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Abstract: To demonstrate its applicability for realistic open systems, we apply the dynamic mean field quantum
dissipative theory to simulate the photo-induced excitation and nonradiative decay of an embedded butadiene molecule.
The Markovian approximation is adopted to further reduce the computational time, and the resulting Markovian
formulation assumes a variation of Lindblad’s semigroup form, which is shown to be numerically stable. In the
calculation, all 22 valence electrons in the butadiene molecule are taken as the system and treated explicitly while the
nuclei of the molecules are taken as the immediate bath of the system. It is observed that (1) various excitations decay
differently, which leads to different peak widths in the absorption spectra; and (2) the temperature dependences of
nonradiative decay rates are distinct for various excitations, which can be explained by the different electron-phonon
couplings.
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Introduction

In a recent work,1 we derived the time-dependent Hartree–Fock
quantum dissipation theory (TDHF-QDT) and tested it on a two
electron two-levels model system. The key entity in the TDHF-
QDT is the reduced single-electron density matrix �(t), and thus,
the numerical solution of TDHF-QDT is much more efficient than
any existing quantum dissipation theories (QDTs). The reduced
single-electron density matrix is defined by �jk � �ck

†cj� where ci
†

(ci) is the creation (annihilation) operator of an electron on spin-
orbital i. The equation of motion for �(t) derived in ref. 1 is given
by

i��̇ � �h, �� �
i

� �
a

��a, ��tr���̃a � �̃a
†	�


�
i

� �
a

��a, �1 � �	�̃a� � ��̃a
†�1 � �	� (1)

where h(t) is the time-dependent Fock matrix, and �a(t) and �̃a(t)
are matrices related to the system-bath couplings, i.e.,

�a, jk�t	 � sjk
a � �

mn

�wjk,nm
a � wjm,nk

a 	�mn�t	, (2)

�̃a�t	 � �
b

�
��

t

d�C̃ab�t � �	G� �t, �	�b��	G� †�t, �	. (3)

Here, the system-bath interaction ĤSB is assumed to be given by
ĤSB 
 �¥a ŴaF̂a with the Hermitian operator of the system Ŵa

Ŵa � �
jk

sjk
a cj

†ck �
1

2 �
jkk�j�

wjj�,kk�
a cj

†ck
†ck�cj�, (4)

and the Hermitian operators in bath space F̂a, which can be
considered as the generalized Langevin forces. C̃ab(t � �) and
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G� (t, �) are the bath correlation functions and the system Green’s
functions, respectively. As it was pointed out in ref. 1, it is
expected that the TDHF-QDT can be used to simulate the nonra-
diative decays of realistic molecular systems. To demonstrate this,
in this article we apply the TDHF-QDT to simulate the photo-
excitation and subsequent nonradiative decay of a butadiene mol-
ecule. To integrate eq. (1) in time domain, we need to determine
�̃a(t), which is computationally quite expensive. To simplify the
computational complexity and reduce the computer time, we adopt
the Markovian approximation and derive the Markovian version of
TDHF-QDT formalism. The butadiene molecule is embedded in a
liquid or solid environment. The system consists of all the valence
electrons. The bath is made of two parts: the nuclei in the buta-
diene molecule constitute the immediate bath region and the liquid
or solid surrounding the remote bath region. The immediate bath
region has direct couplings to the system, and corresponds to F̂a in
the TDHF-QDT formalism. The remote bath region has no direct
couplings to the system, and serves as the thermal sink for the
immediate bath region that ensures the nuclei in the thermal
equilibrium. HS, HSB, and HB are either the first-principles Ham-
iltonians or the semiempirical models. It is important to emphasize
that the resulting dissipation terms are derived from HS, HSB, and
HB by explicit integration over the bath degrees of freedom.
Unlike most existing QDTs, these dissipation terms are therefore
not phenomenological.

The objectives of this work are: (1) to demonstrate that TDHF-
QDT approach can indeed be applied to realistic molecular sys-
tems and capture the essential physics of their energy dissipation
processes; and (2) to examine the nonradiative decaying processes
of an embedded butadiene molecule upon a photoexcitation, as-
suming the memory of the bath’s dynamics is very short. The
Markovian version of the TDHF-QDT is derived in the next
section, and comparison to Lindblad semigroup formalism is dis-
cussed. Then, we apply our theory to simulate the photoexcitation
and subsequent nonradiative relaxation of the embedded butadiene
molecule at different temperatures. To interpret the simulation
results, we explicitly evaluate the couplings between the electronic
excitations and the vibrational modes. Discussion on the formalism
and its future extension are given in the Discussion.

Markovian Approximation Versus Semigroup
Formulation

The CS-QDT based TDHF formulation, eqs. (1) and (3), which is
valid for arbitrary non-Markovian excitation-dissipation many-
electron systems, is an integro-differential equation. The integral
equation eq. (3) for �̃a(t) may be solved in a variety of ways such
as the spectral density parameterization.2,3 In ref. 1 an iterative
algorithm is adopted, which is time consuming. When the Mark-
ovian approximation is employed, the numerical implementation
of the TDHF-QDT can be greatly facilitated. The Markovian
theory can be obtained via the white-noise ansatz under the stan-
dard Redfield approximation for eq. (3) (see ref. 1).

