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Abstract

A method to calculate the circular dichroism (CD) spectra of macromolecules has been developed. The intermediate

neglect of differential overlap technique for spectroscopy (INDO/S) semiempirical Hamiltonian and the full multipole

expansion is adopted. The method has been employed to calculate the CD spectra of pentahelicene, and excellent

agreement with the experimental result is obtained. Combined with the localized-density-matrix (LDM) method, the

new method can be employed to calculate the CD spectra of large molecules.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Circular dichroism (CD) is defined as the differential absorption for left and right circularly polarized

lights. It provides the structural information of the optically active molecules [1–4], such as the biological

chiral molecules. For instance, the CD spectra of proteins have been used to determine their secondary

structures, i.e., the proportions of a-helices, b-sheets, b turns and random coils. Two spectral regions are of
interest in the CD spectra of proteins. The far-UV (k ¼ 175–250 nm) is dominated by contributions from

the polypeptide backbone, and typically reflects the secondary structure of the protein. Many side chain

chromophores exhibit CD signals in the near-UV (k ¼ 240–320 nm) region. Both absorption and CD

spectra result from the same photophysical process: the transitions of molecules from their ground states to

electronically excited states. The left- and right-handedness of the CD depends on the chirality of a mol-

ecule.

Numerous works have been reported on the attempts to calculate the optical rotations or CD

of proteins and other large organic molecules. These usually employ ab initio coupled-perturbed
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Hartree–Fock [5,6], time-dependent density functional theory [7,8] or semiempirical [9,10] calculations.

The methods include the matrix method [10], the coupled oscillator model [11], the dipole interaction

method, and the polarizability theory [12–14]. The matrix method assumes that a large molecule is

considered to consist of N separable chromophores. The total wave function is expressed as a linear

superposition of basis functions Uia which is a product of N chromophores� wave functions. In the

calculation, each chromophore is considered as a single unit that does not overlap or exchange electrons
with other chromophores. Electronic excitations may occur within a group but not between different

groups. The matrix method neglects the electron exchange between the chromophores and is a compact

and efficient method for calculating the rotation strengths. The matrix method requires the parameters

that describe the charge distributions associated with the different electronic states of the chromophoric

groups of the protein. The parameterization is crucial to the success of this approach. Woody and co-

worker has improved the matrix method and has employed it to calculate the CD spectra of various

secondary structures [15–18]. The coupled oscillator model accounts for intermolecular electrostatic in-

teraction via a local field, and is effective for the molecular system that can be partitioned into two or
more separate chromophores. In the dipole interaction model [9], the CD spectrum is calculated by

considering individual atoms or chromophores as point dipoles. Only the dipolar interaction between the

chromophores is accounted for. This treatment neglects the contributions from the higher order multi-

poles and the electron exchange between the chromophores. The polarizability theory [12–14] adopts the

complex polarizabilities to describe the optical activity.

The CD spectra of various secondary structures, primarily helices, have been investigated by matrix

method [16,17,19] and dipole interaction method [20–26]. The calculations of whole proteins have been

carried out by Hirst [27] and by Woody and Sreerama [19] using the matrix method, and by Bode and
Applequist [23] using the dipole interaction model. They were of reasonable success, provide the insights

into the physical interpretation of the CD of given structures, and explain the reason why the CD spectra

are used to determine the protein secondary structures. Recently the localized-density-matrix (LDM)

method has been developed to evaluate the ground and excited state properties of very large systems

[28–37]. It is based on the truncation of reduced single-electron density matrices, and thus, its compu-

tational time scales linearly with the system size. The LDM method has been generalized to include the

nonorthogonal basis set [32], has been implemented with the semiempirical Hamiltonians like PPP [38],

CNDO/S [39] and PM3 [40], and has subsequently been used to calculate the optical properties of
polyacetylene [28–31,33,36], carbon nanotubes [33,34] and poly(p-phenylenevinylene) (PPV) aggregates

[35,37]. In this work, we develop an efficient quantum mechanical method to evaluate the CD spectra of

large molecular systems and their nonlocal response tensors. Although the new method can be imple-

mented with the first-principles methods, we implemented it at semiempirical INDO/S level [41]. To test

the accuracy of the new method, the CD spectrum of pentahelicene is calculated and compared to the

experimental result.

