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Abstract

A Neural-Networks approach is employed to improve B3LYP exchange-correlation functional by taking into account of high-

order contributions. The new B3LYP functional is based on a Neural-Network whose structure and synaptic weights are determined

from 116 known experimental energy data [J. Chem. Phys. 98 (1993) 5648]. It leads to better agreement between the first-principles

calculations and the experimental results. The new functional is further tested by applying it to calculate 40 ionization potentials and

40 enthalpies of formation in G2-2 test set [J. Chem. Phys. 109 (1998) 42] using 6-311+G(3df,2p) basis set. The root-mean-square

errors are reduced from those of conventional B3LYP calculations.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Density functional theory (DFT) converts many-

electron problems into effective one-electron problems.

This conversion is rigorous if the exact exchange-cor-

relation (XC) functional is known. It is thus important

to find accurate DFT XC functionals. Much progress

has been made, primarily due to the development of

generalized gradient approximation (GGA) [1–3] and
hybrid functionals [4]. Existing XC functionals include

local or nearly local contributions such as local spin

density approximation (LSDA) [5] and GGA [1–3], and

nonlocal terms such as the exact exchange functional.

Although these local and nonlocal terms account for the

bulk contributions to exact XC functional, high-order

contributions are yet to be identified and taken into

account. Conceding that it is exceedingly difficult to
derive analytically the exact universal XC functional, a

semiempirical methodology has been established by

utilizing highly accurate experimental data to determine
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XC functionals [4,6,7]. Becke pioneered this approach
and determined the three parameters in B3LYP func-

tional [8] by a least-square fit to 116 molecular and

atomic energy data [4]. Building upon this semiempirical

methodology, we propose here a new approach which

takes into account of high-order contributions beyond

the existing local and nonlocal XC functionals.

Since its beginning in the late fifties, Neural-Net-

works has been applied to various engineering problems,
such as robotics, pattern recognition, and speech [9]. A

Neural-Network is a highly nonlinear system, and is

suitable to determine or mimic the complex relationships

among relevant physical variables. Tozer et al. [10] have

employed a computational Neural-Network to fit the

Zhao–Morrison–Parr XC potential [11]. By assuming

vXC ¼ vXCðqÞ, they incorporated the Neural-Network

into a regular Kohn–Sham procedure [5] with encour-
aging results. Recently we developed a combined first-

principles calculation and Neural-Networks correction

approach to improve significantly the accuracy of cal-

culated thermodynamic properties [12,13]. In this work,

we develop a Neural-Networks approach to construct a

new type of DFT XC functional, and then apply it to

improve the results of the popular B3LYP calculations.

What differentiates our work from [10] is that our

mail to: ghc@everest.hku.hk


X. Zheng et al. / Chemical Physics Letters 390 (2004) 186–192 187
Neural-Networks-based XC functional is system-

dependent for each molecule or atom while in [10] the

XC potential of different systems are fitted to the same

function of densities and density derivatives.

In Section 2 we describe the Neural-Networks-based
methodology. The improved B3LYP calculations results

are presented in Section 3. Further discussions will be

given in Section 4.
2. Methodology

The hybrid B3LYP functional is expressed as

EXC ¼ a0ESlater
X þ ð1� a0ÞEHF

X þ aXDEBecke
X þ aCELYP

C

þ ð1� aCÞEVMN
C ; ð1Þ

where ESlater
X is the local spin density exchange functional

[5], EHF
X is the exact exchange functional, EBecke

X is

Becke’s gradient-corrected exchange functional [1], ELYP
C

is the correlation functional of Lee et al. [2], and EVMN
C

represents the correlation functional proposed by Vosko

et al. [14]. The three parameters, a0, aX and aC, dictate
the contributions of various terms. Their respective

values, 0.80, 0.72 and 0.81, were determined via a least-

square fit to 116 atomization energies (AEs), ionization
potentials (IPs), proton affinities (PAs) and total atomic

energies (TAEs) by Becke [4]. Note that aX < a0 < aC.
B3LYP functional consists explicitly of the first and

second rungs of the Jacob’s ladder of density functional

approximation [15] and the partial exact exchange

functional [4]. Being determined via the least-square fit

to the 116 experimental data, it includes implicitly the

high-order contributions to the exact functional such as
those in meta-GGA [15]. These high-order contributions

were averaged in terms of Eq. (1), and were assumed

invariant for all atomic or molecular systems. Although

the universal functionals are system-independent, the

high-order contributions are in fact system-dependent.

