ELSEVIER

Available online at www.sciencedirect.com

SCIENCE<($DIRECT®

Chemical Physics Letters 410 (2005) 125-130

CHEMICAL
PHYSICS
LETTERS

www.elsevier.com/locate/cplett

Neural network correction for heats of formation
with a larger experimental training set and new descriptors

Xue-Mei Duan ?, Zhen-Hua Li *°, Guo-Liang Song ?, Wen-Ning Wang *°,
Guan-Hua Chen *"°, Kang-Nian Fan *"*

& Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Center for Chemical Physics,
Fudan University, 220 Handan Road, Shanghai 200433, China
® Virtual Laboratory of Computational Chemistry, Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
¢ Department of Chemistry, The University of Hong Kong, Hong Kong, China

Received 21 March 2005; in final form 12 May 2005
Available online 13 June 2005

Abstract

A neural-network-based approach was applied to correct the systematic deviations of the calculated heats of formation for 180
organic molecules and led to greatly improved calculation results compared to the first-principles methods [J. Chem. Phys. 119
(2003) 11501]. In this work, this neural network approach has been improved by using new descriptors obtained from natural bond
orbital analysis and an enlarged training set including organic, inorganic molecules and radicals. After the neural network
correction, the root-mean-square deviations for the enlarged set decreases from 11.2, 15.2, 327.1 to 4.4, 3.5, 9.5 kcal/mol for the
B3LYP/6-31G(d), B3LYP/6-311G(2d,d,p) and HF/6-31G(d) methods, respectively.

© 2005 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, important theoretical in-
sights have led to the development of sophisticated
and accurate theoretical techniques that can now be ap-
plied to a variety of problems of chemical interest. These
theoretical methods include configuration interaction
(CI), coupled-cluster (CC) theory, and the Gaussian 2
(G2) [1-3], Gaussian 3 (G3) [4-6] algorithms and so
on. However, these procedures are most computational
resource consuming and are still inapplicable to complex
systems. Density-functional theory (DFT), especially
hybrid methods such as B3LYP [7-10], surely offers a
promising alternative. However, the errors of DFT cal-
culations are accumulated with the size of the molecules
[11] because of employing the approximated exchange-
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correlation (XC) functional. Thus, a balance has to be
found between accuracy and efficiency.

Neural network (NN) approaches have become pop-
ular in chemistry and physics during the last 10 years
[12,13], because of their ease of use and their wide appli-
cability to standard problems. Particularly, in chemical
physics, NNs have been recently applied with great suc-
cess. For example, NNs have been used to calculate the
ground state eigenenergy of two-dimensional harmonic
oscillators [14], to obtain the electronic correlation en-
ergy for atoms and diatomic molecules [15], to predict
oxidation energies [16], and to model localized electron
pair correlation energies [17]. Recently, Chen et al.
[18,19] have developed a combined first principle calcu-
lation and neural network correction approach to im-
prove significantly the accuracy of the calculated
thermo-chemical properties. The physical descriptors
employed in their work were the calculated AH?., the to-
tal number of atoms in the molecules (), zero-point
vibrational energy (ZPE), and the number of double
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bonds (Ngp) or the number of hydrogen atom in a mol-
ecule (Ny). The systematic deviations between the calcu-
lated AH;? and experimental measurements were
eliminated greatly. For the 180 small- to medium-sized
organic molecules, the root-mean-square (RMS) devia-
tions of the calculated heats of formation were reduced
from 21.4 to 3.1 kcal/mol and from 12.0 to 3.3 kcal/mol
after the NNs correction was applied for the B3LYP/
6-311 + G(d,p) and B3LYP/6-311 + G(3df,2p) methods,
respectively [18].

