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Abstract
A novel approach that combines neural networks, computer docking and quantum mechanical method is developed to design potent aldose

reductase inhibitors (ARIs). Neural networks is employed to determine the quantitative structure–activity relationship (QSAR) among the known

ARIs. The physical descriptors of the neural networks, such as electronegativity and molar volume, are evaluated with first-principles quantum

mechanical method. Based on the QSAR, new candidates for ARI are predicted, and subsequently screened via computer docking technique. The

surviving candidates are further tested via quantum mechanical calculation for their bindings to aldose reductase. We find that the best 49 predicted

ARI candidates have better calculated binding energies than those of experimentally known drug candidates.

# 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Insulin-dependent diabetes mellitus results from metabolic

disorders of glucose, which is due to the deficiency of insulin

caused by the defects in insulin secretion. For the diabetes

mellitus patients, the mortality is actually not caused by

diabetes mellitus itself but by diabetic complications, such as

neuropathy, nephropathy, retinopathy and cardiovascular

disease [1]. These diabetic complications are induced by an

enzyme, aldose reductase (AR) [2], which is a nicotinamide

adenine dinucleotide phosphate (NADPH) dependent enzyme

expressed in various human tissues such as in lens, nerve,

retina, muscle, placenta and liver. Physiologically, AR

participates in the polyol pathway and reduces a wide range

of substrates, such as sugar, aldehyde, aldose and corticoster-

oid, to their corresponding alcohols [3]. This polyol pathway

involves two enzymes, namely AR and sorbitol dehydrogenase.

These two enzymes convert glucose to fructose via a two-step

reaction: (1) glucose is reduced to sorbitol by AR and (2) the

sorbitol is further oxidized to fructose by sorbitol dehydro-

genase [4]. The diabetic complications are ascribed to the

abnormity of this glucose metabolic process. With the glucose
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level increasing in blood, the activity of AR increases.

Therefore, the rate of sorbitol being produced is much faster

than that of sorbitol being oxidized. This results in the excessive

accumulation of sorbitol. As a consequence, the excessive

sorbitol seriously blocks the cell membrane pervasion, and

ultimately leads to diabetic complications [1–4]. AR inhibition

or avoiding the sorbitol accumulation has been thus proposed as

a way to prevent or delay diabetic complications [5–8].

Designing potent ARIs for inhibiting the AR activity and

reducing the concentration of sorbitol has been the target for

many researchers [8–12]. Both experimental studies and

computer simulation have been carried out to find potent ARIs.

However, compounds that have been identified as potent ARIs in

both vitro and vivo are few [13–16]. All these found ARIs can be

classified into several types such as flavonoids, spirohydantoins,

substituted acetic acid and phenylsulfonylnitromethane deriva-

tions [5,17,18]. In our study, we develop a novel strategy that

combines neural networks, computer docking, quantum

mechanical calculation to design potent ARIs. Neural networks

is applied to determine the QSAR among the known ARIs, and

the determined QSAR is subsequently used to predict new potent

ARIs. The predicted ARIs are then subjected to computer

docking simulation for screening. Those that passed the docking

test are further subjected to the quantum mechanical calculation

for confirmation.
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The article is presented as follows. After an introduction, we

present our neural networks method for determining the QSAR

in Section 2. Computer docking simulations and quantum

mechanical calculations for confirming the binding between the

drug candidates and AR are presented in Section 3. Finally,

discussion is given in Section 4.

2. Quantitative structure–activity relationship (QSAR)

A series of spirohydantoin derivatives, which showed their

affinities to AR active site, were reported by Yamagishi et al.

[19]. They synthesized several series of spirohydantoin

derivatives with same lead structure (shown in Fig. 1a), and

claimed one of these derivatives, (4R)-60-chloro-30-methyl-

spiro-[imidazolidine-4,40(10H)-quinazoline]-2,20,5(30H)-trione,

could inhibit polyol accumulation in the sciatic nerve in vivo

and had low toxicity for mice. The lead structure (shown in

Fig. 1a) of these inhibitors is similar to that of fidarestat (see

Fig. 1b) [20]. A series of molecules based on the lead structure

shown in Fig. 1a are investigated for this study.

A QSAR can be constructed by analyzing the molecular

structure/properties and the corresponding bioactivities. The
Fig. 1. The structure of (a) spiro-[imidazolidine-4,40(10H)-quinazoline]-

2,20,5(30H)-triones [19], (b) fidarestat, and (c) tolrestat.
resulting QSAR can thus be used to design new drug leads.

Hansch et al. [21] developed a method to determine the QSAR

from a free energy related constant (p-comparative substituent

constant) and electronic parameter (s-Hammett function) [21].