�̃a�t	 �
1

2 �
b

Cab�0	�b�t	, (5)

where Cab(0) is the interaction spectrum Cab(�) taken at � 
 0.
From the detailed-balance relation, C*ab(�) 
 e��Cab(��), we
conclude immediately that Cab(0) is real; thus, �̃a under the
Markovian approximation [eq. (5)] is Hermitian. As a result, eq.
(1) reduces to

i��̇ � �h, �� �
i

2� �
a,b

Cab�0	��a, ��b, ���. (6)

This equation has the similar form as the Lindblad’s dynamical
semigroup construction.4 To calculate Cab(0), we assume that
C̃ab(t) decays exponentially

C̃ab�t	 � C̃ab�0	e��t�/	� (7)

where 	� 
 1 is a time-scale parameter that needs to be deter-
mined. Equation (7) leads to

Cab�0	 � 2	�C̃ab�0	 � 2	� TrB�F̂a�0	F̂b�0	�B
eq�. (8)

To compare eq. (6) with the dynamical semigroup QDT,4 we shall
use the property of spectral functions that the matrix {Cab(�)} is
positively defined (cf. Appendix B of ref. 1). We can thus define
a Fock-space Hermitian matrix, K�, via its elements as

Kjk
� � �

a

�a, jk��� Da
�, (9)

where {Da
�} and 2�� 
 0 being the �th eigenvector and eigenvalue

of the matrix {C̃ab(0)}. We can then recast eq. (6) in the following
Lindblad-like form,

i��̇ � �h, �� �
i

�
	� �

�

�K�, �K�, ���. (10)

Here, 	� is the characteristic time scale for the bath correlation
function, and will be specified later [cf. eq. (7)]. The above
equation differs from the conventional Lindblad’s semigroup
QDT, as both h and K� here are Fock-space matrices that depend
on � at local time. In the case where the two-electron components
of the bath interaction can be neglected [i.e., wjj�,kk�

a 
 0 in eq.
(2)], K� becomes independent of �, and therefore, the second term
in eq. (10) does assume the Lindblad dissipation form. Note that
although the dissipative term in eq. (10) is of Lindblad-like form,
it has very different physical meanings. Equation (10) is the EOM
for the reduced single-electron density matrix � not the system
density matrix �. The dynamical semigroup form of the nonlinear
EOM for single-electron reduced density matrix is yet to be
explored.

In the following, we shall consider the weak excitation regime
in which it is sensible to linearize eq. (10). Denote �(t) as

��t	 � ��0	 � 	��t	, (11)
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where �(0) is the equilibrium reduced single-electron density ma-
trix, which is approximated by the ground state reduced single-
electron density matrix in this work, and 	� is the deviation or
fluctuation that can be treated as small perturbation. To the first-
order in 	�, eq. (10) becomes

i�
d

dt
	� � �h�0	, 	�� � �	h, ��0	� �

i

�
	� �

�

�K�, �K�, 	���,

(12)

where h(0) is the ground state Fock matrix, i.e.,

hjk
�0	 � tjk � �

mn

�vjk,nm � vjm,nk	�mn
�0	, (13)

and

	hjk�t	 � fjk�t	 � �
mn

�vjk,nm � vjm,nk		�mn�t	. (14)

Here, we assume the system Hamiltonian is given by

ĤS�t	 � �
ij

tijci
†cj �

1

2 �
jkk�j�

vjj�,kk�cj
†ck

†ck�cj� � E� �t	 � �
ij

�� i, j�t	ci
†cj,

(15)

where tij and vjj�,kk� are for the hopping terms and the electron–
electron Coulomb integrals, respectively. The third term in eq. (15)
is for the interaction between the system and the external electric
field E� (t), and �� ij is the dipole matrix element. We further define
fij(t) � �E� (t) � �� ij.

It is important that the integration of eq. (12) in the time-
domain is stable. In Appendix A, we show that 	�(t)3 0 globally
as t 3 �. This ensures that integrating eq. (12) is numerically
stable. Equation (10) is a special case of the TDHF-QDT equation
(1) when the Markovian bath is taken, and eq. (12) is the linear
response version of eq. (10). Note that eq. (10) does not lead to the
Fermi–Dirac distribution as t 3 � because the Markovian bath is
adopted.

