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Three new developments of density functional theory are reported here. First, we have developed a
highly efficient first-principles method for excited electronic states, whose computational time scales
linearly with the system size. Secondly, Neural Networks is introduced to construct the exchange-
correlation functional of density functional theory; and lastly, a rigorous first-principles formalism
has been established for open electronic systems.
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1. INTRODUCTION

Density functional theory (DFT) has become the most pop-
ular quantum mechanical method for calculating molecu-
lar properties. It has been used to calculate ground and
as well as excited state properties of physical, chemical,
and biological systems. Despite of its success, DFT has
been limited to small and mediate sized systems, and has
been mostly applied to isolated systems. Although it is
often qualitatively correct, the calculated results of DFT
are still not quantitatively accurate enough to make reliable
predictions. In this report, we discuss three recent develo-
ments concerning the efficiency, accuracy, and application
to open systems for DFT.

2. LINEAR-SCALING TIME-DEPENDENT
DENSITY-FUNCTIONAL THEORY

Time-dependent density-functional theory (TDDFT)1–6 has
become a powerful tool to calculate the excited state prop-
erties of molecules, such as polarizabilities, hyperpolar-
izabilities, and excited state energies. It is based on the
Runge-Gross theorem7 which is the time-dependent gener-
alization of the Hohenberg-Kohn theorem.8�9 The state-of-
the-art TDDFT calculations scale as O�N 3�1�10 (N is the
number of atoms) which makes the TDDFT a relatively
expensive numerical method. Currently the TDDFT calcu-
lations are limited to molecules of modest sizes. It is thus
desirable to have linear-scaling TDDFT whose computa-
tional time scales as O�N�.

Much progress has been made for linear-scaling
density-functional theory (DFT).11–16 The bottlenecks for

∗Author to whom correspondence should be addressed.

achieving linear-scaling were the calculation of two-
electron Coulomb integrals and exchange-correlation (XC)
quadratures, and the Hamiltonian diagonalization. The
fast multipole method (FMM),17–20 which was originally
developed to evaluate the Coulomb interactions of point
charges, led to the linear-scaling computation of the
two-electron Coulomb integrals. Linear-scaling evaluation
of the XC quadratures was also achieved by exploiting
the localized nature of XC potential and by employing the
integral pre-screening technique.15�21 These works pave the
way for linear-scaling TDDFT methods.

The remaining obstacle for linear-scaling TDDFT
method lies in solving the TDDFT equation. The TDDFT
equation is very similar to the time-dependent Hartree-Fock
(TDHF) equation. The localized-density-matrix (LDM)
method was developed to solve the TDHF equation, and its
computational time scales linearly with the system size.22

Instead of the many-body wave function, the LDM method
solves for � of a molecular system from which its elec-
tronic excited state properties are evaluated. The equation-
of-motion (EOM) of � is integrated in the time-domain.
The linear-scaling of computational time versus the sys-
tem size is ensured by the introduction of density matrix �
cutoffs.22�23 Since TDDFT and TDHF have similar EOMs
for �, we combine the TDDFT and LDM methods just
as TDHF-LDM method.22 The resulting TDDFT-LDM
method shall thus be a linear-scaling method for electronic
excited states.

To demonstrate that the TDDFT-LDM method is indeed
a linear-scaling method, we have carried calculations on
a series of linear alkanes. The accuracy of calculation is
determined by the values of l0 and l1. For simplicity, we
choose l0 = l1 = l = 25 Å in our calculation. In Figure 1,
we examine the O�N� scaling of computational time and
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Fig. 1. CPU time for N = 62, 92, 122, 242, 362, 602. Each calcula-
tion is performed during the time interval between −0.5 fs and 0.5 fs
with time step 0.005 fs. l= 25 Å is used. Filled circles are the computa-
tional times for different sizes and the dashed line is the linear fit to the
circles.

plot the CPU time versus N . The computational time spent
in solving the DFT ground state is negligible compared
to the total CPU time for TDDFT calculation. Clearly,
the CPU time scales linearly with N for N between 62
and 602.

