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A Combined First-principles Calculation and Neural
Networks Correction Approach for Evaluating Gibbs
Energy of Formation

XIUJUNG WANG, LIHONG HU, LAIHO WONG and GUANHUA CHEN*

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China

(Received September 2003; In final form October 2003)

Despite of their successes, the results of first-principles
quantum mechanical calculations contain inherent
numerical errors that are caused by inadequate treatment
of electron correlation, incompleteness of basis sets,
relativistic effects or approximated exchange-correlation
functionals. In this work, we develop a combined
density-functional theory and neural-network correction
(DFT-NEURON) approach to reduce drastically these
errors, and apply the resulting approach to determine the
standard Gibbs energy of formation DG0 at 298 K for
small- and medium-sized organic molecules. The root
mean square deviation of the calculated DG 0 for
180 molecules is reduced from 22.3 kcal · mol21 to
3.0 kcal · mol21 for B3LYP/6-311 1 G(d,p). We examine
further the selection of physical descriptors for the
neural network.

Keywords: DFT; Neural network; Gibbs energy of formation; First-
principles quantum mechanical methods

First-principles quantum mechanical methods have
become indispensable research tools in chemistry,
condensed matter physics, materials science and
molecular biology [1,2]. Experimentalists increas-
ingly rely on these methods to interpret their
experimental findings. Despite their successes,
first-principles quantum mechanical methods are
often not quantitatively accurate enough to predict
the experimental measurements, in particular, for
large systems. This is caused by the inherent
approximations adopted in the first-principles
methods. Because of the computational costs,
electron correlation has always been a difficult
obstacle for first-principles calculations. For instance,
highly accurate full configuration interaction

calculations have been limited to very
small molecules [3]. Basis sets cannot cover entire
physical space, and this introduces inherent compu-
tational errors [4]. In practice, limited by the
computational resources we often adopt inadequate
basis sets for large molecules. Effective core potential
is frequently used to approximate the relativistic
effects, which leads to inevitably the approximated
calculation results for heavy element containing
systems. Accuracy of a density-functional theory
(DFT) calculation is mainly determined by the
exchange-correlation (XC) functional that is
employed [2]. No exact XC functional is known.
All DFT calculations employ the approximated XC
functionals, which lead to further calculation errors.
Besides these inherent approximations, quantum
mechanical calculations are often limited by finite
computational resources and thus adopt less
accurate methods. All these contribute to the
discrepancies between the calculated and exper-
imental results. An admirable objective in compu-
tational science is to predict the properties of matter
prior to the experiments. To achieve this, we must
eliminate the systematic deviations of the calculation
results and reduce greatly the remaining numerical
uncertainties. In addition, we need to quantify the
accuracies of the numerical methods. Determining
the calculation errors solely from the first principles
has proven to be an extremely difficult task, and
alternatives must be sought.

Despite the various approximations that the first-
principles quantum mechanical calculations adopt,
the calculated results capture the essence of the
physics. For instance, although their absolute values

ISSN 0892-7022 print/ISSN 1029-0435 online q 2004 Taylor & Francis Ltd

DOI: 10.1080/08927020310001631098

*Corresponding author. Fax: þ852-2857-1586. E-mail: ghc@yangtze.hku.hk

Molecular Simulation, Vol. 30 (1), 15 January 2004, pp. 9–15

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ri
es

] 
at

 0
7:

08
 2

1 
D

ec
em

be
r 

20
17

 



may not agree with the experimental data, the
calculated results of different molecules often have
the same relative tendency as the corresponding
experimental results. To predict a physical property
of a material, it may thus be sufficient to correct its
raw result from the first-principles calculation.
The discrepancies between the calculated and
experimental results depend on the physical proper-
ties of the material. These physical properties include
predominantly the property of interest and, to a lesser
degree, other related properties of the materials
which can again be evaluated via first-principles
calculations. In other words, a quantitative
relationship exists between the experimental results
and calculated properties. Although it is exceedingly
difficult to be determined from the first-principles,
the quantitative relationship can be obtained
empirically. We propose here a neural-network
[5–8] based approach, DFT-NEURON, to determine
this quantitative relationship which can be sub-
sequently used to reduce drastically the numerical
errors of first-principles calculations. As a demon-
stration, the standard Gibbs energies of formation
DG0s at 298.15 K of 180 small- or medium-sized
organic molecules are evaluated via B3LYP calcu-
lations and subsequently corrected by the DFT-
NEURON approach. Different physical descriptors
are adopted to examine the validity of the DFT-
NEURON approach.