Therefore, their inclusions in Eq. (1) should lead to the

system-dependence of a0, aX and aC which is in turn

dictated by the characteristic properties of the system.
The challenge is to identify these characteristic proper-

ties and determine their quantitative relationships to the

three parameters a0, aX and aC. These characteristic

properties, termed as the physical descriptors of the

system, should satisfy two criteria: (1) they must be of

purely electronic nature, since the exact XC functional is

a universal functional of electron density only; and (2)

they should reflect the electron distribution. After
identifying these physical descriptors, we then use

Neural-Networks to determine their quantitative rela-

tionships to a0, aX and aC, and the resulting Neural-

Network can be viewed as a generalized universal XC

functional, which can be systematically improved upon

the availability of new experimental data.
Beyond the GGA, Perdew and co-workers [16] pro-

posed the meta-GGA in which the XC functional de-

pends explicitly on the kinetic energy density,

sðrÞ ¼ 1

2

Xocc
a

jrwaðrÞj
2
; ð2Þ

where waðrÞ is the wave function of an occupied Kohn–

Sham orbital a. The total kinetic energy, T ¼
R
sðrÞd3r,

relates thus closely to the high-order contributions to

B3LYP functional, and is thus chosen as a key physical

descriptor. The electron density distribution qðrÞ un-

iquely determines the XC functional and can be ex-

panded in terms of the multipole moments. Being the

zeroth-order term of the expansion, the total number of
electrons Nt is recognized as a natural physical descrip-

tor, so are the dipole and quadrupole moments of the

system. We choose D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
x þ d2

y þ d2
z

q
as the dipole

descriptor and Q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

xx þ Q2
yy þ Q2

zz

q
as the quadrupole

descriptor, where diði ¼ x; y; zÞ is a component of the

dipole vector and Qiiði ¼ x; y; zÞ is a diagonal element of

the quadrupole tensor. Spin multiplicity gS is also

adopted as a physical descriptor since the exchange

functional accounts for the exchange interaction among

electrons of the same spin.

Our Neural-Network adopts a three-layer architecture

which consists of an input layer, a hidden layer and an
output layer [9], see Fig. 1. Adjacent layers are connected

via the synaptic weights. The values of the physical de-

scriptors, gS , Nt, D, T and Q, are inputted into the

Neural-Network at the input layer. And the modified a0,
aX and aC for each atom or molecule, denoted by ~a0, ~aX
and ~aC, are obtained at the output layer. We take the 116

experimental energies employed by Becke [4] as the

training set, and use them to determine the structure of
our Neural-Network and its synaptic weights. Instead of

the basis-set-free calculations [4], we adopt a Gaussian-

type-function (GTF) basis set, 6-311+G(3df,2p), in our

calculations. Geometry of every molecule is optimized

directly by conventional B3LYP/6-311+G(3df,2p). The

values of T, D and Q are obtained at the same level.

Besides gS , Nt, D,T and Q, biases are introduced at both

the input and hidden layers and their values are set to
unity. An error back-propagation learning procedure [17]

is employed to optimize the synaptic weights. For each

molecule or atom, the system-dependent ~a0, ~aX and ~aC
are used to modify its B3LYP functional, which is in turn

used to evaluate its AE, IP, PA, or TAE. These resulting

energies are then compared to their experimental

counterparts, the differences serve as feedbacks to the

Neural-Network, and all synaptic weights are tuned,
accordingly. This procedure is iterated until the calcu-

lated and measured energies are close enough for the

whole training set, and the Neural-Network is then

considered as converged, i.e., its synaptic weights are

determined.



Table 1

RMS errors (all data are in the units of kcalmol�1)

Properties AE IP PA TAE Overall

Number of samples 56 42 8 10 116

Aa 2.9 3.9 1.9 4.1 3.4

DFT-1b 3.0 4.9 1.6 10.3 4.7

DFT-NNc 2.4 3.7 1.6 2.7 2.9
a Becke’s work.
b Conventional B3LYP/6-311+G(3df,2p).
cNeural-Networks-based B3LYP/6-311+G(3df,2p).
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Fig. 1. Architectural graph of our Neural-Network and flow chart of our calculations.
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The Neural-Network structure is optimized via a

cross-validation technique [18]. The training set is ran-

domly partitioned into six subsets of equal size. Five of

them are used to train the weights of the Neural-Net-
work, and are termed as the estimation subset. The sixth