We have developed a linear-scaling TDDFT method.
The key for our linear-scaling TDDFT method are
(1) solving the TDDFT equation in the time-domain, and
(2) introducing the reduced single-electron density matrix
cutoffs.

In addition, the FMM is employed to reduce the computa-
tional time for evaluating the Coulomb interaction between
the induced and ground state charge distributions. The cal-
culations on the linear alkanes demonstrate the accuracy
and efficiency of TDDFT-LDM method. This makes it
possible the first-principles calculation of the excited state
properties of very large molecular systems.

3. NEURAL NETWORKS BASED
EXCHANGE-CORRELATION FUNCTIONAL

Density functional theory (DFT) converts many-electron
problems into effective one-electron problems. This con-
version is rigorous if the exact exchange-correlation func-
tional is known. It is thus important to find the accurate
DFT exchange-correlation functionals, if not exact. Much
progress has been made, primarily due to the development
of generalized gradient approximation (GGA)24–26 and
hybrid functionals.27 Various existing exchange-correlation
functionals include local or nearly local contributions such
as local spin density approximation (LSDA) and general-
ized gradient approximation (GGA), and nonlocal terms,
for instance, exact exchange functional. Although these
local and nonlocal exchange and correlation functionals
account for the bulk contributions to exact exchange-
correlation functional, higher-order contributions are yet

to be identified and taken into account. Conceding that
it is exceedingly difficult to derive analytically the exact
universal exchange-correlation functional, we resort to an
entirely different approach.

Since its beginning in the late fifties, Neural Networks
has been applied to various engineering problems, such as
robotics, pattern recognition, and speech.28 A neural net-
work is a highly nonlinear system, and is suitable to deter-
mine or mimic the complex relationships among relevant
physical variables. In this work, we develop a Neural-
Networks-based approach to construct the DFT exchange-
correlation functional and apply it to improve the results
of the popular B3LYP calculations.

B3LYP functional is a hybrid functional composed of
several local and nonlocal exchange and correlation con-
tributions, and can be expressed as

EXC = a0E
Slater
X + �1−a0�E

HF
X +aX�EBecke

X +aCE
LYP
C

+ �1−aC�E
VMN
C (1)

where ESlater
X is the local spin density exchange

functional,8�9�29 EHF
X is the exact exchange functional,

EBecke
X is Becke’s gradient-corrected exchange functional,24

ELYP
C is the correlation functional of Lee, Yang, and Parr,25

and EVMN
C represents the correlation functional proposed

by Vosko, Wilk, and Nusair 30. The values of its three
parameters, a0, aX , and aC , dictate the contributions of var-
ious terms. They have been determined via the least-square
fit to the 116 atomization energies (AEs), ionization poten-
tials (IPs), proton affinities (PAs) and total atomic energies
(TAEs) by Becke,27 and were determined as 0.80, 0.72, and
0.81, respectively. Note that aX < a0 < aC . B3LYP func-
tional explicitly consists of the first and second rungs of
the Jacob’s ladders of density functional approximation31

and the partial exact exchange functional.27 Being deter-
mined via the least-square fit to the 116 experimental
data, B3LYP functional includes implicitly the high-order
contribution to the exact functional such as those in
the meta-GGA functional.31 These high-order contribu-
tions are averaged over the 116 energy data,27 and are
assumed invariant for all types of atomic or molecular sys-
tems. However, their contributions to the exact exchange-
correlation energy are in fact system-dependent, which
leads to the system-dependence of a0, aX , and aC . After
identifying these characteristic properties that are related
to the high-order contribution to the exchange-correlation
functional, we employ Neural Networks to determine their
quantitative relationships to a0, aX , and aC . Instead of
being taken as a system-dependent semiempirical func-
tional, the resulting neural network can be viewed as
a generalized universal exchange-correlation functional.
It can be systematically improved upon the availabil-
ity of new experimental data. The system-dependence is
determined by the characteristic properties of the system.
The challenge is to identify these characteristic proper-
ties, and more importantly, to determine their quantitative
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relationships to the values of a0, aX , and aC . These char-
acteristic properties satisfy two criteria:
(1) they must be of purely electronic nature, since the
exact exchange-correlation functional is a universal func-
tional of electron density only; and
(2) they should reflect the electron distribution or its
variation.