We have also developed a linear regression correction
(LRC) approach using electron numbers in different
chemical environment as descriptors to successfully cor-
rect the unbalanced electron correlation energy theoret-
ically calculated between a molecule and its composing
atoms [20,21]. Although LRC approach is mathemati-
cally more straightforward, its results are usually infe-
rior to the NN correction approaches using the same
physical descriptors. In addition, Allinger and cowork-
ers [22,23] also developed a different approach, in which,
the bond/group equivalents, number of bonds, and
other descriptors were used to empirically correct the
HF or DFT electronic energies to obtain heats of forma-
tion of organic molecules. Their results were very accu-
rate, but it is difficult to apply their schemes to the
molecules with irregular bonds.

Although very successful, the training set of the pre-
vious NN approaches contains only closed-shell organic
molecules, which limits the application range of the
method. Therefore, the training set including 350 heats
of formation of small and medium-sized organic, inor-
ganic molecules, and radicals used in [21] is employed
in the present work. Furthermore, a new set of physical
descriptors as employed in our previous LRC ap-
proaches [21], the electron populations of different type
of natural bond orbitals (NBO) [24-28] are adopted in
the current NN approach.

2. Computational methods

Geometry optimizations and vibrational frequency
analyses were carried out at the B3LYP/6-31G(d),
B3LYP/6-311G(2d.d,p) and HF/6-31G(d) levels of the-
ories. The more balanced 6-311G(2d,d,p) basis set as
employed in the modified complete basis set model
(CBS-QB3) [29] is used in our present work, which in-
cludes two sets of d functions on elements beyond the
first row, one set of d polarization functions on the first
row elements, and one set of p polarization functions
on hydrogen as well. Diffusion basis functions have
not been tested here because they are expected to have
a trivial effect on the molecules in our training set since
they are all neutral. The calculation of AH}’ is based on
an atomization energy scheme [30], in which the scale
factors for the zero-point vibrational energies (ZPE)

are 0.9806, 0.9900 and 0.9135, and those for calculating
the enthalpy change of a molecule from 0 to 298.15 K
(AHSY (M) are 0.9989, 0.9900 and 0.8905 for the
B3LYP/6-31G(d), B3LYP/6-311G(2d,d,p) and HF/6-
31G(d) methods, respectively [31,29]. NBO analyses
at corresponding theoretical level were carried out to
evaluate the populations of the electrons, which were
performed with NBO 3.1 as implemented in the Gaus-
siaN 03 package of programs [32]. Attentions must be
given to the NBO calculations for radicals and strongly
delocalized molecules. For example, for radicals NO,
ClO, CN, HCO, CH;CO and H,COH the SCHOOSE
keyword is needed to specify the correct bonding pat-
tern. For benzene and substituted benzene molecules
the RESONANCE keyword should be used. All the
calculations in the present study were performed with
the GaussiaN 03 suite of programs [33].

3. The neural network approach

A three-layer architecture for the neural networks
was adopted in the current approach, including an input
layer consisting of inputs from the physical descriptors
(x1,X,...), a hidden layer containing two hidden neu-
rons (y1,),), and an output layer that outputs the cor-
rected values for the property of interest (Fig. 1).
{Wx;} and {Wy;} are sets of the connection weights
of the links. {Wx;} connects the input neurons and
the hidden neurons, and { Wy;} connects the hidden neu-
rons and the output neurons. The form of the transfer
function used in this neural network is tangent sigmoid
function (TANSIG), and the output is calculated
according to