The QSAR equation was expressed as

log
1

c
¼ �kp2 þ k0pþ rs þ k00; (1)

where c is the concentration that induces certain biological

response, r the reaction constant, and k, k0, k00 are regression

coefficients [21]. Later, a three-dimensional QSAR calculation

method, comparative molecular field analysis (CoMFA), was

developed by Cramer et al. [22], and it describes the relation-

ship between the molecular 3D-steric and electrostatic char-

acteristics and the biological activity [23]. This method has

been broadly employed in virtual screening [24].

We opt for an alternative approach. The QSAR of ARIs is

determined via a novel neural networks-based approach. Two

molecular descriptors, electronegativity and molar volume, are

selected, and calculated by ab initio Hartree–Fock (HF)

method. It is known that neural networks has been widely

applied in engineering, finance and medicine [25,26]. Neural

networks is employed here to determine the QSAR of ARI

candidates, i.e., the relationship between their bioactivities and

their electronegativities and molar volumes.

The electronegativity of a chemical group is related to both

its hydrophobic property and its ability to form hydrogen bonds

with surrounding molecules, and it is usually considered a very

important factor for describing biological system properties

[21,27,28]. Volume is a direct measure of the steric hindrance

effect of a functional group. Because the size of active site is

limited, the size of ligand is of course an important factor in an

enzymatic reaction. The two descriptors are calculated by ab

initio HF method with 6-311G(d, p) basis set, and the energies

are calculated with zero point energy correction. These

calculations are carried out by Gaussian 98 program [29].

The data for various functional groups are listed in Table 1.

In this study, the error-back propagation neural networks

(BPNN) [25] is used to calculate the QSAR for ARIs. The

neural network depicted in Fig. 2 is characterized by equations

as follows:

Z ¼
X
j¼1;2

WyjSig

� X
i¼1;n

Wxi jxi

�
(2)

SigðyÞ ¼ 1

1 þ expð�ayÞ (3)

where Z is the output, Wyj the weight connected hidden neuron

with output, and Wxij is the weight connected input with hidden

neurons. The neural networks has the n�2�1 structure. n is the

number of input neurons that includes descriptors and a bias,

and n is equal to 9 in this work, since substituents may be

introduced at four sites, 50, 60, 70, and 80 in Fig. 1a. For each site

there are two descriptors taken as input neuron, besides that

there is one more bias. Therefore, there are nine input neurons

in total. Two is the number of hidden neurons; and one is the

output for the bioactivity.
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There are total 30 spirohydantoin derivatives with measured

IC50 (the concentration of the inhibitor required to produce 50%

inhibition of the enzymatic activity in vitro) and the mean

inhibition percentage of polyol accumulation in sciatic nerve in

vivo [19]. In this series of experimental data, there are 16 mono-

substituted, 11 di-substituted, and 2 tri-substituted compounds.

Three of these compounds are with 50-substitute, 21 of them are

with 60-substitute, 12 of them are with 70-substitute, and 7 of
Table 1

Parameters of functional groups

Numbers Functional

groups

Electron-negativitya

(eV)

Volumeb

(cm3/mol)

1 H 5.748 8.55

2 2-Thienyl 4.662 64.90

3 3-4-Methylenedioxo 4.265 41.87

4 Morpholino 3.472 71.49

5 CH3 3.266 22.00

6 C2H3 3.337 25.56

7 C2H5 2.631 43.41

8 CH2–COOH 4.304 51.20

9 C2H5–OC O 3.015 46.38

10 C3H7 2.209 57.04

11 C4H9 2.187 67.52

12 C5H11 2.190 73.61

13 C6H5 5.758 54.57

14 4-C6H4NO2 4.504 74.03

15 4-C6H4OH 3.593 73.38

16 4-C6H4Br 3.978 86.44

17 C6H5COO 6.159 113.71

18 CH2–C6H4-4-OH 2.336 85.72

19 CH2–C6H4-4-OMe 2.227 112.20

20 CH2–C6H3-3,4-OH 2.523 91.78

21 (CH2)2–C6H4-4-OH 1.627 93.32

22 C6H5CH CHCOO 5.347 109.56

23 (CH2)3–O–Ph 2.394 105.19

24 (CH2)3–C6H4-4-OH 2.106 123.06

25 2-CH2–C10H7 2.696 104.46

26 (C6H5)2–CH 2.557 148.55

27 CN 9.158 16.03

28 COOH 3.636 31.11

29 COO-t-Bu 6.322 92.16

30 CF3 4.194 25.98

31 NH2 4.751 12.90

32 NHAC 3.558 56.14

33 N–(CH3)2 3.482 45.53

34 NO2 5.308 23.86

35 OH 6.732 10.63

36 OCH3 3.814 35.97

37 OCH2CHCH2 3.831 48.38

38 OCH2CH2CH3 3.025 50.44

39 OCO-n-Hexane 3.915 118.88

40 O–(CH2)2–OH 3.227 47.88

41 O–(CH2)3–OH 3.140 67.17

42 O–(CH2)3–OCH2Ph 3.179 137.15

43 OCO–(CH2)3–CHMe2 3.895 113.36

44 OCO–(CH2)2–COCHMePh 4.142 154.37

45 OCF3 4.999 33.15

46 F 9.767 10.31

47 Cl 8.325 21.33

48 Br 7.591 25.60

49 SCH3 5.005 31.79

50 SO2CH3 4.989 50.89

a Electronegativity = 1/2(ionization potential + electron affinity).
b Molar volume.