These properties are termed as the physical descriptors of
the electronic system. Beyond the GGA, Perdew, and co-
workers32 proposed the meta-GGA in which the exchange-
correlation functional depends explicitly on the kinetic
energy density of the occupied Kohn-Sham orbitals,

��r�= 1
2

occ∑
�

�����r��2 (2)

where ���r� is the wave function of an occupied Kohn-
Sham orbital �. The total kinetic energy of the electronic
system, � = ∫

��r�d3r, should relate closely to the high-
order corrections to B3LYP functional, and is thus chosen
as one of the key descriptors. The exchange-correlation
functional is uniquely determined by the electron den-
sity distribution ��r�. ��r� can be expanded in terms of
the multipole moments. Being the zeroth-order term of
the expansion, the total number of electrons Nt is recog-
nized as a natural physical descriptor, and the dipole and
quadrupole moments of the system are selected as other
descriptors to account for high-order contributions. We use
the magnitude of the dipole moment D ≡

√
d2

x +d2
y +d2

z

for the dipole descriptor, where di �i = x� y� z� is a com-
ponent of the dipole vector. For quadrupole descriptor, we
take Q ≡

√
Q2

xx +Q2
yy +Q2

zz, where Qii �i = x� y� z� is a
quadrupole moment. The exchange functional accounts for
the exchange interaction among the electrons of the same
spin. Spin multiplicity gS is thus adopted as a physical
descriptor as well.

Our neural network adopts a three-layer architecture
which consists of an input layer, a hidden layer and an
output layer.28 The values of the physical descriptors, gS ,
Nt , D, � , and Q are inputed into the neural network at
the input layer. The modified values for a0, aX , and aC

for each atom or molecule, denoted by ã0, ãX , and ãC , are
obtained at the output layer. Different layers are connected
via the synaptic weights.28 The neural network structure
such as the number of hidden neurons at the hidden layer
is to be determined.

We take the 116 experimental energies that were
employed by Becke27 as our training set, and they are
utilized to determine the structure of our neural network
and its synaptic weights. Instead of the basis-set-free cal-
culations carried out by Becke,27 we adopt a Gaussian-
type-function (GTF) basis set, 6-311 + sG�3df �2p�, in
our calculations. Geometry of every molecule is optimized
directly using B3LYP/6-311+G�3df �2p�. The values of
� , D, and Q are obtained at the same level of calcula-
tions. Besides gS , Nt , D, � , and Q, a bias is introduced

as another input and its value is set to 1 in all cases. The
output values for ã0, ãX , and ãC vary from system to sys-
tem, and are used to modify the B3LYP functional for
each atom or molecule. The modified B3LYP functional is
subsequently used to evaluate its AE, IP, PA, or TAE. The
resulting energies are then compared to their experimental
values, and the comparison is used to tune the synaptic
weights of our neural network. The process is iterated until
the differences between the calculated and measured ener-
gies are small enough for all the molecules or atoms in the
training set, and the neural network is then considered as
converged.

Conventional B3LYP/6-311 +G�3df �2p� calculations
are carried out to evaluate AE, IP, PA, or TAE in the train-
ing set. Compared to the experimental data, the RMS devi-
ations are 3.0, 4.9, 1.6, and 10.3 kcal/mol for AE, IP, PA,
and TAE, respectively. The physical descriptors of each
molecule or atom in the training set are inputted to the neu-
ral network, and the outputed ã0, ãX , and ãC are used to
construct the B3LYP functional to calculate subsequently
AE, IP, PA, or TAE. These values are then compared to the
116 energy values in the training set to tune the values of
synaptic weights  Wji# and  W ′