Input Layer

®©

Hidden Layer Output Layer

Fig. 1. The structure of the neural network.
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where Sig(v) = 2/(1 + exp(—2*v))—1. The number of
descriptors for the input layer is nine in this work. They
are the total electron populations of different NBOs:
2-center bond (BD), 1-center core pair (CR), 1-center
valence lone pair (LP), 1-center Rydberg (RY*), 2-cen-
ter anti-bond (BD*), and valence non-Lewis lone pair
(LP*). The core electrons are further divided into several
subsets according to the shell in the corresponding
atoms. We define CR1, CR2, and CR3 as the first, the
second and the third layer below the valence shell. For
a given molecule, the total CR1 is the sum of all CR1
of the composing atoms, and the same for CR2 and
CR3. Taking CBrCl; as an example, the CR1 of C ele-
ment is 2, the CR1 of Cl element is 8 and the CR2 is
2, and the CR1 of Bris 18, the CR2 is 8 and the CR3
is 2. Thus, for CBrCls, the CR1 is 44, the CR2 is 14,
and the CR3 is 2. The number of the unpaired electrons
of atom in the ground state is also included as a descrip-
tor. The 350 molecules are randomly divided into the
training set (300 molecules) and the testing set (50 mol-
ecules). In order to ensure the quality of our neural
network and avoid over-fitting, a cross-validation proce-
dure is employed. We further divide the 300 training
molecules randomly into six subsets of equal size. Five
of them are used to train the neural network, and the
sixth to validate its predictions. This procedure is re-
peated six times in rotation.

4. Results and discussion

The corrected AH 95 of the three methods compared to
the experimental values are illustrated in Fig. 2a—c for the
B3LYP/6-31G(d), B3LYP/6-311G(2d,d,p) and HF/6-
31G(d) methods, respectively, in which the asterisks
belong to the training set, the triangles belong to the val-
idating set, and the crosses belong to the testing set. In
comparison, the raw calculated AH ? values are illustrated
in Fig. 2d,e.f, respectively. The mean absolute deviation
(MAD) and RMS deviation of the corrected results with
their experimental counterparts are listed in Table 1.
The weights { Wx;;} and { Wy;} are listed in Table 2.

The raw calculated results have very large systematic
errors compared with the experimental results [23].
Upon the NN correction the deviations are all substan-
tially decreased. For the B3LYP/6-31G(d) method, the
MAD was reduced from 8.2 to 3.2 kcal/mol, and for
the B3LYP/6-311G(2d,d,p) method, it was reduced from
12.4 to 2.3 kcal/mol. For the HF/6-31G(d) method, the
MAD was dramatically reduced from 284.1 to
6.8 kcal/mol and decreased by more than 30 times.
RMS deviation analysis further demonstrates that this
NN correction approach greatly decrease the calculation

errors of the DFT and HF methods. For the B3LYP/6-
31G(d) and B3LYP/6-311G(2d,d,p) methods, the RMS
deviations were reduced from 11.2 to 4.4 kcal/mol and
from 15.2 to 3.5 kcal/mol, respectively, and for the
HF/6-31G(d) method, it was reduced from 327.1 to
9.5 kcal/mol. In the insets of Fig. 2a,b,d,e, the histo-
grams for the deviations (from the experiments) are
plotted, which further demonstrate that the NN correc-
tion approach greatly decreases the large systematic cal-
culation errors of the DFT methods.

Truncation error in the basis set can be greatly cor-
rected by the NN approach. The corrected results using
the smaller 6-31G(d) basis set nearly have the same accu-
racy as those using the larger 6-311G(2d,d,p) basis set for
the 350 molecules. Thus, smaller basis set can be used in
the NN scheme to save a significant amount of computer
time required for large molecules. Moreover, the devia-
tions of large molecules are of the same magnitude as
those of small molecules. Unlike most other calculations
that yield worse results for large molecules than that for
small ones, the NN approach does not discriminate
against the large molecules [18]. For example, the devia-
tions for C;oH 304 and C,H;( before correction are 20.4
and 15.9 kcal/mol at the B3LYP/6-31G(d) level, respec-
tively, while the deviations after the NN correction drop
to 0.6 and 1.3 kcal/mol, respectively.

Compared to the LRC approaches using the same
NBO descriptors, the results of NN approach are
slightly better. Upon the linear regression correction,
the RMS deviations for the 350 molecules are 4.5, 4.0
and 10.2 kcal/mol for the B3LYP/6-31G(d), B3LYP/
6-311G(2d.d,p), and HF/6-31G(d) methods, respectively
[21]. The reasons may be contributed from two facts: (1)
The NN approach involves non-linear functions to cor-
rect the calculated data, but the linear regression method
does not. (2) No matter the NNs or the LRC method,
more adjustable variables usually give better results. It
is known that each input descriptors has a certain rela-
tionship with each hidden neurons in the neural net-
work. Thus, the present neural network architecture
that adopts two neurons in the hidden layer should have
more adjustable variables during the fitting process com-
pared to the linear regression method, in which the num-
ber of the adjustable variables is the same as the number
of the descriptors.