Fig. 2. Neural networks structure.

Table 2

The IC50 and inhibition percent of polyol accumulation of the training and

testing data

Numbers Compounds Exp.a NN calc.b Exp.c NN calc.d

1 H 0.325 0.266 2.447 2.007

2 50-Cl 0.175 0.129 2.934 2.803

3 50-Me 0.275 0.210 2.602 2.602

4 60-Cl 0.680 0.682 1.748 1.814

5 60-Br 0.747 0.670 1.716 1.751

6 60-NO2 0.155 0.200 1.863 2.166

7 60-Ome 0.136 0.191 3.653 2.528

8 60-OCOPh 0.123 0.186 3.301 3.443

9 60-OCOCH CHPh 0.293 0.185 3.792 3.676

10 60-CO2Et 0.222 0.191 2.380 2.591

11 60-Me 0.309 0.192 2.903 2.576

12 70-Cl 0.223 0.143 1.973 1.969

13 70-Me 0.375 0.358 2.342 2.422

14 70-OMe 0.210 0.187 2.556 2.509

15 80-F 0.299 0.277 1.623 1.701

16 50-Cl,60-NO2 0.000 0.001 2.672 3.002

17 60,70-Cl2 0.529 0.546 1.869 1.912

18 60-Cl,70-Me 0.580 0.478 1.477 1.617

19 60-NO2,70-Cl 0.077 0.068 2.079 2.132

20 60-NO2,70-morpholino 0.103 0.002 2.633 2.616

21 60,70-OCH2O- 0.284 0.253 3.255 3.176

22 60,80-Cl2 0.631 0.615 1.568 1.518

23 60-Cl,80-NO2 0.292 0.230 1.663 1.724

24 60-Cl,80-NH2 0.446 0.432 2.114 2.103

25 60,80-NO2 0.141 0.129 2.415 2.489

26 60,80-Cl2,70-OMe 0.375 0.374 1.875 1.785

27 60,70,80-F3 0.299 0.309 2.146 2.172

28 60-F 0.587 0.682e 2.000 2.017

29 70-NO2 0.115 0.257e 2.681 2.298e

30 60-Cl,70-OMe 0.246 0.222 1.771 1.720e

a Experimental values of the inhibition proportion of polyol accumulation in

sciatic nerve.
b Neural networks predicted values of the inhibition proportion of polyol

accumulation in sciatic nerve.
c The experimental values of log(IC50).
d Neural networks predicted values of log(IC50).
e The data in the testing set.
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them are with 80-substitute. Usually in vivo the characteristics

of bioactivity are different from that in vitro, and in this

experiment the vivo data is more closely related to lipophilicity

required to penetrate into the nerve. In neural networks

calculation, we determine the QSAR from these 30 measured

data (shown in Table 2), among which 28 data are used for the

training set and two data for the testing set. To ensure validity of

QSAR calculation, we perform cross-validation for the neural

network. Cross-validation was done by picking one of the 28

molecules for validation at a time. The training results of both

IC50 and the mean inhibition of polyol accumulation are plotted

in Fig. 3(a) and (b), and are shown to agree well with the

experimental data. Because there are only three compounds

with 50-substitute, we also perform neural network calculation

for data with three sites 60, 70, and 80. The neural network

calculation results for these 27 data are shown in Fig. 3(c) and

(d). This study focuses on the results of neural network

calculation for compounds with four sites 50, 60, 70 and 80. As

shown in Fig. 3(a) and (b) and Table 2, the training results agree
Fig. 3. Comparison between the experimental bioactivities and neural networks pred

by drug lead with 50-, 60-, 70- and 80-sites; (c) log(IC50) and (d) mean inhibition o
well with the experimental data for both IC50 and mean

decreasing polyol level, and the test data has similar RMSE as

that of the training set. For training data, the range of

experimental IC50 data is from 1.5 to 3.8, the root mean square

error (RMSE) of calculated IC50 is 0.26, which is 11% of the

range; and the range of experimental inhibition of polyol level

is from 0 to 0.75, and its RMSE of calculated inhibition of

polyol levels in sciatic nerve is 0.06, which is 8% of the range.