is used to evaluate the prediction of current Neural-

Network, and is termed as the validation subset. This

procedure is repeated six times in rotation to assess the

performance of current Neural-Network. We vary the

number of neurons in the hidden layer from 1 to 5 and

find that two hidden neurons yield the best results, i.e.,

the minimal overall root-mean-square (RMS) errors and
the minimal RMS difference between the estimation and

validation subsets (less than 0.2 kcalmol�1). The latter

helps ensure the predictive capability of our Neural-

Network. Therefore, the 6-3-3 structure is adopted (see

Fig. 1, where x1, x2, x3, x4, x5 and x0 are gS , Nt, D, T, Q
and bias, respectively). To maintain the numerical sta-

bility of the learning procedure, the input is prepro-

cessed before being imported into the Neural-Network.
Except for the bias, every xi is scaled into the range (0.1,

0.9). The Neural-Networks-corrected ~a0, ~aX and ~aC are

generated at the output layer, and are related to the

input fxig as

~a0 ¼ Sigb
X2
j¼1

W 0
1j � Siga

X5
i¼0

Wjixi

 !" #(
þ W 0

10

)
; ð3Þ

~aX ¼ Sigb
X2
j¼1

W 0
2j � Siga

X5
i¼0

Wjixi

 !" #(
þ W 0

20

)
; ð4Þ

~aC ¼ Sigb
X2
j¼1

W 0
3j � Siga

X5
i¼0

Wjixi

 !" #(
þ W 0

30

)
; ð5Þ
where SigaðvÞ ¼ 1
1þexpð�avÞ and SigbðvÞ ¼ b tanhðcvÞ, a

and c are parameters which control the switch steepness

of Sigmoidal functions SigaðvÞ and SigbðvÞ. fWjig are the

weights connecting the input layer fxig and the hidden
neurons fyjg, and fW 0

kjg connect the hidden neurons and

the output (i ¼ 0–5, and j ¼ 0� 2. Zero indices are

referred to the biases).
3. Results

The conventional B3LYP/6-311+G(3df,2p) calcula-
tions are carried out to evaluate AEs, IPs, PAs or TAEs

of the molecules and atoms in the training set, and their

resulting deviations from the experimental data are 3.0,

4.9, 1.6 and 10.3 kcalmol�1 for AEs, IPs, PAs and

TAEs, respectively (see Table 1). The physical descrip-

tors T, Nt, D, Q and gS of each molecule or atom in the

training set are inputted to the Neural-Network, and the
~a0, ~aX and ~aC from the output layer are used to con-
struct the B3LYP functional which is applied subse-

quently to calculate AE, IP, PA or TAE. These values
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are then compared to the 116 energy values in the

training set to tune the synaptic weights fWjig and fW 0
kjg.

The final values of synaptic weights are shown in Table
Table 2

Optimized synaptic weights Wji and W 0
kj as well as derivatives of ~a0, ~aX and

j ¼ 1 j ¼ 2 k ¼ 1 k ¼ 2

Wj1 )0.89 1.11 W 0
k1 0.21 )0.02

Wj2 0.52 )0.09 W 0
k2 0.18 0.06

Wj3 0.18 0.09 W 0
k0 )0.03 0.54

Wj4 0.78 0.20

Wj5 0.22 0.28

Wj0 0.15 0.06

Derivatives are obtained at xi ¼ 0:5 (i ¼ 1–5) and x0 ¼ 1.

Table 3

Ionization potentials of testing set (all data are in units of kcalmol�1)

No. Species Expt.a DF

1 CF2 263.4 261

2 CH2 239.6 239

3 CH2S 216.3 214

4 CH3Cl 258.7 255

5 CH3F 287.6 283

6 CH3 226.9 229

7 CH3OH 250.2 244

8 CH3O 247.2 243

9 CHO 187.7 195

10 CO2 317.5 316

11 COS 257.8 258

12 HOF 293.1 291

13 NH2 256.9 261

14 NH 311.1 315

15 SC 261.3 263

16 B2H4 223.7 219

17 C2H5 187.3 189

18 CH3SH 217.7 215

19 CS2 232.2 231

20 N2H2 221.2 220

21 N2H3 175.5 182

22 Si2H2 189.1 185

23 Si2H4 186.6 182

24 SiH3 187.7 188

25 BF3 358.8 349

26 BCl3 267.5 257

27 B2F4 278.3 265

28 C3H4 (cyclopropene) 223.0 216

29 C3H4 (allene) 223.5 226

30 C6H6 213.2 208

31 CH2S 216.2 214

32 CH2SH 173.8 176

33 C2H5OH 241.4 232

34 CH3CHO 235.9 232

35 CH3OF 261.5 256

36 NCCN 308.3 300

37 Si2H5 175.3 177

38 Si2H6 224.6 219

39 C4H4O (furan) 203.6 201

40 C4H5N (pyrrole) 189.3 186

a The experimental data are taken from [19].
b The calculated IP by using conventional B3LYP/6-311+G(3df,2p) appro
c The deviation of DFT-1 IP data from the experimental counterparts. RM
dThe calculated IP by using Neural-Networks-based B3LYP/6-311+G(3df
e The deviation of DFT-NN IP data from the experimental counterparts.
2, and are used to calculate ~a0, ~aX and ~aC of the new