2. Formulation

The system of our interests is subject to an electromagnetic field. To describe its dynamics under the

influence of the electromagnetic field, we decompose the Lagrangian into three components:

L ¼ Lmol þ Lrad þ Lint ð1Þ
and under the Coulomb gauge $ � aðrÞ ¼ 0,

Lmol ¼
1

2

X
a

ma _rr
2
a � V ; ð2Þ
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Lrad ¼
1

8p

Z
d3r

_aa2

c2

(
� ðr � aÞ2

)
; ð3Þ

Lint ¼
1

c

Z
d3rj?ðrÞ � aðrÞ; ð4Þ

where ma and ra are the mass and displacement vector of the ath particle, respectively. V is the interaction
among the particles in the system, aðrÞ is the vector potential of electromagnetic field, and j?ðrÞ is the

transverse part of the total current jðrÞ,

jðrÞ ¼
X

a

ea _rradðr� raÞ; ð5Þ

where ea is the charge of the particle a.
The multipolar Lagrangian can be constructed by adding a total time derivative to the above

Lagrangian:

Lmulti ¼ L� 1

c
d

dt

Z
d3rP?ðrÞ � aðrÞ; ð6Þ

where P?ðrÞ is the transverse component of the polarization vector PðrÞ,

PðrÞ ¼
X

a

eaðra � RÞ
Z 1

0

dkdðr� R� kðra � RÞÞ: ð7Þ

The multipolar Hamiltonian is obtained by the canonical transformation,

ĤHmulti ¼
X

a

pa � _rra þ
Z

d3rPðrÞ � _aaðrÞ � Lmulti; ð8Þ

where pa and P are the canonical momenta conjugated to ra and aðrÞ, respectively,

pa ¼
oLmulti

o_rra
; ð9Þ

PðrÞ ¼ oLmulti

o _aa
: ð10Þ

After eliminating _rra and _aa in favour of the canonical momenta pa and P, we obtain the multipolar

Hamiltonian

ĤHmulti ¼
X

a

p2a
2ma

þ V þ 1

8p

Z
d3r D?ðrÞ

� �2n
þ B2ðrÞ

o
�
Z

d3rP?ðrÞ �D?ðrÞ �
Z

d3rMðrÞ � BðrÞ

þ 2p
Z

d3rjP?ðrÞj2 þ
X

a

1

2mac2

Z
d3rnaðrÞ

	
� BðrÞ


2

¼ ĤHmol þ ĤH RAD þ ĤHint þ 2p
Z

d3rjP̂P?ðrÞj2; ð11Þ
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where

ĤHmol ¼
X

a

p̂p2a
2ma

þ V̂V ;

ĤHRAD ¼ 1

8p

Z
d3r D̂D?ðrÞ

� �2	
þ B̂B2ðrÞ



;

ĤHint ¼ �
Z

d3rP̂P?ðrÞ � D̂D?ðrÞ �
Z

d3rM̂MðrÞ � B̂BðrÞ þ
X

a

1

2mac2

Z
d3rn̂naðrÞ

	
� B̂BðrÞ


2

;

M̂MðrÞ ¼
X

a

1

2ma
fn̂naðrÞ � p̂pa � p̂pa � n̂naðrÞg;

n̂naðrÞ ¼ eað̂rra � RÞ
Z 1

0

kdðr� R� kðr̂ra � RÞÞdk;

P̂PðrÞ ¼ oLmulti

o _aa
¼ 1

4pc2
_̂aâaaðrÞ � 1

c
P̂P?ðrÞ ¼ � 1

4pc
D̂D?ðrÞ;