The calculated data demonstrate the validity of the determined

neural network for the QSAR.

We then utilize the QSAR to predict the values of IC50

and the inhibition percent of polyol level for new compounds

by substituting various functional groups at different sites of

the spiro-[imidazolidine-4,40(10H)-quinazoline]-2,20,5(30H)-

triones [19]. Potent inhibitors are selected from millions of

new predicted compounds according to the following criteria:

(1) 30 nM � IC50 � 40 nM and (2) polyol level of sciatic nerve

is decreased by more than 65% (all the bioactivity values are

constrained within the range of the training set), and (3) each
iction: (a) log(IC50) and (b) mean inhibition of polyol accumulation are obtained

f polyol accumulation are obtained by drug lead with 60-, 70- and 80-sites.
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Table 3

Structure, calculated bioactivity values and scores of predicted ARIs

Numbers Structure IC50
a

(nM)

Percentageb

(%)

Ebinding, Autodock

(kcal/mol)

Ligand-score Dock-score Ebinding,

QM/MM (kcal/mol)

Total

score

1 60-Cl,80-OH 38 71.6 �8.88 4.90 42.22 �30.90 2.72

2 60-Cl,70-NH2,80-Cl 35 65.6 �9.12 4.87 47.19 �43.87 3.16

3 60-Cl,70-NH2,80-OH 34 69.7 �8.80 5.03 43.34 �32.58 2.81

4 60-CN,70-C2H3,80-CN 33 71.0 �8.89 4.97 45.10 �39.58 2.98

5 60-CN,70-C2H5,80-F 35 66.9 �8.79 5.22 45.73 �31.34 2.94

6 60-CN,70-CF3,80-CN 32 70.3 �8.60 5.59 45.40 �35.14 3.07

7 60-CN,70-CH3,80-CN 32 71.7 �8.92 4.86 46.76 �28.67 2.84

8 60-CN,70-Cl,80-Cl 31 65.1 �9.23 5.12 47.00 �30.74 3.09

9 60-CN,80-Cl 31 72.5 �9.01 4.80 45.47 �24.64 2.74

10 60-CN,70-NH2,80-Cl 32 70.5 �8.99 4.94 45.81 �27.12 2.84

11 60-CN,70-NH2,80-OH 32 70.1 �8.49 5.01 43.11 �31.47 2.67

12 60-CN,70-NO2,80-CN 31 68.8 �7.97 5.51 46.43 �37.06 2.87

13 60-CN,70-OCF3,80-CN 32 67.0 �8.67 5.49 48.97 �31.05 3.11

14 60-CN,70-OH,80-Cl 32 71.7 �8.79 4.73 46.13 �35.07 2.82

15 60-CN,70-N-2CH3,80-F 34 65.1 �8.80 5.35 49.34 �36.52 3.19

16 60-CN,70-COOH,80-CN 33 68.5 �8.27 5.55 47.36 �36.40 3.02

17 60-CN,70-COOEt,80-F 35 65.6 �9.20 5.97 53.48 �40.25 3.77

18 60-CN,70-SCH3,80-CN 32 67.7 �8.84 5.16 47.22 �30.57 2.97

19 60-F,70-C2H3,80-CN 31 72.5 �8.92 4.91 44.66 �29.69 2.81

20 60-F,70-C2H3,80-F 31 71.9 �9.09 5.11 48.56 �42.23 3.26

21 60-F,70-C2H5,80-F 32 70.6 �9.02 5.14 47.96 �43.67 3.25

22 60-F,70-CF3,80-CN 31 72.4 �8.45 5.08 47.91 �41.64 3.00

23 60-F,70-CF3,80-F 30 70.0 �8.68 5.38 42.65 �34.47 2.91

24 60-F,70-CH3,80-CN 31 73.8 �8.74 5.07 47.67 �41.42 3.08

25 60-F,70-CH3,80-F 30 70.4 �8.96 5.02 46.48 �43.28 3.13

26 60-F,70-Cl,80-Cl 31 65.6 �8.90 5.05 47.90 �42.09 3.14

27 60-F,70-Cl,80-CN 31 71.9 �8.97 5.24 43.01 �32.74 2.94

28 60-F,80-Cl 31 73.2 �8.76 4.91 46.06 �40.63 2.96