Excitation and Relaxation of a Butadiene
Molecule

To demonstrate of the feasibility of applying the TDHF-QDT
formalism to realistic complex molecular systems, we employ eq.
(12) to simulate the photoexcitation and subsequent nonradiative
relaxation of an embedded butadiene molecule in a liquid or solid
matrix. The PM3 Hamiltonian5 is used for ĤS. We denote the
position of the atom by qms where the subscript s is for the
direction. Then qms can be expanded as

qms � qms
�0	 � 	qms, (16)

where qms
(0) is qms in equilibrium and 	qms is the deviation. The

nuclei are taken as a part of the bath and couple directly to the
valence electrons. The liquid or solid surrounding serves as an
energy sink that ensures the nuclei in thermal equilibrium at a
temperature T. The bath Hamiltonian ĤB describes the vibration of
these nuclei,

ĤB � �
m,s

pms
2

2Mm
�

1

2 �
m,n,s,t

Vms,nt	qms	qnt, (17)

where pms is the momentum component of the m-th atom along
s-direction, Vms,nt is the effective interaction between two atoms
m and n, and Mm is the mass of m-th atom. ĤB can be determined
directly from the vibrational modes and vibrational frequencies of
these nuclei, and can thus be evaluated from the first principles or
semiempirical calculations.

The system-bath coupling term HSB describes the energetics
when the nuclei deviate from their equilibrium positions. In the
present work, we consider only the weak system-bath coupling
case, i.e., ĤSB is given by

ĤSB � �
m,s

�ĤS

�qms
	qms. (18)

�ĤS/�qms and 	qms correspond to Ŵa and F̂a, respectively. 	qms

is relatively small, and ĤSB is thus weak compared to ĤS and ĤB.
It is observed that the derivatives of tij with respect to qms are
much larger than those of vij,kl, and we thus keep only �tij/�q in
the evaluation of �h/�q in our calculations. In other words, the
two-electron terms in �ĤS/�qms are neglected. We have thus that
�a,ms 
 sms

a 
 �tij/�qms and F̂ 
 q� . According to eq. (8),

C̃ab�0	 � TrB�qaqb�B
eq�. (19)

Utilizing the fact that the nuclei are in thermal equilibrium at T, we
have

Kij
� � �

m,s

�tij

�qms
� �

2Mm��

coth�����

2 � Qms
� , (20)

where �� and Qms
� are the frequency and the m-th atom’s displace-

ment along the s-direction for the �-th nuclear vibrational mode,
respectively. In the derivation the nuclear–nuclear correlation
�	qm1s1

	qm2s2
� is calculated by assuming nuclear vibrational

modes are in thermal equilibrium with the surrounding at a tem-
perature T (see Appendix B for the details). In the calculations, the
energy is exchanged among the excitations while the total number
of the electrons is conserved. The time-scale parameter 	� can be
determined from the molecular mechanics simulation, and in this
work is taken as a phenomenological parameter that is used to fit
the experiments.

The geometry optimization, the nuclear vibrational modes, and
their frequencies are obtained in the similar way as ref. 6 by a
BLYP7 calculation with 6-311G(d, p) basis set.8 We find that the
BLYP calculation yields much better optimized geometry and
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vibrational frequencies than the PM3 method. Therefore, in this
work we adopt the optimized geometry, vibrational modes, and
vibrational frequencies calculated by the BLYP method7 with
6-311G(d, p) basis set.8 In other words, ĤB is determined by the
BLYP calculation adopting 6-311G(d, p) basis set. The dipole
matrix element �� ij is evaluated with the neglect of diatomic
differential overlap (NDDO). The resulting 1,3-butadiene is placed
in x-y plane as depicted in Figure 1. The electric pulse is expressed
as E(t) 
 E0exp(�t/t�)2 with t� 
 0.1 fs, and its polarization is
along the x-direction. Equation (12) is solved in the time domain.
Temperature T is taken as 30, 100, 300, and 600 K, and 	� 
 0.125
fs is used. The absorption spectrum can be obtained by Fourier
transforming the induced polarization P� (t) 
 tr[�� 	�(t)], and is
plotted in Figure 1a for T 
 300 K. The first peak appears at 4.6
eV, and its full-width-half-maximum (FWHM) is found to be 0.51
eV. The new formalism presented in this work includes the inter-
actions between the valence electrons and all vibrational modes.
This means that the calculated �EFWHM correspond to homoge-
neous broadenings. The 0.51 eV FWHM of the first peak agrees

approximately with the experimental measure of �0.5 eV.9 This is
the reason why the value 0.125 fs of 	� is adopted in the calcula-
tions. Another major absorption peak is found at 8.7 eV, with a less
FWHM of 0.40 eV. The different peak widths indicate the differ-
ent decay rates of the two excitations at 4.6 and 8.7 eV. Figure 1b
shows the amplitudes of the two excitation modes vs. time. The
amplitudes are calculated by projecting the density matrix onto
each modes of �� [i.e., the eigenvector of eq. (12) in the absence
of external field] as

���t	 � 	 �
i, j

����	�1	ij	�ij�t		 , (21)

with

�
i, j

��ij
��2 � 1. (22)

The decay half-time ��1/2 for 4.6 eV and 8.7 eV at temperature
T 
 300 K are 1.8 and 2.6 fs, respectively. It is verified that
�EFWHM��1/2 � � for the two excitations. Note that the 4.6 eV
excitation decays always faster than the 8.7 eV excitation, espe-
cially at the high temperatures. The decay half-time of individual
electronic excitation is found dependent on temperature T. This is
because that the nuclear motion varies with changing temperature.
In general, the increasing temperature leads the faster decays. The
4.6 eV excitation is more sensitive on T, and its decay rate
increases much faster than the 8.7 eV excitation as T is raised. This
is because that the 4.6 eV excitation couples more strongly to the
nuclear motion, which is examined more closely below.