To test the relative contribution of each descriptor,
we retrain the rest by leaving one out. The results are
listed in Table 3. Without inner-layer-electron descrip-
tors, the RMS deviations increase from 4.4 to 5.5 kcal/
mol and from 3.5 to 3.8 kcal/mol for the B3LYP/
6-31G(d) and B3LYP/6-311G(2d,d,p) methods, respec-
tively, and for the HF/6-31G(d) method, the RMS devi-
ation increase from 9.5 to 14.7 kcal/mol. In general,
inner layer electrons do not contribute much in chemical
reactions. Since the calculation of heats of formation is
based on an atomization energy scheme, our results



128 X.-M. Duan et al. | Chemical Physics Letters 410 (2005) 125-130
200 120
100+ ~ 1004 0
150 2 2 .
El 80 3
0 g ot g
100 (£ 60 T s
40
100 o -100 .
20 5
=200 757 1050 200+ 6 15 g0 4 o
Deviation < Deviation .
3 (a) B3LYP/6-31G(d) Y
-300 -3004
300 { X training set (@
* A validation set ¢ ® B3LYP/6-31G(d)
-4001 X testing set -400+
~ 250
100 100+ ® .
—_ 200 .y
s % 60 7
< =3 =3
S 3 w0z
& 100 (£ =
<
~ -100} -100+ .
20 .
l% 50 o
& -200r G TR 2001 oy
IS Ao
o~ Deviation .
E« * -
S .00f (b) B3LYP/6-311G(2d.d,p) -3004 .
3 % X training set N (e)
§ 'y A validation set ® B3LYP/6-311G(2d,d,p)
5 -400 X testing set -400+
< t t t t t t t t t t t t
131
100 -
*; 600 |-
or
400
-100+
x .
* 200 |-
-200
« %
ol
300} * (c) HF/6-31G(d) L° .
i ¥ training set °
A validationset 0| ¢ . ()
-400r % X testing set . ® HF/6-31(d)
-400 -300 -200 -100 0 100 -400 -300 -200 -100 0 100

Experimental AH;(298.15K) (kcal/mol)

Fig. 2. Experimental versus calculated heats of formation for all 350 molecules: (a—c) neural-network corrected results; (d—f) raw calculated results.

Table 1
The MAD and RMS deviations (kcal/mol)
network correction

before and after the neural

B3LYP HF

6-31G(d) 6-311G(2d.d,p) 6-31G(d)
B-MAD? 8.2 12.4 284.1
A-MADP 32 2.3 6.8
B-RMS? 11.2 15.2 327.1
A-RMSP 4.4 3.5 9.5

@ Before correction.
® After correction.

ods, respectively. These indicate that different inner elec-
trons contribute differently to the overall energy change.
At the HF level, unpaired electrons of the atoms also
have remarkable contributions. Without unpaired-
electron descriptor, the RMS deviation increases by
4.6 kcal/mol. In addition, the effect of bonding electrons
is slightly larger compared to the effect of lone-pair elec-
trons. Without bonding-electron descriptor, the RMS
deviation increases by 0.6 kcal/mol. We consider that
the chemical environment is greatly changed upon form-
ing chemical bonds from unpaired electrons in atoms,
while the change of chemical environment for the

surprisingly show that inner layer electrons must be con-
sidered in accurately predicting the energy change of a
reaction. In addition, when taking the sum of three inner
layer electrons as one descriptor, the RMS deviations
reach to 5.3, 3.7 and 11.6 kcal/mol for the three meth-

lone-pair electrons from atoms to molecule is smaller.
In contrast, for the two DFT methods, the effects of
unpaired electrons, bonding electrons, and lone-pair
electrons are not so significant. However, without low-
occupancy-orbital descriptors (RY*, BD*, LP*), the
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Table 2
Weights of the neural network
Weights B3LYP HF