ÊE?ðrÞ ¼ � 1

c
_̂aâaaðrÞ:

ð12Þ

The above formalism treats the molecule as a single chromophore with its origin at R. Complex molecules

or molecular assemblies can be treated as the assemblies of interconnected chromophores, and can be

divided into N segments. The multipolar Hamiltonian may thus be rewritten as [42–44],

ĤHmulti ¼
XN
l

ĤHmol;l þ
XN
k<l

V̂Vinterðk; lÞ þ
1

8p

Z
d3r ðD̂D?ðrÞÞ2
�

þ B̂B2ðrÞ
�
�
Z

d3rP̂P?ðrÞ � D̂D?ðrÞ

�
Z

d3rM̂MðrÞ � B̂BðrÞ þ
XN
l

X
i2l

1

2mic2

Z
d3rn̂niðl; rÞ



� B̂BðrÞ

�2

þ 2p
Z

d3rjP̂P?ðrÞj2

¼
XN
l¼1

ĤHmol;l þ V̂Vint þ ĤHRAD þ ĤHint þ 2p
Z

d3rjP̂P?ðrÞj2; ð13Þ

where l stands for the lth segment, ĤHmol;l is its Hamiltonian, and

V̂Vint ¼
XN
k<l

V̂Vinterðk; lÞ ð14Þ

is the Coulombic intermolecular interaction between different segments. The polarization field of the entire
system may be written as

P̂PðrÞ ¼
X
l

P̂Pðl; rÞ; ð15Þ

and the polarization operator of segment l

P̂Pðl; rÞ ¼
X
i2l

eiðr̂ri � RlÞ
Z 1

0

dkd r
�

� Rl � kðr̂ri � RlÞ
�

¼
X
i2l

eiðr̂ri � RlÞ 1

�
� 1

2!
fð̂rri � RlÞ � ~rrg þ 1

3!
fðr̂ri � RlÞ � ~rrg2 þ � � �

�
dðr� RlÞ

¼ fl̂lðlÞ � Q̂QðlÞ � ~rrþ � � �gdðr� RlÞ; ð16Þ

where l̂lðlÞ and Q̂QðlÞ are, respectively, the dipole and quadrupole moments of the segment l
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l̂lðlÞ ¼
X
i2l

eið̂rri � RlÞ; ð17Þ

Q̂QðlÞ ¼ 1

2!

X
i2l

eið̂rri � RlÞðr̂ri � RlÞ ð18Þ

and Rl is the displacement vector for the center of segment l; i runs over all the particles in segment l. ri is
the displacement vector of the ith particle in segment l.

Similarly the magnetization operator M̂MðrÞ is expressed as

M̂MðrÞ ¼
X
l

M̂Mðl; rÞ; ð19Þ

where M̂Mðl; rÞ is the magnetization operator of the lth molecule or segment and is expressed as

M̂Mðl; rÞ ¼
X
i2l

1

2mic
fn̂niðl; rÞ � p̂pi � p̂pi � n̂niðl; rÞg; ð20Þ

where pi is the canonical momentum of the ith electron in the lth molecule or segment,

p̂pi ¼ mi _rri �
1

c

Z
ðn̂niðl; rÞ � B̂BðrÞÞd3r: ð21Þ

The polarization vector field operator n̂niðl; rÞ of the ith electron in the molecule l is expressed as

n̂niðl; rÞ ¼ eðri � RlÞ
Z 1

0

kdðr� Rl � kðri � RlÞÞdk

¼ eðri � RlÞ
1

2!