We can evaluate the couplings between the electronic excita-
tions and nuclear vibrational modes by recasting eq. (12) as fol-
lows,

i�
d

dt
	�ij � �

k,l

�ijkl	�kl � � f, ��0	�ij

� i	� �
k,l,�

coth�����

2 ��� ijkl
� 	�kl, (23)

where �ijkl is defined in eq. (A2) and

�� ijkl
� �

1

� � �
m

K� im
� K� mk

� 	jl � �
m

	ikK� lm
� K� mj

� � 2K� ik
� K� lj

�� , (24)

where K� � is similar to K� but does not have its temperature
dependence,

K� ij
� � �

m,s

�tij

�qms
� �

2Mm��

Qms
� . (25)

To examine the couplings between the electronic excitations and
nuclear vibrations, we rewrite eq. (23) in the harmonic oscillator

Figure 1. (a) Absorption spectrum at T 
 300 K. (b) shows the
relaxations of the two excitations (4.6 and 8.7 eV): amplitude of the
mode vs. t. 1,3-Butadiene is placed as shown in the inset. Solid, long
dashed, short dashed, and dotted line are for the 4.6 or 8.7 eV
excitations at T 
 30 K, T 
 100 K, T 
 300 K, and T 
 600 K,
respectively.
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(HO) representation.10,11 Transformation matrix Sij,� between the
site and HO representations is given by

Sij,� � 
 ��0
�	ij �� electron-hole or hole-electron,

��,ij �� electron-electron or hole-hole, (26)

where electron and hole stand for the unoccupied HF levels and
occupied HF levels, respectively, and ��,ij is given by the HF
molecular orbital coefficient cim defined in eq. (A12):

��,ij � cimcjn, � � �mn	. (27)

By using Sij,�, eq. (23) is rewritten as

i�
d

dt �
i, j

�S�1	�,ij	�ij � �
i, j,k,l,m,n,��

�S�1	�,ij�ijklSkl,���S�1	��,mn	�mn

� �
i, j

�S�1	�,ij� f, ��0	�ij � i	� �
i, j,k,l,m,n,�,��

coth�����

2 �
� �S�1	�,ij�� ijkl

� Skl,���S
�1	��,mn	�mn. (28)

Thus, we obtain the following equation.

i�
d

dt
	�� � �

��

����	��� � �
i, j

�S�1	�,ij� f, ��0	�ij

� i	� �
�,��

coth�����

2 ��� ���
� 	���, (29)

where ��, ����, and �� ���
� are given by

	�� � �
i, j

�S�1	�,ij	�ij, (30)

���� � �
i, j,k,l

�S�1	�,ij�ijklSkl,��, (31)

�� ���
� � �

i, j,k,l

�S�1	�,ij�� ijkl
� Skl,��. (32)

The third term on the RHS of eq. (29) describes the coupling
between the electronic mode � and �� through the vibrational
mode �. The magnitude of 	� ¥� coth(����/2)�� ���

� in eq. (29)
determines the decay rate for the �-th electronic mode. A set of
�� ���

� for the several electron-hole modes are shown in Table 1.
Vibrational modes are arranged from top to bottom with increasing
order of energy. Electronic modes �0

122 and �0
144 correspond to

the peaks at 4.6 and 8.7 eV in Figure 1, respectively. The diagonal
terms �� �,� are the pure dephasing for mode �, and are much larger
than the off-diagonal terms. The large pure dephasing is likely due
to all the couplings between the electronic excitation and different
phonons that destroy the electronic phase coherence. �� 122,122

� is
large for lower vibrational frequency modes and generally very
small for higher vibrational modes, while in contrast, �� 144,144

�

shows a less vibrational frequency dependence. This leads to the

different decay behaviors for the two excitations, as shown in
Figure 1b. For very lower temperature (� 3 �), coth(����/2) �
1 irrespective of �. Because the ratio ¥� �� 122,122

� /¥� �� 144,144
� is

about 1.2, the decay rates of the 4.6 and 8.7 eV excitations are thus
similar. For high temperatures, i.e., ���� 
 1, coth(����/ 2) �
1/���� 
 kBT/���. Thus, the low-frequency vibrational modes
dominate the contribution to the dissipation. Further �� 122,122

�13 /
�� 144,144

�13 � 2.8, the 4.6 eV excitation decays thus much faster than
the 8.7 eV one at high temperatures.