The 180 small- or medium-sized organic molecules
listed in Table I, are selected for the DFT-NEURON
approach that combines first-principles calculation
and neural network based correction. These mole-
cules can be found in all three Refs. [9–11]. These
molecules contain elements such as H, C, N, O, F, Si,
S, Cl and Br. The heaviest molecule contains 14 heavy
atoms, and the largest contains 32 atoms. We divide
these molecules randomly into the training set
containing 150 molecules and the testing set contain-
ing 30 molecules. The geometries of 180 molecules
are optimized via B3LYP/6-311 þ G(d,p) [12] calcu-
lations and zero-point energies (ZPE) are calculated
subsequently at the same level. The Gibbs energy of
formation of each molecule is calculated at both
B3LYP/6-311 þ G(d,p) and B3LYP/6-311 þ G(3df,2p)
levels. To calculate DG0 of a molecule, we calculate
first its DH0 and its entropy S0. For instance, for a
molecule AxBy, its DG0 at 298 K can be evaluated as:

DG0ðAxBy; 298 KÞ

¼ DH 0ðAxBy; 298 KÞ2 298:15

£
�

S0
�
AxBy; 298 K

�
st
2
�

xS0
�
A; 298 K

�
st

þ yS0
�
B; 298 K

�
st

��
ð1Þ

where DH0 ðAxBy; 298 KÞ is the standard enthalpy
of formation for AxBy at 298 K. S0 ðAxBy; 298 KÞ is

the entropy of AxBy at 298 K, S0 ðA; 298 KÞst and S0

ðB; 298 KÞst are the standard entropies of species A
and B relative to the elements in their reference
states, respectively. S0 ðA; 298 KÞst and S0 ðB; 298 KÞst

are taken from Ref. [13]. The strategies in
Ref. [14] are adopted to calculate DH0. B3LYP/
6-311 þ G(3df,2p) employs a larger basis set than
B3LYP/6-311 þ G(d,p). The unscaled B3LYP/
6-311 þ G(d,p) ZPE is employed in the DG0 calcu-
lation. TheDG0 values for both B3LYP/6-311 þ G(d,p)
and B3LYP/6-311 þ G(3df,2p) are compared to their
experimental data in Fig. 1a,b, respectively. The
horizontal coordinates are the experimental DG0,
and the vertical coordinates are the raw calculated
values. The dashed line is where the vertical and
horizontal coordinates are equal, i.e. where the
B3LYP calculations and experiments would have the
perfect match. The raw calculated values are mostly
above the dashed line, i.e. most calculated DG0 are
larger than the experimental data. Compared to the
experimental measurements, the root mean square
(RMS) deviations are 22.3 and 12.9 kcal · mol21

for the raw B3LYP/6-311 þ G(d,p) and B3LYP/
6-311 þ G(3df,2p) results, respectively. In Table II,
we list the experimented and calculated DG0 for 16 of
180 molecules. Overall, B3LYP/6-311 þ G(3df,2p)
calculations yield better agreements with the
experiments than B3LYP/6-311 þ G(d,p). In particu-
lar, for small molecules with few heavy elements
B3LYP/6-311 þ G(3df,2p) calculations result in very
small deviations from the experiments. For instance,
the deviations for CH2F2 and CS2 are only 0.3
and 0.5 kcal · mol21, respectively. For large
molecules, both B3LYP/6-311 þ G(d,p) and
B3LYP/6-311 þ G(3df,2p) calculations yield quite
large deviations from their experimental data.

