implicit functionals of the

electron density of the reduced system D, pp(r,t). Note that pp(r,t) = p(r,t) forr € D. Q, is
thus also a functional of pp(r,t). Therefore, Eq. (8) can be recast into a formally closed form,

iop = hn[r:f;ﬁﬂ(r:mﬂm} —1 Y Qalr, t;pp(r.t)). (11)
' P

Neglecting the second term on the RHS of Eq. (11) leads to the conventional TDDFT formulation
in terms of reduced single-electron density matrix [11] for the isolated reduced system. The second
term describes the dissipative processes between D and L or R. Besides the XC [unctional, an
additional universal density functional. the dissipation functional Q,[r.t; pp(r,t)], is introduced to
account tor the dissipative interaction between the reduced system and its environment. Eq. (11)
is the TDDI'T EOM for open electronic systems. An explicit form of the dissipation functional (),
Is required for practical implementation of Eq. (11). Admittedly Q4lr,t; pp(r,t)] is an extremely
complex functional and difficult to evaluate. As various approximated expressions have been
adopted for the DF'T XC functional in practice, the same strategy can be applied to the dissipation
functional Q.. Work along this direction is underway.
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