Figure 2 shows the population relaxation after the incidence of
a weak electric pulse by solving eq. (10). The density matrix 	� is
mapped onto the Hartree–Fock molecular orbital representation,10

and the induced populations of the highest occupied molecular
orbital (HOMO), HOMO � 1, HOMO � 2, the lowest unoccupied
molecular orbital (LUMO), LUMO � 1, and LUMO � 2 are
plotted vs. time t. The negative value indicates the depletion of the
electron or the existence of holes. The induced populations of the
HOMO and LUMO (also HOMO � 1 and LUMO � 1) are almost
the mirror images of each other, while the populations of the
HOMO � 2 and LUMO � 2 are completely different. The larger
numbers of induced electrons (holes) at the LUMO (HOMO)
indicates the efficient transition of electrons from the HOMO to
the LUMO immediately after the application of the electric pulse
E(t). All the induced populations (electrons or holes) decay to
zero, i.e., the molecule relaxes to the ground state. The population

Table 1. Coupling Strength between Electronic Excitations and Nuclear
Vibrational Modes.

� �� (cm�1) �� 122,122
� �� 122,144

� �� 144,144
�

1 �13 Au 173.1 0.429 �0.050 0.153
2 �24 Bu 294.3 0.003 0.012 0.067
3 �9 Ag 508.0 0.003 0.007 0.034
4 �12 Au 520.9 0.228 0.019 0.114
5 �16 Bg 755.7 0.173 0.020 0.071
6 �8 Ag 876.9 0.009 0.005 0.059
7 �11 Au 888.8 0.179 �0.008 0.039
8 �15 Bg 892.4 0.177 �0.006 0.041
9 �14 Bg 963.3 0.111 �0.001 0.050

10 �23 Bu 981.6 0.003 0.011 0.058
11 �10 Au 1025.1 0.096 0.005 0.039
12 �7 Ag 1194.3 0.018 0.008 0.046
13 �6 Ag 1280.8 0.014 0.005 0.036
14 �22 Bu 1288.6 0.006 0.009 0.040
15 �21 Bu 1379.3 0.009 0.001 0.037
16 �5 Ag 1439.7 0.008 0.008 0.049
17 �20 Bu 1593.6 0.040 �0.012 0.053
18 �4 Ag 1633.5 0.098 0.006 0.059
19 �3 Ag 3037.6 0.003 0.010 0.034
20 �19 Bu 3048.9 0.003 0.010 0.030
21 �2 Bu 3053.9 0.002 0.005 0.043
22 �18 Ag 3055.0 0.002 0.006 0.043
23 �1 Ag 3137.0 0.002 0.011 0.070
24 �17 Bu 3137.3 0.002 0.011 0.070

Vibrational modes are arranged from top to bottom with increasing order
of energy. �� ���

� is given in eV/fs. Electronic excitation modes �0
122 and

�0
144 correspond to the peaks at 4.6 and 8.7 eV in Figure 1, respectively.
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relaxation to the ground state is due to the existence of the
electron–hole (hole–electron) coupling components of matrix K�.

Discussion

We have shown that the new formalism can be employed to
simulate the nonradiative relaxations of realistic many-electron
molecular systems that are in contact with thermal baths. Various
excitations may couple differently to the thermal bath, and this is
taken into account naturally by the new formalism. The Markovian
TDHF-QDT developed here is essentially the same as the formula
presented in ref. 12, although the derivations are seemingly dif-
ferent. Inclusion of radiative decay process into the equation of
motion should be straightforward. The different time scales are
required for radiative and nonradiative decays. Explicit inclusion
of the nuclear vibrational modes and/or multiconfigurational effect
to the current scheme is challenging but feasible.

We set out to achieve two objectives. The first objective is to
demonstrate the applicability of TDHF-QDT to real molecular
systems. Our simulation has clearly captured the essential physics
of the nonradiative decay of a butadiene molecule, for instance, the
rate dependence on temperature and different decay rates for
different excited states that were not built into the theory phenom-
enologically but are rather the nature consequences of the dissi-
pation terms derived directly from the Hamiltonian. The first
objective is thus achieved with success. The second objective is to
examine the decaying processes of the embedded butadiene mol-
ecule upon photoexcitation. This is carried out under the Mark-
ovian approximation. Our simulation predicts that the excitation at
4.6 eV decays rapidly at room temperature and its decay rate is
sensitive to the temperature because it couples strongly with the
low-frequency vibrational modes. The validity of this prediction
rests on the Markovian approximation, and should be tested ex-
perimentally. The Markovian version of the TDHF-QDT was used

in the simulation instead of the non-Markovian TDHF-QDT, be-
cause the former is computationally less expensive. We assume the
system-bath factorization ansatz and use the Hartree–Fock ground
state for the system ground state. The energy dissipation causes the
energy exchange between the electrons and nuclei, and leads to the
deterioration of the Hartree–Fock approximation. An improved
approach is to find the equilibrium state under the system-bath
couplings and thermal fluctuations as we did in ref. 1. Our equation
does not consider the large amplitude motion and photoisomeriza-
tion. Those effects are beyond the scope of this work, which is
intended to develop and illustrate the applicability of the TDHF-
QDT formalism for realistic open systems. The Franck–Condon
calculation of the absorption spectrum requires the explicit deter-
mination of excited states and their energy surfaces. In the present
implementation the vibronic structure cannot be evaluated because
the vibrational modes are not included in the system. This can be
achieved by including the nuclei as a part of the system.