B3LYP functional which is subsequently employed to

calculate AE, IP, PA, TAE and other properties of a
~aC w.r.t. each physical descriptor.

k ¼ 3 o~a0=oxi o~aX=oxi o~aC=oxi

0.46 i ¼ 1 )0.067 )0.036 0.099

0.36 i ¼ 2 0.035 0.034 )0.010
0.53 i ¼ 3 0.011 0.015 0.007

i ¼ 4 0.050 0.058 0.014

i ¼ 5 0.012 0.022 0.023

i ¼ 0 0.009 0.011 0.044

T-1b D1
c DFT-NNd D2

e

.73 )1.62 264.73 1.38

.82 0.23 237.06 )2.53

.00 )2.30 215.38 )0.92

.50 )3.23 255.97 )2.76

.64 )3.92 285.48 )2.08

.45 2.54 225.07 )1.84

.21 )5.99 246.28 )3.92

.97 )3.23 243.28 )3.92

.78 8.07 190.71 3.00

.84 )0.70 319.61 2.07

.04 0.23 259.43 1.62

.94 )1.15 293.55 0.46

.27 4.38 258.73 1.84

.46 4.38 313.15 2.07

.58 2.31 263.81 2.54

.07 )4.61 219.99 )3.69

.55 2.30 183.79 )3.46

.15 )2.54 217.46 )0.23

.29 )0.92 231.29 )0.92

.22 )0.93 221.84 0.69

.17 6.68 174.56 )0.93

.17 )3.92 187.94 )1.15

.17 )4.39 185.40 )1.16

.63 0.92 185.86 )1.85

.04 )9.76 351.51 )7.29

.86 )9.64 257.39 )10.11

.99 )12.31 271.38 )6.92

.43 )6.57 218.39 )4.62

.09 2.59 229.08 5.58

.37 )4.83 212.43 )0.77

.08 )2.12 215.27 )0.93

.91 3.11 173.39 )0.41

.85 )8.55 236.07 )5.33

.41 )3.49 235.16 )0.74

.88 )4.62 261.11 )0.39

.75 )7.55 302.57 )5.73

.58 2.28 170.68 )4.62

.34 )5.26 218.25 )6.36

.27 )2.33 205.04 1.44

.75 )2.55 190.62 1.32

ach.

S¼ 4.5 kcalmol�1.

,2p) approach.

RMS¼ 3.0 kcalmol�1.
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molecule or an atom. For molecules and atoms in the

training set, the RMS deviations of the Neural-Net-

works-corrected AEs, IPs, PAs and TAEs from the

measured values are 2.4, 3.7, 1.6 and 2.7 kcalmol�1,

respectively, which are less than those of the conven-
tional B3LYP/6-311+G(3df,2p) results. Particularly the

Neural-Networks-based B3LYP/6-311+G(3df,2p) cal-

culations yield much improved TAE results. The new

B3LYP/6-311+G(3df,2p) calculations also yield im-

proved results in comparison to Becke’s original work

[4], in which the RMS deviations are 2.9, 3.9, 1.9, and

4.1 kcalmol�1 for AEs, IPs, PAs and TAEs, respectively

(see Table 1).
Table 4

Enthalpies of formation at 298 K of testing set (all data are in units of kcal

No. Species Expt.a DFT-1b

1 CH2F2 )108.2 )107.49
2 CH2O2 (formic acid) )90.5 )89.62
3 CH3NO2 (nitromethane) )17.9 )21.09
4 CH3NO2 (methyl nitrite) )15.3 )17.41
5 CH5N (methylamine) )5.5 )7.35
6 COS (carbonyl sulfide) )33.1 )33.93
7 C2H4O (ethylene oxide) )12.6 )10.27
8 C2H4O2 (acetic acid) )103.9 )100.08
9 C2H4S (thiacyclopropane) 19.7 23.80