6-31G(d) 6-311G(2d,d,p) 6-31G(d)

1 V2 Y1 V2 Y1 V2
BD(a,)-Wx; —0.5390 —0.1501 —0.6004 —0.7006 0.1467 —0.0100
LP(as)-Wx»; —0.1371 0.0499 1.8325 —0.0892 0.3760 —0.0061
CR1(a3)-Wxs; —0.7149 0.3169 —0.8559 0.1910 0.2153 0.0194
CR2(ay)-Wxy; —0.6219 —0.4966 0.1429 —0.2580 —0.4025 —0.0277
CR3(as)-Wxs; 0.8161 0.3300 —0.4481 0.1111 0.1792 0.0060
RY*(as)-Wxe; —0.4773 —0.2331 0.5838 —0.1264 0.2726 0.0030
BD*(a7)- Wx7; 0.2355 0.0049 —1.5212 0.0116 —0.2832 0.0172
LP*(ag)- Wxg; —0.2733 0.0399 0.7115 0.1427 0.0223 —0.0015
Unpaired(b,)- Wxo; 0.1702 —0.0164 —0.0886 —0.3978 0.4316 —0.1397
Wy; 0.5420 3.9708 —0.9471 3.5658 —0.3483 —6.9412

RMS deviations of the three methods all increase greatly,
which implying that the effects of low-occupancy orbitals
cannot be ignored.

In the present work, we have also compared the cor-
rection results with different sets of descriptors used in
previous work. Firstly, we considered the electron pairs
descriptor including the number of bonding electrons,
lone-pair electrons, three inner layers electrons, un-
paired electrons in molecules, and unpaired electrons
in composing atoms in their ground states [20]. There
are seven descriptors in that procedure. After the seven-
descriptor NN correction, the RMS deviations for the
350 molecules are 5.7, 4.4 and 10.1 kcal/mol for the
B3LYP/6-31G(d), B3LYP/6-311G(2d.d,p), and HF/6-
31G(d) methods, respectively. Secondly, the original
physical descriptors used in Chen’s work (the calculated
AH‘;, N, ZPE and Ny) were considered as descriptors.
The RMS deviations for the 350 molecules reach to
7.9, 5.4 and 19.5 kcal/mol for the B3LYP/6-31G(d),
B3LYP/6-311G(2d,d,p), and HF/6-31G(d) methods,
respectively. Compared to the results in above two pro-
cedures, the RMS deviations (4.4, 3.5 and 9.5 kcal/mol)
in this work using NBO descriptors are all decreased for

Table 3
The RMS deviations (kcal/mol) for the neural network with different
descriptors

B3LYP HF
6-31G(d) 6-311G(2d,d,p) 6-31G(d)
I 4.4 3.6 10.1
® 4.4 3.7 9.8
e 5.5 3.8 14.7
ve 53 3.7 11.6
Ve 44 3.9 14.1
vIf 5.7 4.4 10.7
VI 44 3.5 9.5

# Excluding BD descriptor.

® Excluding LP descriptor.

¢ Excluding three-inner-layer-electron descriptor.

9 With three inner layer electrons as one descriptor.
¢ Excluding unpaired-electron descriptor.

' Excluding low-occupancy-orbital descriptor.

& With all descriptors.

these three methods, and especially for the HF/6-31G(d)
method, the deviations decrease greatly. The reasons
may be contributed from number and nature of descrip-
tors used in the neural network procedure. By compar-
ison, it could be suggested that the set of NBO
descriptors should be better.