Next we construct our neural network [15]. There
is an input layer consisted of input from physical
descriptors and a bias, a hidden layer, and an output
layer [16]. The most important issue is to select the
proper physical descriptors of our molecules, which
are to be used as the input for our neural network.
The calculated Gibbs energy of formation DG0

contains the essential value of the experimental
DG0, and is thus an obvious choice for the primary
descriptor. We observe that the size of a molecule
affects the accuracy of the calculated DG0. The more
atoms a molecule has the worse calculated DG0 is.
This is consistent with the general observations in
the field [14]. The total number of atoms Nt in a
molecule is thus chosen as the second descriptor for
the molecule. ZPE is an important component of
DG0. Its calculated value is often scaled in evaluating
DH0 [14,17], which has the dominant contribution for
DG0. It is thus taken as the third physical descriptor.
Hydrogen atom is much lighter than other organic
elements, and has the most quantum characteristics
among all the elements. Its contributions to energy

X.J. WANG et al.10
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and entropy are different from heavy elements, and
need to be distinguished from other types of atoms.
We thus set the number of hydrogen atoms of a
molecule Nh as the fourth descriptor.

To ensure the quality of our Neural Network, a
cross-validation procedure is adopted to determine

our neural network [7,18–20]. We divide further
randomly 150 training molecules into five subsets of
equal size. Four of them are used to train the neural
network, the fifth to validate its predictions.
This procedure is repeated 5 times in rotation.
The number of neurons in the hidden layer is