10 C2H5NO (acetamide) )57.0 )57.50
11 C2H6O (dimethyl ether) )44.0 )42.59
12 C2H6S (dimethyl sulfide) )9.0 )4.70
13 C2H7N (dimethylamine) )4.5 )4.56
14 C2H7N (ethylamine) )11.0 )11.51
15 C3H4 (methylacetylene) 44.3 46.79

16 C3H4 (allene) 45.9 44.44

17 C3H4 (cyclopropene) 66.2 70.36

18 C3H6 (cyclopropane) 12.7 16.74

19 C3H6 (propylene) 4.9 7.19

20 C3H6O (acetone) )52.0 )49.12
21 C3H7Cl (n-propyl chloride) )31.1 )24.90
22 C3H8 (propane) )24.8 )21.08
23 C3H8O (methyl ethyl ether) )51.7 )48.15
24 C3H9N (trimethylamine) )5.7 )3.60
25 C5H5N (pyridine) 33.5 35.65

26 NCCN (cyanogen) 73.8 70.59

27 AlF3 )289.0 )277.01
28 AlCl3 )139.7 )129.53
29 CF4 )223.0 )218.87
30 CCl4 )22.9 )9.60
31 COF2 )149.1 )144.16
32 PF3 )229.1 )222.13
33 F2O 5.9 5.40

34 ClF3 )38.0 )24.18
35 C2F4 )157.4 )160.95
36 CHF3 )166.6 )183.02
37 BF3 )271.4 )267.53
38 BCl3 )96.3 )89.95
39 CH2Cl2 )22.8 )17.94
40 CHCl3 )24.7 )15.74
a The experimental data are taken from [19].
b The calculated DfH� by using conventional B3LYP/6-311+G(3df,2p) ap
c The calculated DfH� by using Neural-Networks-based B3LYP/6-311+G(
dThe deviation of DFT-1 DfH� from the experimental counterparts. RM
eThe deviation of DFT-NN DfH� from the experimental counterparts. R
In Table 2 we also list the derivatives of ~a0, ~aX and ~aC
with respect to each xi (i ¼ 0–5). The magnitude of a

derivative reflects the influence on ~a0, ~aX or ~aC of the

corresponding physical descriptor. The larger the mag-

nitude is, the more significant the physical descriptor is
to determine the values of ~a0, ~aX and ~aC. Derivatives in

Table 2 are obtained at xi ¼ 0:5 (i ¼ 1–5) and x0 ¼ 1.

We find that the spin multiplicity gS and total kinetic

energy T possess derivatives of the largest two magni-

tudes. Similar results are obtained at xi ¼ 0:1 (i ¼ 1–5)

and x0 ¼ 1, or xi ¼ 0:9 (i ¼ 1–5) and x0 ¼ 1. Therefore

gs and T are identified as two most significant de-

scriptors to determine the high-order components of ~a0,
mol�1)

D1
c DFT-NNd D2

e

0.71 )115.99 )7.79
0.88 )95.57 )5.07

)3.19 )28.63 )10.73
)2.11 )25.28 )9.98
)1.85 )9.75 )4.25
)0.83 )40.69 )7.59
2.33 )14.81 )2.21
3.82 )109.08 )5.18
4.10 18.75 )0.95

)0.50 )63.98 )6.98
1.41 )47.45 )3.45
4.30 )8.99 0.01

)0.06 )7.65 )3.15
)0.51 )14.60 )3.60
2.49 42.96 )1.34

)1.46 39.63 )6.27
4.16 69.77 3.57

4.04 13.65 0.95

2.29 3.40 )1.50
2.87 )52.76 )0.76
6.20 )24.08 7.03

3.72 )24.57 0.23

3.55 )52.65 )0.95
2.10 )7.65 )1.95
2.15 33.19 )0.31

)3.22 70.07 )3.73
11.98 )286.90 2.10

10.17 )132.82 6.88

4.13 )230.58 )7.58
13.30 )14.38 8.52

4.94 )151.20 )2.10
6.97 )230.68 )1.58

)0.50 )2.93 )8.83
13.82 )38.00 0.00

)3.55 )175.52 )18.12
)16.42 )171.85 )5.25

3.87 )273.17 )1.77
6.35 )95.95 0.35

4.86 )20.03 2.77

8.96 )20.28 4.42

proach.

3df,2p) approach.

S¼ 5.8 kcalmol�1.