Although the overall results of the neural network
correction approach are quite satisfactory, the devia-
tions for the different type molecular systems are still
ragged [tabulated in Table 4]. Especially for the non-
hydrogen systems, the RMS deviations are significantly
larger than the total RMS deviations of the 350 mole-
cules for all the three methods. There are 53 non-hydro-
gen molecules in the total 350 molecules. The RMS
deviations for this type molecules are 7.4, 6.8 and
16.0 kcal/mol for the B3LYP/6-31G(d), B3LYP/6-
311G(2d,d,p) and HF/6-31G(d) methods, respectively.
For the two DFT methods, the deviations of PFs, SF¢
and C,F¢ are above 15 kcal/mol. For the HF method,
the deviations for molecules containing fluorine element
are especially large, such as for BF3, CIF;, F,0, CF;Cl,
SF¢ and C,F¢. The large deviations may be attributed to
the inaccurate geometries optimized at these levels of
theories and other factors unconsidered in the present
work, such as spin-orbital coupling and relativistic
effects [4,6]. For the inorganic hydrides and radicals,
the RMS deviations of the HF/6-31G(d) method are
14.0 and 13.6 kcal/mol, which are still significantly
larger than the total RMS deviations (9.5 kcal/mol). In

Table 4
Comparison of the RMS deviations (kcal/mol) of different types
molecules

B3LYP HF

6-31G(d) 6-311G(2d,d,p) 6-31G(d)
Non-hydrogen (53) 7.4 6.8 16.0
Inorganic hydrides (15) 5.5 3.0 14.0
Radicals (31) 4.1 3.7 13.6
Hydrocarbons (69) 2.3 2.3 4.5
Subst. hydrocarbons (182) 3.7 2.2 6.1
All (350) 44 35 9.5
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contrast, for the two DFT methods, the correction re-
sults of the inorganic hydrides and radicals are satisfied
for us. For example, for the B3LYP/6-311G(2d,d,p)
method, the RMS deviation of the inorganic hydrides
even reach to 3.0 kcal/mol. For the hydrocarbons and
the substituted hydrocarbons, the correction results
are better compared to other types molecules. The
RMS deviations of the hydrocarbons are 2.3, 2.3 and
4.5 kcal/mol for the B3LYP/6-31G(d), B3LYP/6-311G-
(2d,d,p), and HF/6-31G(d) methods, respectively, and
for the substituted hydrocarbons they are 3.7, 2.2 and
6.1 kcal/mol, respectively. Compared to our previous
LRC method, the corrected results for different type
molecules are all slightly better upon the neural network
correction. For example, for the B3LYP/6-311G(2d,d,p)
method, the RMS deviation of the non-hydrogen mole-
cules is 6.8 kcal/mol upon the NN correction, while upon
the LRC correction it is 7.7 kcal/mol [21]. The RMS devi-
ation of the substituted hydrocarbons is 2.2 kcal/mol
upon the NN correction, while upon the LRC correction
it is 2.7 kcal/mol [23].

5. Conclusion

The neural network correction approach is reem-
ployed to improve the accuracy of DFT and HF calcu-
lation with smaller basis set by training the new training
set including 350 heats of formation of small and med-
ium-sized organic, inorganic molecules, and radicals.
The electron populations of the different types of NBOs
are used as new descriptors in present work. They in-
clude: 2-center bonds (BD), 1-center core pair (CR), 1-
center valence lone pair (LP), 1-center Rydberg (RY*),
2-center anti-bond (BD*), and non-Lewis valence lone
pair (LP*). The number of the unpaired electrons of
atom in ground state is also included as the descriptor.
Upon the NN correction, the RMS deviations for the
350 molecules are reduced from 11.2 to 4.4 and from
15.2 to 3.5kcal/mol for the B3LYP/6-31G(d) and
B3LYP/6-311G(2d,d,p) methods, respectively. At the
same time, the calculated AH ?.s of the HF method have
also been improved greatly, and the RMS deviation is
reduced from 327.1 to 9.5 kcal/mol for the HF/6-
31G(d) method. The NN approach based on the first-
principles calculation has been applied to correct other
thermo-chemical properties [19] and will be potentially
a powerful tool in computational science and in materi-
als research and development.
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