TABLE I 180 molecules employed in the calculation

Formula Name Formula Name Formula Name

CBrF3 Bromotrifluoromethane CClF3 Chlorotrifluoromethane CClN Cyanogens chloride
CCl2O Phosgene CF2O Carbonyl fluoride CF4 Carbon tetrafluoride
CHCl3 Chloroform CH2Cl2 Dichloromethane CH2F2 Difluoromethane
CH2O2 Formic acid CH3Br Methyl bromide CH3NO2 Nitromethane
CH3NO2 Methyl nitrite CH4 Methane CH4O Methanol
CH4S Methyl mercaptan CH5N Methylamine COS Carbonyl sulfide
CS2 Carbon disulfide C2H2 Acetylene C2H2Cl2 1,1-Dichloroethylene
C2H2O4 Oxalic acid C2H3Br Vinyl bromide C2H3ClO Acetyl chloride
C2H3F Vinyl fluoride C2H4 Ethylene C2H4Br2 1,2-Dibromoethane
C2H4Cl2 1,1-Dichloroethane C2H4O Ethylene oxide C2H4O2 Acetic acid
C2H4S Thiacyclopropane C2H5Br Bromoethane C2H5N Ethyleneimine
C2H5NO Acetamide C2H5NO2 Nitroethane C2H6 Ethane
C2H6O Dimethyl ether C2H6S Dimethyl sulfide C2H7N Ethylamine
C2H8N2 Ethylenediamine C2N2 Cyanogen C3H3NO Oxazole
C3H4 Methylacetylene C3H4 Propadiene C3H4O3 Ethylene carbonate
C3H5Cl3 1,2,3-trichloropropane C3H6 Cyclopropane C3H6Cl2 1,2-Dichloropropane
C3H6O Acetone C3H6O2 Methyl acetate C3H6O2 Propionic acid
C3H6S Thiacyclobutane C3H7Br 1-Bromopropane C3H7Br 2-Bromopropane
C3H7F 1-Fluoropropane C3H7NO N,N-dimethylformamide C3H7NO2 2-Nitropropane
C3H7NO3 Propyl nitrate C3H7NO3 Isopropyl nitrate C3H8 Propane
C3H8O Methyl ethyl ether C3H8S n-Propyl mercaptan C3H8S Isopropyl mercaptan
C3H8S Ethyl methyl sulfide C3H9N n-Propylamine C3H9N Isopropylamine
C3H9N Trimethylamine C3H10N2 1,2-Propanediamine C4H4N2 Succinonitrile
C4H6 1,2-Butadiene C4H8 1-Butene C4H8O Isobutyraldehyde
C4H8O2 Ethyl acetate C4H9Cl tert-Butyl chloride C4H10O sec-Butanol
C4H10O2 1,4-Butanediol C4H10S Isobutyl mercaptan C4H10S Methyl propyl sulfide
C4H11N tert-Butylamine C5H5N Pyridine C5H6S 2-Methylthiophene
C5H8O2 Acetylacetone C5H10 Cyclopentane C5H10 2-Methyl-1-butene
C5H10 2-Methyl-2-butene C5H10 3-Methyl-1-butene C5H10 trans-2-Pentene
C5H10O 2-Pentanone C5H10O Valeraldehyde C5H10O2 Valeric acid
C5H10S Thiacyclohexane C5H10S cyclopentanethiol C5H11Br 1-Bromopentane
C5H11Cl 1-Chloropentane C5H11N Piperidine C5H12 Isopentane
C5H12 n-Pentane C5H12O 3-Methyl-1-butanol C5H12O 3-Methyl-2-butanol
C5H12O 2-Pentanol C5H12O 3-Pentanol C5H12O Ethyl propyl ether
C5H12O4 Pentaerythritol C5H12S n-Pentyl mercaptan C6F6 Hexafluorobenzene
C6H4Cl2 m-Dichlorobenzene C6H4F2 p-Difluorobenzene C6H5Cl Monochlorobenzene
C6H5F Fluorobenzene C6H5NO2 Nitrobenzene C6H6 Benzene
C6H6N2O2 m-Nitroaniline C6H6O Phenol C6H6O2 1,3-Benzenediol
C6H7N 2-Methylpyridine C6H10O3 Propionic anhydride C6H11NO e-Caprolactam
C6H12 trans-3-Hexene C6H12O Butyl vinyl ether C6H12O 3-Hexanone
C6H14 3-Methylpentane C6H14S Methyl pentyl sulfide C7H5N Benzonitrile
C7H6O Benzaldehyde C7H8 Toluene C7H8O o-Cresol
C7H9N 2,6-Dimethylpyridine C7H14 cis-1,2-Dimethylcyclopentane C7H15Br 1-Bromoheptane
C7H16 3,3-Dimethylpentane C7H16 2,2,3-Trimethylbutane C7H16S n-Heptyl mercaptan
C8H6O4 Terephthalic acid C8H8O Acetophenone C8H16 cis-1,2-Dimethylcyclohexane
C8H16 trans-1,4-Dimethylcyclohexane C8H18 2,3-Dimethylhexane C8H18 3-Ethylhexane
C8H18 4-Methylheptane C8H18S2 Dibutyl disulfide C9H12 m-Ethyltoluene
C9H12 1,2,3-Trimethylbenzene C9H18O Diisobutyl ketone C9H20 3,3-Diethylpentane
C9H20 2,2,3,4-Tetramethylpentane C10H14 sec-Butylbenzene C10H14 Isobutylbenzene
C10H18O4 Sebacic acid C10H20O2 n-Decanoic acid C12H10 Acenaphthene

CBrCl3 Bromotrichloromethane CHF3 Trifluoromethane C2H2F2 1,1-Difluoroethylene
C2H3ClO2 Chloroacetic acid C2H3Cl3 1,1,1-Trichloroethane C2H4Cl2 1,2-Dichloroethane
C2H4F2 1,1-Difluoroethane C2H5Cl Ethyl chloride C2H5NO3 Ethyl nitrate
C2H7N Dimethylamine C3H6 Propylene C3H6Br2 1,2-Dibromopropane
C3H7Cl Isopropyl chloride C3H7Cl n-Propyl chloride C3H7NO2 1-Nitropropane
C4H6O Divinyl ether C4H9Br 1-Bromobutane C5H8 trans-1,3-Pentadiene
C5H10 1-Pentene C5H10 cis-2-Pentene C5H12O 2-Methyl-1-butanol
C5H12S Butyl methyl sulfide C6H8N2 Adiponitrile C6H10 1-Methylcyclopentene
C6H10 1,5-Hexadiene C8H10 o-Xylene C8H10O 3,4-Xylenol
C8H16 2,4,4-Trimethyl-2-pentene C8H18 2,3,4-Trimethylpentane C8H18O 2-Ethyl-1-hexanol