	
� 2

3!
ðri � RlÞ � ~rrþ 3

4!
ððri � RlÞ � ~rrÞ2 þ � � �



: ð22Þ

The magnetic dipole moment of the lth segment can be expressed as

m̂mðlÞ ¼
X
i2l

e
2mec

ðr̂ri � RlÞ � p̂pi: ð23Þ

We adopt the neoclassical approximation where the molecular system is treated quantum mechanically and

the radiation field is taken to be classical obeying the Maxwell�s equations. Therefore, the neoclassical

Hamiltonian Hneo can be rewritten as

ĤHneo ¼
X
l

ĤHmol;l þ
X
k<l

V̂Vintðk; lÞ �
Z

d3rP̂PðrÞ � D̂D?ðr; tÞ �
Z

d3rM̂MðrÞ � B̂Bðr; tÞ

þ
X
l

X
i2l

1

2mic2

Z
d3rn̂niðl; rÞ



� B̂Bðr; tÞ

�2

þ 2p
X
k;l

Z
d3rP̂P?ðl; rÞ � P̂P?ðk; rÞ: ð24Þ

It can be shown that the second term on the RHS of Eq. (24) is cancelled exactly by the inter-segment

contributions (k 6¼ l) from the last term on the RHS. The Hamiltonian is thus

ĤHneo ¼
X
l

ĤHmol;l �
X
l

Z
d3rP̂Pðl; rÞ � D̂D?ðr; tÞ �

X
l

Z
d3rM̂Mðl; rÞ � B̂Bðr; tÞ

þ
X
l

X
i2l

1

2mic2

Z
d3rn̂niðl; rÞ



� B̂Bðr; tÞ

�2

þ 2p
X
l

Z
d3rjP̂P?ðl; rÞj2: ð25Þ

The remaining intra-segment 2p
P

l

R
jP̂P?ðl; rÞj2d3r accounts for the self-energy; however, it is independent

of the electromagnetic field and does not play an important part in radiative processes. We neglect it in the
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calculation. In isotropic samples, such as fluids in the absence of static fields, the unweighted average of CD

signal over all molecular orientations must be taken. The contribution comes from the electric dipole–

electric quadrupole term to CD is zero for randomly oriented systems [43,46]. The contribution comes from

electric quadrupole and magnetic dipole is far much weaker than the interaction between the electric dipole

and magnetic dipole. The CD signals in isotropic samples come mainly from the electric dipole and
magnetic dipole interaction. Consequently, we expand the Hamiltonian up to the electric and magnetic

dipolar terms, and neglect quadrupoles and beyond. Similarly, the fourth term on the RHS of Eq. (25) can

also be omitted since it is on the order of B2. Therefore, the resulting Hamiltonian is

ĤHneo �
X
l

ĤHmol;l �
X
l

l̂lðlÞ � D̂D?ðRl; tÞ �
X
l

m̂mðlÞ � B̂BðRl; tÞ: ð26Þ

Since the nuclei move much slower than the electrons, the Born–Oppenheimer approximation is employed,

i.e., only the electron dynamics is considered. The equation of motion (EOM) for the reduced single-particle

density matrix operator q̂q is

i�h
dq̂q
dt

¼ ½ĤHneo; q̂q�: ð27Þ

The EOM for the reduced single-electron density matrix q � hq̂qi is thus

i�h
dq
dt

;¼ ½hþ f þ g; q� ð28Þ

where h is the Fock matrix, f � �hl̂li � E ¼ �l � E and g � �hm̂mi � B ¼ �m � B.
The CD spectroscopy measures the difference of the absorption amplitudes of a molecule for the left and

right circularly polarized lights, and the CD signal can be calculated as follows:

CDðxÞ ¼ r�ðxÞ � rþðxÞ; ð29Þ
where r� and rþ are the absorption cross-sections of the left and right circularly polarized lights, re-

spectively. The electric and magnetic fields of the right and left circularly polarized incident lights may be

written as

E�
extðr; tÞ ¼

Z
dxêe�Eðk�;xÞeiðk��r�xtÞ þ c:c:; ð30Þ

B�
extðr; tÞ ¼

Z
dxĥh�Bðk�;xÞeiðk��r�xtÞ þ c:c:: ð31Þ

Eext, Bext and the direction of propagation of radiation k are mutually orthogonal. Eext and Bext are related
by jBextj ¼ njEextj, and n is the refractive index. Here the propagation vector k is taken along the z-axis.