29 60-F,80-CN 30 73.0 �8.57 4.95 45.94 �39.46 2.89

30 60-F,70-3-4-methylenedioxo,80-F 31 71.2 �8.68 5.23 49.67 �36.29 3.11

31 60-F,70-Br,80-CN 30 72.3 �8.77 5.09 48.35 �43.15 3.15

32 60-F,70-CN,80-CN 38 68.1 �8.60 5.08 47.17 �38.85 2.98

33 60-F,70-NH2,80-Cl 31 70.7 �8.87 5.01 46.78 �45.20 3.15

34 60-F,70-NH2,80-CN 30 74.8 �8.65 5.05 46.86 �43.90 3.06

35 60-F,70-NH2,80-OH 31 70.1 �8.48 4.94 41.59 �33.78 2.62

36 60-F,70-NO2,80-CN 30 73.3 �8.56 5.41 45.51 �38.97 3.04

37 60-F,70-OCF3,80-CN 31 68.4 �8.35 5.43 47.86 �32.84 2.96

38 60-F,70-OCF3,80-F 30 71.0 �8.37 5.31 45.79 �35.59 2.90

39 60-F,70-OCH2CH2CH3,80-F 33 65.4 �8.77 5.33 50.52 �33.85 3.17

40 60-F,70-OCH2CHCH2,80-F 32 67.6 �8.73 5.27 52.81 �48.46 3.44

41 60-F,70-OCH3,80-CN 32 65.2 �8.47 5.13 50.32 �45.95 3.17

42 60-F,70-OCH3,80-F 31 72.7 �8.69 5.08 48.68 �30.42 2.94

43 60-F,70-OH,80-Cl 32 72.5 �8.72 5.04 42.11 �27.14 2.66

44 60-F,70-OH,80-CN 31 71.9 �8.49 5.01 41.97 �33.01 2.66

45 60-F,70-SO2CH3,80-F 31 65.8 �8.71 5.41 49.47 �32.09 3.12

46 60-F,70-N (CH3)2,80-F 32 69.5 �9.22 5.13 49.62 �45.17 3.40

47 60-F,70-CH2COOH,80-F 32 65.3 �9.24 5.20 51.67 �50.72 3.58

48 60-F,70-COOH,80-CN 31 69.4 �8.35 5.55 46.23 �39.94 3.06

49 60-F,70-COOH,80-F 31 72.7 �8.96 5.29 48.67 �31.10 3.12

50 60-F,70-O2(CH2)OH,80-F 32 67.8 �8.86 5.37 51.19 �44.80 3.41

51 60-F,70-EtOCO,80-F 32 68.8 �8.73 5.44 51.95 �35.56 3.28

52 60-F,70-SCH3,80-CN 31 69.4 �8.76 5.29 50.52 �41.77 3.28

53 60-F,70-SCH3,80-F 30 70.6 �9.02 5.56 47.51 �34.89 3.27

54 50-F,60-CN,80-Cl 32 69.6 �9.31 4.84 44.85 �20.65 2.78

55 50-F,60-F,80-Cl 33 70.2 �9.17 4.97 40.44 �30.56 2.79

56 50-F,60-F,80-CN 32 72.8 �8.90 4.76 45.57 �39.26 2.92

57 50-NH2,60-CN,80-Cl 33 71.0 �9.29 4.69 38.40 �26.14 2.58

58 50-NH2,60-F,80-Cl 34 71.5 �9.17 4.86 39.74 �26.71 2.66

59 50-NH2,60-F,80-CN 32 73.6 �8.93 4.83 38.85 �31.22 2.61

60 50-OH,60-CN,80-Cl 32 71.2 �9.10 5.07 42.86 �17.90 2.69

61 50-OH,60-F,80-Cl 32 71.7 �9.04 4.94 40.90 �25.58 2.67

62 50-OH,60-F,80-CN 31 73.2 �8.79 4.96 40.64 �32.23 2.68

a Concentration that causes 50% inhibition in experiment.
b The inhibition percent of polyol level in sciatic nerve.
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Fig. 4. Stereo-view of aldose reductase active site. Protein backbone is shown

in pink ribbon. The active residues are shown in green cylinders.
molecule should have no more than three non-hydrogen

functional groups at 50-, 60-, 70- and 80-sites. According to these

criteria, 62 possible ARIs are determined. These molecules

will be subjected to further screening by computer docking

experiment and quantum mechanical calculation to confirm

their bindings to AR.

The QSAR is analyzed by examining the predicted ARIs’

structure and compared with QSAR study by Yamagishi et al.