The upper panel is for the training set, and the lower panel is for the testing set.
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varied from 2 to 10 and the number of descriptors in
the input layer is switched from 2 to 4 in order to
determine the optimal structure of our neural
network. We find that an input layer containing

four descriptors (DG0, Nt, ZPE and Nh) and a hidden
layer containing two neurons yield the best
overall results. The 5-2-1 structure is thus adopted
for our neural network (See Fig. 2). It is found that

FIGURE 1 Calculated DG0 versus experimental DG0 for all 180 compounds. (a) and (b) are for raw B3LYP/6-311 þ G(d,p) and B3LYP/
6-311 þ G(3df,2p) results, respectively. (c) and (d) are for neural-network corrected B3LYP/6-311 þ G(d,p) and B3LYP/6-311 þ G(3df,2p)
DG0s, respectively. Triangles are for the training set and crosses for the testing set. The dashed lines are where the calculations
and experiments have perfect fits. The correlation coefficient of the linear fits are 0.996, 0.995 in (c) and (d), respectively. All values are in the
units of kcal · mol21.

TABLE II Experimental and calculated Gibbs energies of formation for sixteen selected compounds (all data are in the units of kcal · mol21)

Experiment
Deviation (Theory 2 Experiment)

Formula Name DG0 (298.15 K)* DFT1† DFT1-NN‡ DFT2{ DFT2-NN§

CBrF3 Bromotrifluoromethane 2 148.82 ^ 0.7 14.0 2 5.2 1.0 2 4.9
CClF3 Chlorotrifluoromethane 2 156.30 ^ 0.8 14.4 2 4.2 0.3 2 4.8
CF2O Carbonyl fluoride 2 148.99 ^ 0.4 19.8 6.4 8.5 5.4
CF4 Carbon tetrafluoride 2 212.34 ^ 0.3 19.0 6.5 3.3 6.6
CHCl3 Chloroform 2 16.38 ^ 0.3 16.1 4.4 8.0 6.4
CHF3 Trifluoromethane 2 158.48 ^ 0.8 12.8 2 1.8 1.5 2 2.7
CH2Cl2 Dichloromethane 2 16.46 ^ 0.3 10.2 3.0 4.6 4.3
CH2F2 Difluoromethane 2 101.66 ^ 0.4 7.8 2 2.8 0.3 2 4.0
CH4 Methane 2 12.15 ^ 0.1 2 0.2 2 0.7 2 1.9 2 1.4
CS2 Carbon disulfide 15.99 ^ 0.2 8.6 2.2 0.5 1.5
C5H12 n-Pentane 2 2.00 ^ 0.4 17.4 2 1.6 10.6 2 1.9
C5H12O 3-Methyl-2-butanol 2 37.37 ^ 0.7 25.1 1.3 15.8 0.6
C5H12O 2-Pentanol 2 38.07 ^ 0.6 25.7 2.3 16.5 1.4
C6H14 3-Methylpentane 2 0.51 ^ 0.4 26.2 1.5 18.1 1.1
C8H10 o-Xylene 29.18 ^ 0.6 25.8 2 0.2 13.4 0.6
C9H12 1,2,3-Trimethylbenzene 29.77 ^ 0.6 31.1 2 0.9 17.3 2 0.7

* The experimental values are taken from Ref. [9] and the uncertainties are estimated from Refs. [13,21,22]. † The deviations of calculated DG0 by using
B3LPY/6-311 þ G(d,p) geometries, zero point energies. ‡ The deviations of calculated DG0 by B3LYP/6-311 þ G(d,p)—Neural Networks approach.
{ The deviations of calculated DG0 by using the 6-311 þ G(d,p) geometries, zero point energies and recalculated total energies by 6-311 þ G(3df,2p) basis.
§ The deviations of calculated DG0 by B3LYP/6-311 þ G(3df,2p)—Neural Networks approach.