According to the equation of the rate of energy absorption (cf. Eq. (A.11) of Appendix A) in the

presence of a circularly polarized external field, the absorption cross section of the left or right circularly

polarized light may be written as

r� ¼ A�

Ein

¼ 1

Ein

Z
d3r

Z
d3r0

X
j

2xjIm E�ðr;xjÞêe� � aðr; r0;xjÞ � êe�Eðr0;xjÞ
�

þ E�ðr;xjÞêe� � bðr; r0;xjÞ � ĥh�Bðr0;xjÞ þB�ðr;xjÞĥh� � cðr; r0;xjÞ � êe�Eðr0;xjÞ

þB�ðr;xjÞĥh� � jðr; r0;xjÞ � ĥh�Bðr0;xjÞ
�
; ð32Þ
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where A� (Aþ) is the energy absorption rate for the left (right) circularly polarized light, and

Ein ¼
1

T

Z T

0

dt
c
4p

jEext �Hextj

is the energy influx of the light. aðr; r0;xÞ, bðr; r0;xÞ, cðr; r0;xÞ, and jðr; r0;xÞ are the nonlocal linear sus-

ceptibility tensors as defined in Eqs. (A.9) and (A.10) of Appendix A. Therefore, the CD signal at the

frequency x is expressed as

CDðxÞ ¼ r� � rþ

¼ 1

Ein

Z
d3r

Z
d3r0

X
j

2xjImE�ðr;xjÞBðr0;xjÞ �
1

n
ðêeþ � aðr; r0;xjÞ � êe�



� êe� � aðr; r0;xjÞ � êeþÞ

þ ðêeþ � bðr; r0;xjÞ � ĥh� � êe� � bðr; r0;xjÞ � ĥhþÞ þ ðĥhþ � cðr; r0;xjÞ � êe� � ĥh� � cðr; r0;xjÞ � êeþÞ

þ nðĥhþ � jðr; r0;xjÞ � ĥh� � ĥh� � jðr; r0;xjÞ � ĥhþÞ
�
: ð33Þ

For Eðr;xÞ ¼ EðxÞeik�r,

CDðxÞ ¼ 4p
c
Im

Z
d3r

Z
d3r02xe�ik�ðr�r0Þ 1

n
ðêeþ � aðr; r0;xÞ � êe�

�
� êe� � aðr; r0;xÞ � êeþÞ

þ ðêeþ � bðr; r0;xÞ � ĥh� � êe� � bðr; r0;xÞ � ĥhþÞ þ ðĥhþ � cðr; r0;xÞ � êe� � ĥh� � cðr; r0;xÞ � êeþÞ

þ nðĥhþ � jðr; r0;xÞ � ĥh� � ĥh� � jðr; r0;xÞ � ĥhþÞ
�
: ð34Þ

We note that the CD signals are determined once the linear susceptibility tensors a, b, c and j, are known
[13,14]. The detailed expressions of these terms are given in Appendix A.

3. Implementation

In this work, we treat our molecule as single segment. Since the computational cost in the time-domain is

far much less than that in the frequency domain, we integrate the EOM in the time-domain. To evaluate the

molecular polarization Pðr; tÞ and magnetization Mðr; tÞ, we need to obtain the reduced single-electron

density matrix qðtÞ of the system. We have shown how to obtain qðtÞ in the previous papers [28–33,35]. The

long wavelength limit has been employed and the spatial variation of the amplitudes of the external

electromagnetic field over the system have been neglected in the previous calculations for a normal linear

absorption. Unless the size of molecular system of interest is comparable to the light wavelength, spatial