In Table 3, among the 62 predicted ARIs, all identified

functional groups at this 60-site are hydrogen acceptors with

small volume and large electronegativity. It is shown that the

60-substituent of spiro[imidazolidine-4,40(10H)-quinazoline]-

2,20,5(30H)-triones [19] is favorable. In their study, Yamagishi

et al. found that (1) hydrophobic and electron-withdrawing

substituents are favorable for high activity and (2) a smaller 60-
substituent is more active. They also indicated the bioactivity

of compounds with 60-amine and hydroxyl substituted is not

favorable. Our prediction shows that there are absolutely no

such functional groups at the site among the molecules with

good bioactivities (see Table 2) [19]. In the functional group

parameter database (Table 1), apparently F, CN, and Cl have

larger electronegativity and smaller volume comparing with

other functional groups. Hence, the predicted potent ARIs only

contain these functional groups at the 60-site. The 70-site can

accommodate larger functional groups containing hydropho-

bic functional groups (CH3, C2H3, C2H5, etc.) as compared to

the 60- and 80-sites. These results are consistent with the

experimental results of Yamagishi et al. [19] and the QSAR

obtained by the CoMFA method [30]. Because there are few

data in the 50- and 80-positions, we need to analyze closely the

predicted structures. The 80-substituent is a preferable

electronegative position, because these potent ARI candidates

only have the functional groups such as F, OH, CN and Cl at

this site. The 50-substituent is very close to the spirohydantoin,

due to steric hindrance, only small functional groups are

suitable. Moreover, H of OH can form intra-molecular

hydrogen bond with O of spirohydantoin, which stabilizes

the inhibitor. It might be the reason that 50-site is preferable to

have OH functional group. In original experiments, Yamagishi

et al. could not find anything important either for deciding the

type of functional groups at 50- and 80-site. They concluded that

50- and 80-sites contain the functional groups with varying

hydrophobic and electronic properties, and thus do not play

important roles in binding. As analyzed above, the QSAR

obtained by neural networks agree well with experimental

results. The reason is that the hydrogen bonding and

hydrophobic interactions are the most important interactions

between ARIs and AR.

3. Virtual screening via docking of ARIs into active site

and QM/MM calculation of binding energy

We report a new neural networks-based method for

designing aldose reductase inhibitors. As many exists methods,

our strategy has its limitations. For instance, the backbone of

the protein is rigid during the docking. The computer docking is

carried out by employing two softwares, Cerius2 ligand-fit
(Accelrys Inc.) [31] and Autodock3.0.5 [32], and the binding

energies of ARI candidates are calculated by using CHARMm

QM/MM method [33–40].

The conformations of inhibitors within the AR active site are

obtained by docking the ligands into the active site. The protein

structure, human AR crystal structure (1PWM) together with a

known inhibitor fidarestat (see Fig. 1b), is downloaded from

Brookhaven Protein Data Bank, and its resolution is 0.92 Å.

Fidarestat has similar structure as our predicted ARIs. The

polypeptide chain of AR contains 315 residues with a

molecular mass of 35.8 kDa [2]. The charges and potentials

are assigned by CHARMm force field in InsightII 2000 [33].

Because the water molecules at the active site prevent the

inhibitors to enter into the site, they are removed by using

Cerius2 Structure Based Design module [31]. The active site of

AR is quite hydrophobic and consists of residues Tyr48, Trp20,

Lys77, His110, Phe122, Trp219, Cys298, Leu300, Val47 and

Trp111 [2–6,9]. As shown in Fig. 4, the active site (shown by

green cylinder) is located at the center of holoenzyme, and most

residues surrounding the active site have hydrophobic rings,

which results in the hydrophobic active site. Those hydrophobic

rings are parallel with each other due to the hydrophobic

interaction.

We find that all the predicted potent compounds dock well

into the active site. The best docking conformation of each of

these compounds, i.e., with the highest value of ligand-score in

Cerius2 docking calculation (for each molecule 10 best docking

conformations are saved in the docking calculation), are

subjected further to QM/MM calculation of binding energy. All

of scores including ligand-score, Docking score calculated by

ligand-fit, the estimated free binding energy calculated by

Autodock3.0.5 and interaction energy by QM/MM are listed in

Table 3. Two predicted inhibitors in Table 3, nos. 17 and 47 are



L.H. Hu et al. / Journal of Molecular Graphics and Modelling 24 (2006) 244–253250
shown in ball and stick in Fig. 5. Inhibitor no. 17 (see Fig. 5a)

has hydrogen bonds (black dashed line) with four protein

residues shown in cylinder, Trp20, Leu300, Leu301 and

Ser302. It shows that O2 of spirohydantoin is in contact with

He1 of Trp20 (2.09 Å), F of 80-substituent with HN of Leu300

(2.14 Å), and two oxygen atoms of 70-COOEt with HN of

Leu301 (2.38 Å) and HN of Ser302 (2.441 Å), respectively.

The hydrophobic ring is parallel to the inhibitor site residues,

Trp20 and Trp219. In Fig. 5b, no. 47 has different orientation

from no. 17 because of their different lengths. To have the most

stable conformation, the hydrophilic head O1, O2 and H2 of no.
Fig. 5. The docking conformations for inhibitors no. 17 (shown in (a)) and no.