kj#. It is found that the opti-
mal values of ã0, ãX , and ãC for each molecule or atom are
overall shifted from their origal B3LYP values, althrough
the order ãX < ã0 < ãC is kept for each molecule or
atom. This overall shift may be caused by the finite basis
set. More importantly, their values are slightly different
from each other. Therefore, the resulting B3LYP functional
is system-dependent. We compare the Neural-Networks-
corrected AEs, IPs, PAs, and TAEs to their experimen-
tal counterparts. The RMS deviations of Neural-Networks-
based B3LYP/6-311 +G�3df �2p� calculations are 2.8,
3.8, 1.6, and 4.1 kcal/mol, respectively, less than those of
the conventional B3LYP/6-311+G�3df �2p� calculations,
which are 3.0, 4.9, 1.6, and 10.3 kcal/mol for AE, IP, PA,
and TAE, respectively. We note that the Neural-Networks-
corrected B3LYP/6-311 +G�3df �2p� calculations yield
much improved TAE results. In Becke’s original work, the
RMS deviations are 2.9, 3.9, 1.9, and 4.1 kcal/mol for AE,
IP, PA, and TAE, respectively.

To examine the performance of our neural network, a
test is carried out to calculate the IPs of 24 molecules
which are selected from the G2 test set.33 To save the
computational time, only 24 small molecules are selected
besides those in the training set. Descriptors of each
molecule in the testing set are inputed to our neural net-
work and the Neural-Networks-corrected ã0, ãX , and ãC

are used to construct the improved B3LYP functional (see
Table I). To calculate their IPs, the cation counterparts
of the 24 molecules need to be included as well. Their
ã0, ãX , and ãC are also listed in Table I. The resulting
IP values are compared to those obtained from the con-
ventional B3LYP/6-311+G�3df �2p� calculations. Except
for a few molecules, the resulting IPs for most molecules
are improved upon the Neural-Networks correction. For
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Table I. Descriptors and parameters of testing set.

D � Q

Name gS Nt (DB) (a.u.) (DB·Å) ã0 ãX ãC

CF2 1 24 0.51 301%68 27%87 0.778 0.748 0.931
CH2 3 8 0.63 45%13 12%98 0.774 0.751 0.953
CH2S 1 24 1.75 481%58 33%56 0.778 0.748 0.931
CH3Cl 1 26 1.96 549%86 33%85 0.780 0.751 0.933
CH3F 1 18 1.87 176%46 21%21 0.769 0.737 0.927
CH3 2 9 0.00 49%28 13%87 0.771 0.745 0.947
CH3OH 1 18 1.67 155%45 22%90 0.769 0.737 0.927
CH3O 2 17 2.11 149%00 22%23 0.789 0.767 0.954
CHO 2 15 1.69 140%01 19%87 0.785 0.762 0.952
CO2 1 22 0.00 246%26 28%71 0.775 0.744 0.930
COS 1 30 0.85 589%92 41%32 0.784 0.755 0.934
HOF 1 18 1.95 208%68 17%89 0.769 0.737 0.927
NH2 2 9 1.83 63%22 12%11 0.771 0.745 0.947
NH 3 8 1.54 58%63 10%94 0.774 0.751 0.953
SC 1 22 1.92 468%67 33%28 0.775 0.744 0.930
B2H4 1 14 0.79 76%44 26%08 0.761 0.726 0.923
C2H5 2 17 0.34 115%61 25%37 0.789 0.767 0.954
CH3SH 1 26 1.54 494%06 36%34 0.780 0.751 0.933
CS2 1 38 0.00 942%06 53%04 0.789 0.761 0.937
N2H2 1 16 0.00 142%57 21%13 0.765 0.732 0.925
N2H3 2 17 2.56 147%28 21%96 0.789 0.767 0.954
Si2H2 1 30 0.57 643%83 50%42 0.784 0.755 0.934
Si2H4 1 32 0.00 658%51 51%48 0.786 0.757 0.935
SiH3 2 17 0.07 306%32 27%95 0.789 0.767 0.954
CF+