variation of Eext and Bext can be neglected in the calculation. In another word, the electromagnetic field is
assumed to be uniform over the extent of molecule. The electric and magnetic response tensors aðr; r0;xÞ,
bðr; r0;xÞ, cðr; r0;xÞ and jðr; r0;xÞ are thus uniform over the molecule, i.e., they do not depend on r and r0:

aðr; r0;xÞ ¼ aðxÞ, bðr; r0;xÞ ¼ bðxÞ, cðr; r0;xÞ ¼ cðxÞ, and jðr; r0;xÞ ¼ jðxÞ. Furthermore, the first and last

terms in Eq. (34) are zero. Therefore,

CDðxÞ ¼4p
c
Im

Z
d3r

Z
d3r02xe�ik�ðr�r0Þ ðêeþ �bðxÞ � ĥh�

h
� êe� �bðxÞ � ĥhþÞþðĥhþ � cðxÞ � êe� � ĥh� � cðxÞ � êeþÞ

i
;

ð35Þ
and we need only to calculate bðxÞ and cðxÞ.

W.Z. Liang et al. / Chemical Physics 289 (2003) 175–189 181



To evaluate bðxÞ and cðxÞ, we need to calculate the linear response of electrons subject to the external

electromagnetic field. dqð1Þ, the linear response of the optical field, is calculated by solving the time-de-

pendent Hartree–Fock (TDHF) equation of motion

i �h
d

dt



þ c

�
dqð1Þ ¼ ½dhð1Þ; qð0Þ� þ ½hð0Þ; dqð1ÞðtÞ� þ ½f ; qð0Þ� þ ½g; qð0Þ�: ð36Þ

Here hð0Þ is the ground state Fock matrix, dhð1Þ is the first-order induced Fock matrix, f ðgÞ describes the
interaction between the electrons and the external electric (magnetic) field and c is the phenomenological

dephasing constant. The fourth-order Runge–Kutta method [47] is employed to integrate Eq. (36). The

molecular polarization PðtÞ and magnetization MðtÞ can be evaluated after dqð1Þ is known. Then the re-

sponse tensors are readily to be obtained. From Eqs. (A.22)–(A.25), we note that cðxÞ is related only to the

interaction term between the system and the external electric field while bðxÞ is only related to the inter-

action term between the system and the external magnetic field. Thus, to calculate cðxÞ, we assume that the
system interacts only with the external electric field E. The magnetization MðtÞ is evaluated in time-domain

and the Fourier transformation is performed to obtain MðxÞ. cðxÞ is related to MðxÞ by

cijðxÞ ¼ dMiðxÞ
dEjðxÞ jE¼0:

To calculate bðxÞ, we assume the system interacts only with the external magnetic field B. P is then

evaluated. bðxÞ is related to P by

bijðxÞ ¼ dPiðxÞ
dBjðxÞ jB¼0:

Once we know bðxÞ and cðxÞ, the CD signal is thus readily obtained.

One thorny issue in evaluating the CD spectrum is the origin dependence of the magnetic dipole element
m which leads often to the origin dependence of CD signal. Many proposals to eliminate this dependence

have been proposed, one of which is employing the origin-independent atomic orbitals [48]. We propose

here a method to ensure the origin invariance [3]. Rewriting Eq. (23) we obtain that

m̂m ¼
X
i

e
2cm

r̂ri � p̂pi �
e

2cm
R� p̂p; ð37Þ

where p̂p is the total momentum of the electrons. If the origin shifts DR, the magnetic moment changes to

m0 ¼ mþ ðe=2cmÞDR� p. To ensure the origin invariance, we use the following commutator relation to

calculate the momentum of individual electron:

p̂pi ¼ �me

i�h
½ĤH; r̂ri�: ð38Þ

Therefore, it can be shown that the total momentum p is proportional to the total transition dipole mo-

mentum l, i.e.,

pkl ¼ � me

ie�h
ð�k � �lÞlkl; ð39Þ

where kðlÞ stands for the eigenstate jki (jli) of Hamiltonian ĤH with corresponding energy �k (�l), and pkl
(lkl) is the matrix element of p (l) between jki and jli. This leads to

llk � ðDR� pklÞ ¼ 0: ð40Þ
This eliminates thus the origin dependence of the calculated CD signals.
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4. CD spectrum of pentahelicene