47 (shown in (b)). Protein backbone is shown in pink ribbon. Active site residues

are shown in green cylinder, inhibitors are shown in cylinders, hydrogen bonds

are shown in black dash line (carbon: grey, oxygen: red, nitrogen: blue,

hydrogen: white, halogen: green).
47 become in contact with Trp111 (He1: 2.25 Å), Tyr48 (Hh:

2.751 Å) and His110 (Ne2: 2.14 Å) through the hydrogen

bonds. The hydrophobic ring is also parallel to the rings of

Trp20 and Trp219. It can also be observed in Fig. 5b that the

space around catalytic residues His110 and Tyr48 [6,9] is small,

and the 60-substituent points to the residues His110 and Tyr48.

Therefore, there is no more room for a large substituent, and

this is the reason why the potent inhibitors do not contain large

60-substituents. These two orientations are the most favorite for

most of the predicted inhibitor candidates. With Auto-

dock3.0.5, the free binding energies are calculated and listed

in Table 3 and the docked conformations obtained are

consistent with those obtained using Cerius2. The comparison

of inhibitor docking conformations by two docking softwares is

shown in Fig. 6. The docking results show that if the steric

hindrance of its functional groups on phenol ring is not too

large, an inhibitor would have the same orientation as that of no.

47 and otherwise the other orientation is preferred. It was

reported by Urzhumtsev et al. [6] that two contact zones are

involved in the binding of ARIs. Some ARIs such as tolrestat

(see Fig. 1c) may bind with a ‘specificity’ pocket, which is

created by a conformational change of enzyme [6]. This

specificity pocket indicates the adaptability of the AR active

site and only opens for certain inhibitors, then we analyzed all

the docking conformations of ligands, and found that the

functional groups in the phenol ring contributes much

conformational variation by adjusting the size of functional

groups. Most of binding researches suggested the N and O on

head of spirohydantoins contact with catalytic residues His110

and Tyr48. However, in this research we observed that inhibitor

17 adopts an unusual conformation although its binding energy

is not low. This series of compounds have a methyl group on

pyran ring instead of H or F single atom functional group on

sorbinil or fidarestat in the corresponding position. Because the
Fig. 6. Comparison of the docking conformations of inhibitor 17 by Cerius2

(yellow cylinder) and Autodock (cyan cylinder). Protein color scheme is same

as Fig. 5.
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Fig. 7. Side view of inhibitor 47 and fidarestat docking conformations (protein

residues shown in atomic color—carbon: light green, oxygen: red, nitrogen:

blue, hydrogen: white; inhibitor 47: cyan; Fidarestat: orange).

Fig. 8. The relationship between the total score and individual scores: (a)

ligand-score, (b) dock-score, and (c) binding energy calculated via QM/MM

method (in unit of kcal mol�1).
space around residues His110 and Tyr48 is limited and methyl

group is bulky group comparing with hydrogen, the position of

the compound (cyan cylinder shown in Fig. 7) is tilted up by

introducing methyl group on the pyran ring. This makes 60-site

closer to the residues VAL47. It is shown in Fig. 7 the distances

between O of Val47 and 60-Cl of inhibitor 47 and F of fidarestat

are 2.79 and 3.21 Å, respectively; on the other side, the distances

between S of Cys298 and a H of methyl group and the H of

fidarestat in corresponding position are 2.81 and 2.95. The

inhibitor 17 contains CN at the 60-site, which is a bigger

functional group than F or Cl, if the conformation is same as

fidarestat (orange cylinder shown in Fig. 7), the N atom would be

in the distance with large repulsion energy. Therefore, these

molecules choose another conformation. Their binding energies

are depending on hydrogen bonds; the more the hydrogen bonds,

the larger the binding energies. Since this kind of molecules

occupy the active site and have good binding with protein, they

also can prevent the substrate from interacting with protein.

The inhibitors’ binding energies are calculated by

CHARMm QM/MM method [33–40]. The coordinates are

taken from Cerius2 docking results. Single point energies are

calculated for the protein with docked ligands (the conforma-

tions are ligand-fit docking results), protein and ligands,

respectively. AM1 is used for quantum mechanical method.

The quantum part refers all of ligand atoms and the molecular

mechanical calculation includes all of the protein atoms. The

binding energies are finally calculated by equation Ebindin-

g = Eqmmm � (Emm + Eqm) and the values of QM/MM binding

energies are listed in Table 3 as well.