It is emphasized that this formalism is based on the EOM of
reduced single-electron density matrix, and is very different from
the conventional QDTs that follow the dynamics of the reduced
density matrix of system. Therefore, this formalism can be applied
for much larger and realistic systems, as we did here. In our
calculation, we include explicitly all valence electrons (total of 22
electrons) and take into account the couplings between all valence
electrons and all vibrational modes. For most conventional QDTs,
one solves the electronic structures first and then adds T1 and T2

relaxation terms phenomenologically.13,14 In principle, the T1 and
T2 relaxation terms can be evaluated explicitly.14 However, be-
cause of extremely large computational resources are required, this
has not been done for realistic many-electron systems.14 Utilizing
the locality of �F̂aF̂b�, eq. (6) can be combined with the localized
density-matrix (LDM) method.15 This leads the dramatic reduction
of computational times, and thus the possibility of simulating very
large complex open molecular systems.

To conclude, we have demonstrated that our dynamic mean
field QDT can be readily applied to simulate the realistic quantum
dissipative molecular systems. Our formalism introduces for the
first time the quantum chemistry methodology to simulate directly
the dissipative many-electron systems. For the moment, it employs
the semiempirical Hamiltonian. We can implement easily our
formalism with the first-principle quantum chemistry methods, for
instance, the time-dependent density functional theory (TD-
DFT).16 This would make the first-principle simulations of realis-
tic open molecular systems possible.

Appendix A: Numerical Stability of Eq. (12)

Unlike the Lindblad equation where the equation of motion is
linear equation of the reduced density matrix of the system, eq.
(10) is a nonlinear equation of motion of �(t). Thus, it is not clear
whether 	�(t) does not grow with time according to eq. (10). We
show here that 	�(t) does not grow unphysically or eq. (12) is
numerically stable as long as the excitations are weak.

Let us rewrite eq. (12) in the absence of the external field as
follows,

Figure 2. The population relaxations for HOMO, LUMO, HOMO �
1, LUMO � 1, HOMO � 2, and LUMO � 2. The solid line (HOMO),
for example, shows 	�HOMO,HOMO vs. time t in Hartree–Fock molec-
ular orbital representation.10
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i�
d

dt
	�ij � �

i, j

�ijkl	�kl �
i

�
	� �

i, j

�ijkl	�kl (A1)

where linearized Liouville operator � and linearized dissipative
operator � are given by

�ijkl � hik
�0		j,l � 	i,khlj

�0	

� �
m

��vim,lk � vik,lm	�mj
�0	 � �im

�0	�vmj,lk � vmk,lj	
, (A2)

�ijkl � �
�
� �

m

Kim
� Kmk

� 	jl � �
m

	ikKlm
� Kmj

� � 2Kik
� Klj

�� (A3)

and K� in eq. (20) is replaced by

Kij
� � �

m,s

�tij

�qms
� �

2Mm��

coth�����

2 �Qms
� . (A4)

Here, it does not depend on �. Equation (A1) has the Lindblad-like
form except the terms in the summation in eq. (A2). The solution
of eq. (A1) can be formally obtained with the initial condition of
	� as 	�I:

	��t	 � exp��
i

�
�t �

	�

�2 �t�	�I. (A5)

To ensure 	� 3 0 as t 3 �, all the eigenvalue �� of the super
operator �i/�� � 	� /�2� have to satisfy Re(��) � 0.

Our proof is made by the following steps: (a) showing the
positivity of the dissipation superoperator �, i.e., all the eigenval-
ues of � are positive, (b) showing that the eigenvalue of adiabatic
TDHF equation is real, and (c) showing 	�(t) does not grow with
time.

(a) We show that all the eigenvalues of � are positive as
follows. Because K� is a real symmetric matrix in the calculation,
�ijkl is real symmetric in terms of the exchange of a set of the
indices (i, j)7 (k, l ). As a result, � can be diagonalized by a real
orthogonal matrix in Liouville space. In more general cases, K�

can be a Hermitian matrix. Correspondingly, � will be Hermitian
matrix in terms of the exchange of a set of the indices (i, j) 7 (k,
l ). We denote the eigenvalue and eigenvector as �� and e�,ij. Any
matrix Jij can be expanded by the eigenvector e�,ij

Jij � �
�

a�e�,ij, J*ij � �
�

a*�e*�,ij (A6)

where the asterisk is for the complex conjugate. Now we define the
following function.