2 2 23 1.08 303%37 20%16 0.798 0.777 0.957
CH+

2 2 7 0.52 44%66 7%41 0.765 0.739 0.945
CH2S+ 2 23 1.70 481%65 24%05 0.798 0.777 0.957
CH3Cl+ 2 25 1.89 550%53 24%57 0.800 0.780 0.958
CH3F+ 2 17 3.72 177%34 13%46 0.789 0.767 0.954
CH+

3 1 8 0.00 48%83 7%61 0.745 0.707 0.914
CH3OH+ 2 17 1.43 155%82 14%56 0.789 0.767 0.954
CH3O+ 3 16 2.44 149%57 14%24 0.792 0.773 0.959
CHO+ 1 14 3.76 140%98 12%86 0.761 0.726 0.923
CO+

2 2 21 0.00 245%22 20%89 0.795 0.774 0.956
COS+ 2 29 1.66 588%35 31%06 0.804 0.785 0.959
HOF+ 2 17 2.80 210%63 12%46 0.789 0.767 0.954
NH+

2 3 8 0.56 62%72 7%39 0.774 0.751 0.953
NH+ 2 7 1.73 58%03 6%69 0.765 0.739 0.945
SC+ 2 21 0.54 469%27 23%22 0.795 0.774 0.956
B2H+

4 2 13 0.28 75%62 16%76 0.781 0.757 0.951
C2H+

5 1 16 0.70 117%00 16%11 0.765 0.732 0.925
CH3SH+ 2 25 1.16 494%52 25%68 0.800 0.780 0.958
CS+

2 2 37 0.00 941%86 40%10 0.809 0.790 0.960
N2H+

2 2 15 0.00 143%30 13%30 0.785 0.762 0.952
N2H+

3 1 16 2.55 148%94 14%25 0.765 0.732 0.925
Si2H+

2 2 29 0.22 642%41 34%76 0.804 0.785 0.959
Si2H+

4 2 31 0.00 656%32 36%04 0.805 0.786 0.959
SiH+

3 2 16 0.06 306%15 17%96 0.787 0.765 0.953

Neural-Networks-based B3LYP/6-311 +G�3df �2p� cal-
culation, its RMS deviation for the 24 molecules is reduced
to 2.4 kcal/mol from the original 3.6 kcal/mol. This test
demonstrates the validity of our Neural-Networks-based
functional.

4. FIRST-PRINCIPLES METHOD FOR OPEN
ELECTRONIC SYSTEMS

Density-functional theory (DFT) has been widely used as
a research tool in condensed matter physics, chemistry,

materials science, and nanoscience. The Hohenberg-Kohn
theorem8 lays the foundation of DFT. The Kohn-Sham
formalism9 provides a practical solution to calculate the
ground state properties of electronic systems. Runge
and Gross extended DFT further to calculate the time-
dependent properties and hence the excited state properties
of any electronic systems.7 The accuracy of DFT or time-
dependent DFT (TDDFT) is determined by the exchange-
correlation functional. If the exact exchange-correlation
functional were known, the Kohn-Sham formalism would
have provided the exact ground state properties, and the
Runge-Gross extension, TDDFT, would have yielded the
exact properties of excited states. Despite their wide range
of applications, DFT and TDDFT have been mostly lim-
ited to isolated systems.

Any electron density distribution function ��r� of a
real physical system is a real analytic function. We may
treat nuclei as point charges, and this would only lead to
non-analytic electron density at isolated points. In prac-
tical quantum mechanical simulations, analytic functions
such as Gaussian functions and plane wave functions are
adopted as basis sets, which results in analytic electron
density distribution. Therefore, we conclude that any elec-
tron density functions of real systems are real analytic on
connected physical spaces, in principle or in practice. Note
that the isolated points at nuclei can be excluded for the
moment from the physical space that we consider, so long
as the space is connected. Later we will come back to
these isolated points, and show that their inclusion does
not alter our conclusion. Based on this, we show below
that for a real physical system the electron density dis-
tribution function in a sub-space determines uniquely its
values on the entire physical space. This is nothing but the
analytic continuation of a real analytic function. The proof
for the univariable real analytical functions can be found
in textbooks, for instance, Ref. [43]. The extension to mul-
tivariable real analytical functions is straightforward.