The helicenes are model molecules for screw-shaped molecular systems which are important in nucleic

acid, peptide and sugar chemistry. They exhibit CDs and optical rotations. We choose pentahelicenes to

test our formalism by calculating its CD spectrum and compare the resulting spectrum to the experi-
mental result. Experimental CD as well as absorption and fluorescence spectra [50,51] have been mea-

sured for pentahelicene. TDDFT calculation of its CD spectrum has been carried out [7], and the

calculated result was consistent with the experiments. In our calculation, we employ the semiempirical

INDO/S Hamiltonian. The Coulomb interaction among electrons is explicitly taken into account, and the

electron–electron correlation is accounted for within the TDHF approximation as described in Sections 2

and 3.

The geometry of pentahelicene is taken from the supporting information of [7]. Its structure is shown

in the inset of Fig. 1(a). The calculated absorption spectrum is shown in Fig. 1(a). Compared to the
experimental data, the overall shape agrees well, and however, the calculated energies of the excited

states are slightly larger. To be consistent with the measured spectra, we red-shift the calculated ab-

sorption and the subsequent CD spectra by 0.22 eV. We solved Eq. (28) for dqð1Þ and evaluated the CD

Fig. 1. The calculated and experimental absorption and CD spectra of pentahelicene. (a) Absorption spectrum; (b) the solid line is

simulated by full TDHF and the diamond is experimental result taken from [7]. The calculated absorption and CD spectra are red-

shifted by 0.22 eV.
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spectrum according the steps described in Sections 2 and 3. The experiment was carried on pentahe-

licene in solution, and the measured spectral properties are the averaged result for random orientations.

To compare the calculated result with the experimental data, the CD spectrum needs to be averaged

over x, y and z directions, i.e., CDðxÞ ¼ 1
3
ðCDxðxÞ þ CDyðxÞ þ CDzðxÞÞ. In the calculation, we applied in

turn the electromagnetic field propagating along x-, y- and z-axis. The corresponding CD spectra in

these three directions were evaluated, and the orientation averaging of CD signals was taken to ob-
tain the calculated CD spectrum in Fig. 1(b). The experimental CD [7] is plotted in Fig. 1 for com-

parison. The amplitude of the calculated CD spectrum is arbitrarily scaled to fit the experimental

amplitude. Encouraging agreement between the observed and calculated results are obtained. The

characteristic positive band at long wavelength and the negative band at short wavelength reasonably

agree with the experimental results.

5. Discussion

We propose a new formalism to evaluate CD spectrum within the TDHF approximation. Instead of

solving for many-electron wave function, the reduced single-electron density matrix q is determined by

integrating its EOM in the time-domain. The consistence between the calculated and measured pentahe-

licene CD spectra validates the new formalism. The new formalism is quite different from other existing

methods. The rotatory strength is a central quantity describing the optical activity. To determine the CD

spectrum or optical activity, the rotatory strengths R0f ¼ Imh0jljf ihf jmj0i for transitions from ground

state j0i to excited states jf is needs to be determined. This is achieved by solving for many-body wave
function. The CD signal exists only when the electric and magnetic dipole transitions induced by the ex-

ternal electric and magnetic field are simultaneously allowed (the second and third term in our Eq. (34). In

our formalism, we evaluate the linear response tensors (see Eq. (34)) which are calculated directly from the

reduced single-electron density matrix. Since many-body wave function is not required, our formalism is

potentially very efficient for large molecular systems.