4. Discussion and conclusion

So far although molecular mechanics plays a very important

role in studying biological system, no molecular mechanical

method can give comparably accurate values of energies. And

different molecular mechanical method has its own advantages.
By combining multiple energy calculation methods, we might

consider the interaction energy more comprehensively to

improve the reliability of the calculation results. We scale all

types of scores including ligand-score, dock-score of ligand-fit,

estimated binding free energy of Autodock and binding

energies of QM/MM to the values within 0.5–1.0, and sum

the scaled values of the scores up to obtain a total score for each

molecule (listed in Table 3). These scaled values are simply

determined by linear scaling method. Data in different range

was mapped to same range. Because we consider the grads of

original data is small, the range was only set to 0.5–1.0. We set

the minimum value as 0.5 and the maximum value as 1.0 for

different data range, and the scaled value of other data

calculated by the equation

xin ¼ ðamx � amnÞxinp þ amnxmax � amxxmin

xfac

where xin is the scaled value, xinp the original input value, amx

the maximum of the scaled value, amn the minimum of the

scaled value, xmax the maximum of the input value, xmin the

minimum of the input value, and xfac = xmax � xmin. The rela-

tionships between the total score and some individual scores are

shown in Fig. 8: (a) ligand-score, (b) dock-score and (c) QM/

MM binding energy. It is shown in Fig. 8, three individual
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scores, ligand-score, dock-score and QM/MM binding energy

have the same trend as the total score. To compare calculated

binding activity with experimental data, we calculated the

various binding scores of the best experimental binding ARI

(IC50 = 30 nM), (4R)-60-chloro-70-methyl-30-methyl-spiro-

[imidazolidine-4,40(10H)-quinazoline]-2,20,5(30H)-trione (no.

18 in Table 2), and found that its total score is 2.78. In

Table 3, inhibitors no. 17, (4R)-60-cyano-70-ethoxyl-carbonyl-

80-fluoro-30-methylspiro-[imidazolidine-4,40(10H)-quinazo-

line]-2,20,5(30H)-trione, and no. 47, (4R)-60,80-fluoro-70-methy-

lene-carboxylic-acid-30-methylspiro-[imidazolidine-4,40(10H)-

quinazoline]-2,20,5(30H)-trione, have the highest total scores

(3.77 and 3.58, respectively). There are 49 predicted molecules

with better total scores than that of (4R)-60-chloro-70-methyl-30-
methylspiro-[imidazolidine-4,40(10H)-quinazoline]-2,20,5(30

H)-trione (see Fig. 1a and Table 3). It is found in Table 3 that the

average binding energies of compounds with the 50-substituent

are comparably lower than those of other compounds. On the

other hand, the compounds with the 60- or 80-substituents such

as F, Cl and CN functional groups usually have higher binding

energies than other compounds. The docking conformations are

analyzed. We observe that the 60- and 80-sites always interact

with the polar residues of protein in both two orientations

(shown in Fig. 5). In Fig. 5a the 80-site of no. 17 contacts with

the polar residue Leu300. In Fig. 5b the 60-site of no. 47 is near

to polar site which consists of several polar hydrogen atoms

such as Val47(HN), Gln49(HN) and Tyr48(HN). The corre-

sponding electrostatic interactions between the 60-site of ligand

and the active site may strengthen the interaction between

ligand and protein. Because it is near to the 60- and 80-sites,

the 70-site points to the hydrogen donor site (Leu300 and

Leu301) and forms hydrogen bonds with those residues in

Fig. 5a, therefore, the electron donor functional groups at this

site stabilize this conformation. But in Fig. 5b the 70-site points

to the entrance of the active site, where it is far away from the

active site residues and thus cannot form the hydrogen bond

with active site residues, so this site is less effective than that in

Fig. 5a. We thus conclude that: (1) the 60and 80-sites are the

preferable binding sites, (2) the large functional groups in 50-
site may weaken the binding affinity, and (3) the 70-substituent

is less effective than the 60 and 80-substituents. The promising

potent inhibitors should have functional groups with large

electronegativity and small volume and the substituents at

the 60 and 80-sites are preferred. To obtain potent inhibitors

in both vitro and vivo, the rank of the total scores is further

compared with that of the inhibition percent of polyol level. It

indicates that the compounds with better binding activity in vitro

may however have lower activity in vivo. In Table 3, inhibitors

no. 20, (4R)-60,80-fluoro-70-vinyl-30-methylspiro-[imidazoli-

dine-4,40(10H)-quinazoline]-2,20,5(30H)-trione, no. 21, (4R)-

60,80-fluoro-70-ethyl-3v-methylspiro-[imidazolidine-4,40(10H)-

quinazoline]-2,20,5(30H)-trione and no. 46, (4R)-60,80-fluoro-70-
N,N-dimethyl-amine-30-methylspiro-[imidazolidine-4,40(10H)-

quinazoline]-2,20,5(30H)-trione, have both high total scores 3.26,

3.25 and 3.40 and predicted high inhibition percent of polyol

level in vivo 71.9, 70.6 and 69.5%, respectively. These com-

pounds are the most promising candidates for ARIs.
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