X.J. WANG et al.12
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our neural network can be tuned to fit the trained
data and the corresponding experimental data very
well for the training set. Moreover, for the testing set
our neural network predicts the values that agree
very well with experiments. The quantitative
relationship between the calculated and the experi-
mental data is thus established. In Fig. 1c,d, the
triangles and crosses belong to the training and
testing set, respectively. Compared to the raw
calculated results, the neural-network corrected
values are much closer to the experimental values
for both training and testing sets. More importantly,
the systematic deviations in Fig. 1a,b are eliminated,
and the remaining numerical errors are reduced

substantially. This can be further demonstrated
by the error analysis performed for B3LYP/
6-311 þ G(d,p) DG0 of all 180 molecules. In Fig. 3,
we plot the histograms for the deviations (from the
experiments) of the raw B3LYP/6-311 þ G(d,p) DG0s
and their neural-network corrected values.
Figure 3a,c shows the raw DG0s and neural-network
corrected DG 0s of training set, respectively.
Figure 3b,d shows the raw DG0s and neural-network
corrected DG 0s of testing set, respectively.
For the training set, the RMS errors before and
after the neural-network correction are 22.6 and
3.1 kcal · mol21, respectively; while for the testing set
they are 20.7 and 2.8 kcal · mol21, respectively. Over-
all, the raw calculated DG0s have a large systematic
deviations of 22.3 kcal · mol21 while the neural-net-
work corrected DG0s have virtually no systematic
deviation at all. Moreover, the remaining numerical
deviations are much smaller for the neural-network
corrected DG0s, i.e. the RMS deviations is reduced
from 22.3 to 3.0 kcal · mol21 upon neural-network
correction. Note that the error distribution after the
neural-network correction is of an approximate
Gaussian type (see Fig. 3c,d). We have performed
the same error analysis for B3LYP/6-311 þ G(3df,2p)
DG0s and have reached a similar conclusion. The RMS
deviation for B3LYP/6-311 þ G(3df,2p) DG 0s is
reduced from 13.2 to 3.4 kcal · mol21 upon neural-
network correction. In Table II, we list the neural-
network corrected DG0s. The deviations of large
molecules are of the same magnitude as those of
small molecules. Our neural-network correction

FIGURE 3 Histograms for the deviations of B3LYP/6-311 þ G(d,p) calculated DG0 for all 180 compounds. (a) and (b) are for the raw
calculated DG0 of training and testing set, respectively, and (c) and (d) are for the neural network corrected DG0 of training and testing set,
respectively. DG0 is in the units of kcal · mol21.

FIGURE 2 The structure of our neural network. The input for
the bias is always 1.

GIBBS ENERGY OF FORMATION 13
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strategy does not discriminate against large
molecules, unlike most calculations, which yield
worse results for large molecules than for small ones.
Although the raw B3LYP/6-311 þ G(d,p) results
have much larger deviations than those of B3LYP/
6-311 þ G(3df,2p), the neural-network corrected
values of both calculations have deviations of the
same magnitude. This implies that it is sufficient to
employ the smaller basis set B3LYP/6-311 þ G(d,p)
in our DFT-NEURON approach. The neural-network
step can easily correct the deficiency of a small basis
set. Therefore, our approach can potentially be
applied to much larger systems.

Analysis of our neural network reveals that the
weights connecting the input for DG0 have the
dominant contribution in all cases. This confirms our
fundamental assumption that the calculated DG0

captures the essential values of exact DG0. The input
for the second physical descriptor, Nt, has quite large
weights in all cases. In particular, when the smaller
basis set 6-311 þ G(d,p) is adopted in the B3LYP
calculations, Nt has the second largest weights. It is
found that the raw DG0 deviations are roughly
proportional to Nt, which confirms the importance of
Nt as a significant descriptor of our neural network.
We use the raw calculated DG0 and Nt as the only
two descriptors for the input layer, and find that
the RMS deviations of the training and testing sets
are corrected to 4.3, 5.0 kcal · mol21 for B3LYP/
6-311 þ G(d,p), and 3.7, 4.3 kcal · mol21 for B3LYP/
6-311 þ G(3df,2p) (See Table III), respectively. We
thus conclude that raw DG0 and Nt are the two main
physical properties that determine the experimental
values of DG0. This is the main reason why our
neural network approach is successful here. The bias
contributes to the correction of systematic deviations
in the raw calculated data, and has thus significant
weights. When the larger basis set 6-311 þ G(3df,2p)
is used, the bias has the second largest weights for
all cases. ZPE has been often scaled to account for
the discrepancies of DH0 between calculations and
experiments [14,17], and it is thus expected to have
large weights. This is indeed the case, especially
when the smaller basis set 6-311 þ G(d,p) is adopted
in calculations. In all cases the number of hydrogen
atoms, NH, has the smallest but non-negligible
weights. The number of double bonds, Ndb, is