MS¼ 5.6 kcalmol�1.
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~aX and ~aC. The averaged values of ~a0, ~aX and ~aC over all

molecules, atoms and related cations in the training set

are 0.79, 0.74 and 0.92, respectively, which are different

from the original B3LYP values due to the finite basis

set used. The relationship, ~aX < ~a0 < ~aC, are kept for
each molecule or atom in the training set. More im-

portantly, the ~a0, ~aX and ~aC values are slightly different

from each other, namely, the resulting B3LYP func-

tional is system-dependent.

To examine the performance of our Neural-Network,

a test is carried out by calculating 40 IPs and 40 en-

thalpies of formation (DfH�s) selected from the G2-2

test set [19]. These energy data are termed as the testing
set. And they are different from the molecules or atoms

used in the training set. To calculate the IPs, all the

cation counterparts need to be included as well. Note

that at the testing stage the Neural-Network is available

for evaluation of ~a0, ~aX and ~aC for any new molecule,

since the architecture and all the synaptic weights have

been determined by the previous training process. The

values of physical descriptors of new molecules are ob-
tained by performing conventional B3LYP calculations

and then imported into the optimized Neural-Network

at the input layer. The Neural-Networks-corrected ~a0,
~aX and ~aC are generated as the outputs. And they are

then used to construct the new B3LYP functionals to

calculate any energetic properties. The resulting IPs and

DfH�s are respectively given in Tables 3 and 4, where D1

and D2 represent the differences between the calculated
values and the experimental data for the conventional

B3LYP/6-311+G(3df,2p) and the Neural-Networks-

based B3LYP/6-311+G(3df,2p) calculations, respec-

tively. For the Neural-Networks-based B3LYP/

6-311+G(3df,2p) calculations, the RMS deviations for

the IPs (DfH�s) are reduced to 3.0 (5.6) kcalmol�1 from

the original 4.5 (5.8) kcalmol�1. Obviously, the calcu-

lated IPs are improved significantly upon the Neural-
Networks correction, which demonstrates the validity of

our Neural-Networks-based B3LYP functional. How-

ever, the Neural-Networks-corrected DfH�s are im-

proved slightly. This is because that DfH� is sensitive to

the molecular geometry while our current Neural-Net-

work has not taken into account the small structural

change. Inclusion of structural change in the Neural-

Network will be considered in the future improvement
of our method.
4. Discussion and conclusion

There are currently two schools of density functional

construction: the reductionist school and the semiem-

piricist school. The reductionists attempt to deduce the
universal XC functional from the first-principles. The

Jacob’s ladder [15] of density functional approximations

depicts the approach that the reductionists take towards
the universal XC functional of chemical accuracy. Becke

realized that the existence and uniqueness of exact XC

functional do not guarantee that the functional is ex-

pressible in simple or even not so-simple analytical form,

and introduced the semiempirical approach to construct
accurate XC functionals. We go beyond the semiem-

pirical approach by constructing the Neural-Networks-

based XC functional. Our generalized functional is a

Neural-Network whose structure and synaptic weights

are determined by accurate experimental data. It is dy-

namic, and evolves readily when more accurate experi-

mental data become available. Although the parameters

in the resulting functional, such as ~a0, ~aX and ~aC, are
system-dependent as compared to the universal func-

tionals adopted by both reductionists and semiempiri-

cists, the Neural-Network is not system-dependent and

is regarded as a generalized universal functional. Our

approach relies on Neural-Networks to discover auto-

matically the hidden regularities or rules from a large

amount of experimental data. It is thus distinct from the

semiempirical approach. We term it as the discovery
approach. Besides Neural-Networks, other statistical

methods may also be employed to improve the existing

XC functionals, for instance, linear regression fit. Work

along this direction is in progress. Weak interactions

play increasingly important roles in chemistry. Cur-

rently DFT calculations are often not accurate enough

to account for these interactions. The Neural-Networks

or other statistical methodology based approaches may
be used to construct the XC functionals for the weak

interactions.

To summarize, we have developed a promising new

approach, the Neural-Networks-based approach, to

construct the accurate DFT XC functional. It yields

much improved AEs, IPs, PAs and TAEs compared to

the conventional B3LYP/6-311+G(3df,2p) calculations.

The improved B3LYP functional is certainly not yet
the final XC functional of chemical accuracy that we

seek for. Our work opens the door of an entirely

different methodology to develop the accurate XC

functionals. The introduction of Neural-Networks or

any statistical methodologies to the construction of

XC functionals is potentially a powerful tool in

computational chemistry and physics, and may open

the possibility for first-principles methods being em-
ployed routinely as predictive tools in materials re-

search and development.
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