D� J	 � �
i, j,k,l

J*ij�ijklJkl. (A7)

From eq. (A6) we have

D� J	 � �
i, j,k,l

�
�

a*�e*�,ij�ijkl �
�

a�e�,kl � �
i, j

�
�,�

a*�a�e*�,ij��e�,ij

� �
�,�

a*�a�	�,��� � �
�

�a��2��. (A8)

If D(	�) 
 0 for any 	�, �� 
 0 have to be satisfied for all �. By
inserting the explicit form of � in eq. (A3) to eq. (A7), we have

D� J	 � �
�

Tr�J †K�K�J � J†JK�K� � 2J†K�JK�	. (A9)

Denote

�1
� � JK�, �2

� � J†K�. (A10)

Then eq. (A9) is written as

D� J	 � �
�

tr��2
��2

�† � �1
��1

�† � �2
��1

nu � �2
�†�1

�†	

� �
�

tr���2
� � �1

�†	��2
�† � �1

�	� � �
�

tr��2
� � �1

�†�2 
 0. (A11)

Therefore, all the eigenvalue satisfy �� 
 0. Equality holds for �
which commutes with K� for all �. Unit matrix I is one of such
example.

(b) � can be diagonalized10,11,17 as follows. First, we find the
HF energy �k and molecular orbital coefficient cmk from the HF
equation.

�
n

hmn
�0	�nk � �k�mk. (A12)

Then, we define the transformation matrix � from site represen-
tation to HFMO representation

�k,l,m,n � �mk�nl (A13)

which satisfies the condition

��1 � �†. (A14)

The linearized Liouville operator in HFMO representation �̃ is
calculated by

�̃ � ���†. (A15)

�̃ has the following form:

�̃ � � �̃11 �̃12

0 �̃22
� (A16)

where �̃11, �̃22, and �̃12 are corresponding to the matrix elements
among (electron–hole, hole–electron) part, among (hole–hole,
electron–electron) part, and between (electron–hole, hole–elec-
tron) and (hole–hole, electron–electron) part, respectively. �̃22 is
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a diagonal matrix: (�̃22)e,e�,e�,e� 
 	e,e�	e�,e�(�2)e,e� and
(�̃22)h,h�,h�,h� 
 	h,h�	h�,h�(�2)h,h� with

��2	e,e� � �e � �e�, ��2	h,h� � �h � �h� (A17)

where e (e�) and h (h�) correspond to electron and hole indices,
respectively. �̃11 and �̃12 are written with the Coulomb interac-
tions in MO representation ṽ

ṽp1,p2,p3,p4 � �
i, j,k,l

��	p1,p2,i, j��†	k,l,p3,p4

� �
m

��vim,lk � vik,lm	�mj
�0	 � �im

�0	�vmj,lk � vmk,lj	
, (A18)

��̃11	eh,e�h� � ��e � �h		ee�	hh� � ṽeh,e�h�, (A19a)

��̃11	h,e,e�,h� � ṽh,e,e�,h�, (A19b)

��̃11	e,h,h�,e� � ���11	h,e,e�,h�, (A19c)

��̃11	h,e,h�,e� � ���11	e,h,e�,h�, (A19d)

��̃12	e,h,h�,h� � ṽe,h,h�,h�, (A19e)

��̃12	h,e,h�,h� � ���̃12	e,h,h�,h�, (A19f)

��̃12	e,h,e�,e� � ṽe,h,e�,e�, (A19g)

��̃12	h,e,e�,e� � ���̃12	e,h,e�,e�. (A19h)

�̃11 can be diagonalized by a matrix w

w�̃11w
�1 � �1, (A20)

where the matrix w has a form

w � �X �Y
Y �X�, w�1 � �X† �Y†

Y† �X†�, (A21)

with

w�,e,h � X�,e,h (A22)

w�,h,e � �Y�,e,h (A23)

w�̃,e,h � Y�,e,h (A24)

w�̃,h,e � �X�,e,h (A25)

and (�1)� � 0, (�1)�̃ 
 �(�1)�.
Unlike the TDHF method where electron–electron and hole–

hole part are determined by electron–hole and hole–electron part,
electron–electron and hole–hole part in eq. (A1) are independent
valuables and couple with electron–hole and hole–electron part

from the linear order of the optical response. Thus, we have to
consider the effect of �̃12. This can easily be done by the following
matrix w�:

w� � � I �
0 I � , w��1 � � I ��

0 I �, (A26)

where I is the unit matrix and � is given by

��	�,e,e� �
�w�̃12	�,e,e�

��1	� � ��2	e,e�
, (A27)

��	�,e,e� �
�w�̃12	�̃,e,e�

���1	� � ��2	e,e�
, (A28)

��	�,h,h� �
�w�̃12	�,h,h�

��1	� � ��2	h,h�
, (A29)

��	�,h,h� �
�w�̃12	�̃,h,h�

���1	� � ��2	h,h�
. (A30)

Finally, after defining the following matrix w0 in Liouville space

w0 � �w 0
0 I� , w0

�1 � �w�1 0
0 I� (A31)

we have the following eigenvalues for �

�w�w0���tw0
�1w��1	�,�� � 	�,���� (A32)

with �� 
 (�1)�, ��̃ 
 (�1)�̃, �e,e� 
 (�2)e,e�, and �h,h� 

(�2)h,h�. Therefore, all the eigenvalues of � are real.