Lemma: The electron density distribution function ��r� is
real analytic in a connected physical space U . W ⊆ U is
a sub-space. If ��r� is known for all r ∈ W , ��r� can be
uniquely determined in entire U .

We are ready to prove the following theorem.

Theorem: Electron density function ��r� for a subsystem
of a connected real physical system determines uniquely
all electronic properties of the entire system.

Proof: Assuming the physical space spanned by the sub-
system and the connected real physical system are W and
U , respectively. W is thus a sub-space of U , i.e., W ⊆
U . According to the above lemma, ��r� in W determines
uniquely its values in U , i.e., ��r� of the subsystem deter-
mines ��r� of the entire system.

Inclusion of isolated points, lines or planes where
��r� is non-analytic into the connected physical space

4 J. Comput. Theor. Nanosci. 3, 1–7, 2006
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Fig. 2. Schematic representation of the experimental setup for quantum
transport through a molecular device.

does not violate the theorem, so long as ��r� is con-
tinuous at these points, lines or planes. This can be
shown clearly by performing analytical continuation of
��r� infinitesimally close to them. Therefore, we conclude
that ��r� of any finite subsystem determines uniquely
��r� of the entire physical system including the nuclear
sites. Hohenberg-Kohn theorem and Runge-Gross exten-
sion state that the electron density distribution of a system
determines uniquely all its electronic properties. Therefore,
we conclude that ��r� for a subsystem determines all the
electronic properties of the real physical system.

The above theorem guarantees the existence of an exact
DFT-type method for open systems. In principle, all we
need to know is the electron density of the reduced sys-
tem. The electron density distribution in the environment
can be obtained by the analytic continuation of the elec-
tron density function at or near the boundary. Although
in principle its physical span can be extremely small, in
practice the reduced system must be chosen appropriately
so that this analytic continuation procedure can be car-
ried out. For instance, Figure 2 depicts a molecular device,
consisting of a reduced system or device region D, and its
environment, the left and right leads L and R. Note that the
reduced system D contains not only the molecular device
itself, but also portions of the left and right electrodes. In
this way the analytic continuation of the density function
into the electrodes can be performed readily.

Now the challenge is to develop a practical first-
principles method. Taking the molecular device in Figure 2
as an example, we develop an exact DFT formalism for
the open systems. To calculate the properties of the molec-
ular device, we need only the electron density distribu-
tion in the device region. The influence of the electrodes
can be determined by the electron density distribution in
the device region D. Within the TDDFT formalism, a
closed equation of motion (EOM) has been derived for the
reduced single-electron density matrix )�t� of the entire
system:44

i)̇�t�= *h�t��)�t�, (3)

where h�t� is the Kohn-Sham Fock matrix, and the square
bracket on the right-hand side (RHS) denotes a commu-
tator. The matrix element of ) is defined as )ij�t� =

a†

j �t� ai�t��, where ai�t� and a†
j �t� are the Heisenberg

annihilation and creation operators for atomic orbitals
i and j at time t, respectively. Expanded in a real

space basis set, the matrix representation of ) can be
partitioned as

) =



)L )LD )LR

)DL )D )DR

)RL )RD )R


 (4)

where )L, )R, and )D represent the diagonal blocks which
correspond to the left lead L, the right lead R and the
device region D, respectively; )LD is the off-diagonal
block between L and D; and )RD, )LR, )DL, )DR, and )RL

are similarly defined. The Kohn-Sham Fock matrix h can
be partitioned in the same way with ) replaced by h in
Eq. (4). Thus, the EOM for )D can be written as

i)̇D = *hD�)D,+
∑

�=L�R

�hD�)�D −)D�h�D�

= *hD�)D,− i
∑

�=L�R

Q� (5)

where QL (QR) is the dissipative term due to L (R). With
the reduced system D and the leads L/R spanned respec-
tively by the atomic orbitals  l# and the single-electron
states  k�#, Eq. (5) is equivalent to:

i)̇nm = ∑
l∈D

�hnl)lm−)nlhlm�− i
∑

�=L�R

Q��nm (6)