the measurement of chemical structure of a
molecule, and may be used as another physical
descriptor. When NH are replaced by Ndb, the similar
results are obtained as shown in Table III. This
similarity can be rationalized. Both descriptors, i.e.
the number of hydrogen NH and the number of
double bond Ndb, are reflecting the structural
information of individual molecules in different
aspects.

The neural-network based approach adopted in
this work reduces substantially the raw first-
principles calculation errors, and can be used to
quantify the uncertainty of the resulting DG0. Our
DFT-NEURON approach has a RMS error of
,3 kcal · mol21 for the 180 small- to medium-sized
organic molecules. This is larger than the exper-
imental error bars of our 180 molecules [9–11,13].
G2 method [14] results more accurate energies for
small molecules. However, our approach is more
efficient and can be applied to larger systems.
The physical descriptors adopted in our neural
network, the raw DG0, Nt, ZPE and NH, are quite
general, and are not limited to the special motifs of
our molecules. Our DFT-NEURON approach is
therefore expected to yield the RMS deviations of
,3 kcal · mol21 for any small to medium
sized organic molecules. To improve the accuracy
for our DFT-NEURON approach, we may need more
and better physical descriptors for the molecules,
and possibly, more and better experimental data.
The larger the experimental database is, the more
accurately the DFT-NEURON approach predicts.
In principle, the accuracy of our approach is limited
only by the precision and size of the experimental
database.

Besides the Gibbs energy of formation, our DFT-
NEURON approach can be generalized to calculate
other properties such as heat of formation, ionization
energy, dissociation energy, absorption frequency
and etc. The success of our approach is determined
by the selection of the physical descriptors. The raw
first-principles calculation property of interest con-
tains its essential value, and is thus always the
primary descriptor. The raw calculation error
accumulates as the molecular size increases.
The number of atom Nt should thus be selected for
any Neural Networks correction procedure.

TABLE III The DFT-neural network RMS with different descriptors (all data are in the units of kcal · mol21)

B3LYP/6-311+G(d,p)-NN B3LYP/6-311+G(3df,2p)-NN

Method Training set Testing set Overall Training set Testing set Overall

A 4.3 5.0 4.4 3.7 4.3 3.8
B 3.1 2.7 3.1 3.7 4.0 3.7
C 3.1 2.8 3.1 3.5 3.6 3.5
D 3.1 2.8 3.0 3.4 3.4 3.4

Descriptors used in: Method A, DG0 and Nt ; Method B, DG0, Nt and ZPE; Method C, DG0, Nt, ZPE and Ndb; Method D, DG0, Nt, ZPE and NH.
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Additional physical descriptors should be chosen
according to their relations to the property of
interest and the physical and chemical structures
of the compounds. Others have used Neural
Networks to determine the quantitative structure
relationship between the experimental measured
thermodynamic properties and the structure para-
meters of the molecules [18]. We distinguish our
work from others by utilizing specifically the first-
principles methods. Since the first-principles calcu-
lations captures more readily the essences of the
property of interest, our approach is more reliable
and covers a much wider range of molecules or
compounds.

To summarize, we have applied the DFT-NEUR-
ON approach to calculate the first-principles Gibbs
energy of formation for small- and medium-sized
organic molecules. The accuracy of the combined
first-principle calculations and Neural Networks
correction approach can be systematically increased,
as more and better experimental data are available.
Since the requirements on first-principles methods
are modest, our approach is very efficient compared
to the sophisticated first-principles methods of
similar accuracy. More importantly, it can be easily
extended to very large molecular systems.
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