(c) Now we are ready to prove that 	�ij in eq. (A1) is a decay
function of time. We use Trotter formula18 on eq. (A5).

	��t	 � lim
n3�

�exp��
i

�
�

t

n�exp��
	�

�2 �
t

n��
n

	�I

� lim
n3�

�
�1�1

· · · �
�n�n

�
i
1

n

���i

i�i��i

i�i�1	��n

n � exp��
i

�
���1 � · · ·

� ��n	
t

n� � exp��
	�

�2 ���1 � · · · � ��n	
t

n�, (A33)

where ��i

i�i�1 and ��i

i�i are expansion coefficients defined as

��i�1 � �
�i

��i

i�i�1��i, (A34)

��i � �
�i

��i

i�i��i (A35)

where ��0

 	�I and ��i

and ��i
are eigenvector of � and right

eigenvector of �. ��i

i�i can be calculated by the left eigenvector �̃
of �.
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��i

i�i � �
m,n

��̃�i	m,n���i	m,n. (A36)

Because of the number conservation i�d/dt ¥j �jj 
 0, 	� should
not have any unit matrix component. We first assume that any 	�
does not commute with K�. Therefore, ��i

� 0 for nonzero �mui

�i�1.
We set the smallest nonzero ��i

as �0. Then we get the following
inequality.

	��t	 � lim
n3�

�
�1�1

· · · �
�n�n

�
i
1

n

���i

i�i��i

i�i�1	��n

n

� exp��
i

�
���1 � · · · � ��n	

t

n� � exp��
	�

�2 �0t�. (A37)

On the other hand, the time evolution of the TDHF in the linear
order of optical response can be written as

	�̃�t	 � exp��
i

�
�t�	�I � lim

n3�
�

�1�1

· · · �
�n�n

�
i
1

n

���i

i�i��i

i�i�1	��n

n

� exp��
i

�
���1 � · · · � ��n	

t

n�. (A38)

Thus, we have

	��t	 � 	�̃�t	exp��
	�

�2 �0t�. (A39)

Because the amplitude of the oscillation of 	�̃(t) does not change
with time, 	�(t) decay to zero for t3 �. Next we assume that one
of the �� commutes with all K�. Even in this case, if �� is not the
eigenvector of �	� still decays with time, because exp(�i�t/
(�n)) mix �� with other eigenvectors and other eigenvector decays
as shown in eq. (A39). Only in the case where �� commutes with
all K� and it is the eigenvector of both � and �, �� component of
	� does not decay with time.

Appendix B: Derivation of Nuclear Correlation
Function

In Equation (17) we make the following transformation,

xi � �
j,s

Qi,� js	�Mj

2
	q̃js (B1)

where Qi,( js) is the orthonormal matrix that satisfies the following
relation.

�
i1,i2,s1s2

Qj,�i1s1	

Vi1s1,i2s2

�Mi1Mi2

�Q†	�i2s2	,k � 	j,kV� k. (B2)

With using the new variable xi, the bath Hamiltonian Hn in eq.
(17) is written as

Hn � �
i

��
�2

4

�2

�xi
2 � V� ixi

2�. (B3)

Because each xi is harmonic oscillator, we can solve the Schröd-
inger equation by the separation of variables.

��
�2

4

�2

�xi
2 � V� ixi

2��ni�xi	 � �ni�ni�xi	. (B4)

where energy eigenvalue is given as �ni

 ��i(n � 1/ 2) with

�i 
 �V� i. Its mean square amplitude is obtained as

� dxi�ni

† � xi	 xi
2�ni� xi	 �

�

2�i
�ni �

1

2� . (B5)

We denote the total energy and wavefunction by ��
T and �� with

the index � is for combination of all the modes, i.e., � 
 (n1, n2,
n3, . . . , n3N�6). Wave function is thus given by �� 
 �i

�ni
( xi). Statistical average is then done as follows:

�xixj� �

�
�

� �
k

dxk��
†xixje

����
T

��

�
�

� �
k

dxk��
†e����

T

��

� 	i, j

�
ni

� dxi�ni

† xi
2e���ni�ni

�
ni

� dxi�ni

† e���ni�ni

� 	i, j

�
ni
0

�
�

2�i
�ni �

1

2�e����ini

�
ni
0

�

e����ini

� 	i, j

�

4�i
coth����i

2 �. (B6)

From eq. (B1) and (B6) we obtain

�	q̃i1s1	q̃i2s2� �
1

�Mi1Mi2

�
k

�Q†	�i1s1	,k�Q†	�i2s2	,k �
�

2�k
coth����k

2 �.

(B7)
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