Q��nm = i
∑
k�∈�

(
hnk�

)k�m
−)nk�

hk�m

)
(7)

where hnk�
is the coupling matrix element between the

atomic orbital n and the single-electron state k�. )k�m

is precisely the lesser Green’s function of identical time
variables, i.e., )k�m

�t� = −iG<
k�m

�t� t′��t′=t . Based on the
Keldysh formalism45 and the analytic continuation rules
of Langreth,46 Q��nm�t� can be calculated by the NEGF
formulation as described in Ref. [47],

Q��nm�t� = −∑
l∈D

∫ �

−�
d�

[
G<

nl�t� ��1
a
�� lm��� t�

+Gr
nl�t� ��1

<
�� lm��� t�−1<

��nl�t� ��G
a
lm��� t�

−1r
��nl�t� ��G

<
lm��� t�

]
(8)

where Gr , Ga, and G< are the retarded, advanced and
lesser Green’s function for the reduced system D, respec-
tively, and 1r

�, 1a
�, and 1<

� are the retarded, advanced and
lesser self-energies due to the lead � (L or R), respectively.

At first glance Eq. (6) is not self-closed since the dissi-
pative terms Q� remain unsolved. According to the theo-
rem we proved earlier, all physical quantities are explicit or
implicit functionals of the electron density in the reduced
system D, �D�r� t�. Q� is thus also a universal functional
of �D�r� t�. Therefore, Eq. (6) can be recast into a formally
closed form,

i)̇D =
[
hD*r� t3 �D�r� t�,�)D

]
− i

∑
�=L�R

Q�*r� t3 �D�r� t�,

(9)
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Neglecting the second term on the RHS of Eq. (9)
leads to the conventional TDDFT formulation in terms of
reduced single-electron density matrix.44 The second term
describes the dissipative processes where electrons enter
and leave the reduced system D. Besides the exchange-
correlation functional, an additional universal density
functional, the dissipation functional Q�*r� t3 �D�r� t�,,
is introduced to account for the dissipative interaction
between the reduced system and its environment. Eq. (9)
is thus the TDDFT EOM for the open system. In
the frozen DFT approach49 an additional exchange-
correlation functional term was introduced to account for
the exchange-correlation interaction between the system
and the environment. This additional term is included in
h*r� t3 �D�r� t�, of Eq. (9).

Admittedly Q�*r� t3 �D�r� t�, is an extremely com-
plex functional and difficult to evaluate. Just as various
approximated expressions have been adopted for the DFT
exchange-correlation functional in practical implementa-
tions, progressive approximations may be made for Q�.
One such scheme is the adiabatic approximation, which
assumes that Q� at a particular time t0 depends only on
the electron density function �D at the time, i.e.,

Q�*r� t03�D�r� t�,≈QAD
� *r3�D�r� t0�, (10)

where the adiabatic dissipation functional QAD
� �r� is a

functional of the spatial electron density function �D�r�
only. The steady-state can be reached adiabatically. There-
fore, the steady-state dissipation functional, QSS

� *�D�r�, is
an adiabatic functional, i.e.,

QSS
� *�D�r�,=QAD

� *�D�r�, (11)

Although its analytical expression is elusive, the numeri-
cal evaluation of QSS

� *�D�r�, can be obtained by using the
first-principles NEGF approach in Ref. [38]. In practice,
we may obtain the numerical solutions of QSS

� for a dis-
crete set of steady-state electron density functions, from
which we may calculate QAD

� or QSS
� for any electron den-

sity function by extrapolation.
We have developed an exact TDDFT formalism for open

electronic systems by introducing a new dissipation func-
tional, and have proposed two practical schemes to eval-
uate of the new functional. This work greatly extends the
applicability of the density-functional theory.
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