In this work, our formalism is implemented at the semiempirical INDO/S level. However, it can be

generalized easily for ab initio molecular orbital calculations or time-dependent density functional theory

(TDDFT). Like other methods, the long wavelength approximation is currently adopted in our calculation.
This leads to the elimination of first and fourth terms in Eq. (34). It is desirable to incorporate the spatial

dependence of the electromagnetic field when the sizes of the molecular systems of interests are not neg-

ligible compared to the wavelength. This can be achieved simply by retaining the spatial dependence of the

electromagnetic field in Eq. (28). Compared to the existing methods, our formalism treats quantum me-

chanically the entire molecule as a whole and may thus require quite large amount of computational re-

sources. The solution is to combine our formalism with efficient quantum chemistry methods. One possible

way is incorporating our formalism within the general framework of the LDM method. The LDM method

is a linear-scaling quantum mechanical method for ground and excited states. We expect thus that our new
formalism can be used to calculate the CD or optical activities of very large chiral molecular systems, such

as protein.
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Appendix A. The energy absorption rate and response tensors

The rate of energy absorption AðtÞ by the system can be represented as [14,44]

AðtÞ ¼ 1

T

Z T

0

dt
dhĤHneoi

dt
¼ 1

T

Z T

0

dt Tr
dĤHneo

dt
q

" #(
þ Tr

dq
dt

ĤHneo

� �)

¼ � 1

T

Z T

0

dt
Z

d3r
oE?ðr; tÞ

ot
� hP̂PðrÞi

	
þ
Z

d3r
oB?ðr; tÞ

ot
� hM̂MðrÞi




¼ � 1

T

Z T

0

dt
Z

d3r
oE?ðr; tÞ

ot
� Pðr; tÞ

	
þ
Z

d3r
oB?ðr; tÞ

ot
�Mðr; tÞ



: ðA:1Þ

The time-dependent density operator q, polarization Pðr; tÞ and magnetization Mðr; tÞ can be expanded in

powers of the radiation field, i.e.,

qðtÞ ¼ qð0Þ þ dqð1ÞðtÞ þ dqð2ÞðtÞ þ � � � ; ðA:2Þ

Pðr; tÞ ¼ Pð0ÞðrÞ þ Pð1Þðr; tÞ þ Pð2Þðr; tÞ þ � � � ; ðA:3Þ

Mðr; tÞ ¼ Mð0ÞðrÞ þMð1Þðr; tÞ þMð2Þðr; tÞ þ � � � : ðA:4Þ
Here dqðnÞ, PðnÞ and MðnÞ are nth order (n > 1) induced density operator, polarization and magnetization.

The nth order induced polarization and magnetization will be expanded in the form

PðnÞðr; tÞ ¼
X
s

PðnÞðr;xsÞe�ixst þ c:c:; ðA:5Þ

MðnÞðr; tÞ ¼
X
s

MðnÞðr;xsÞe�ixst þ c:c: ðA:6Þ

xs is any combination of the incoming frequencies xs ¼ �x1 � x2 � x3 � � � � � xn. Then AðtÞ can also be

expended as AðtÞ ¼ Að1ÞðtÞ þ Að2ÞðtÞ þ � � �. Hereafter we will only concern with linear absorptions. The

higher order terms of AðtÞ, which contain the effects of multipole scattering in the sample, are neglected. The
rate of the energy absorption is expressed as

AðtÞ ¼ � 1

T

Z T

0

dt
Z

d3r
oEextðr; tÞ

ot
� Pð1Þðr; tÞ

(
þ
Z

d3r
oBextðr; tÞ

ot
�Mð1Þðr; tÞ

þ
Z

d3r
oE0ð1Þðr; tÞ

ot
� Pð1Þðr; tÞ þ

Z
d3r

oB0ð1Þðr; tÞ
ot

�Mð1Þðr; tÞ þ
Z

d3r
oEextðr; tÞ

ot
� Pð0ÞðrÞ

þ
Z

d3r
oE0ð1Þðr; tÞ

ot
� Pð0ÞðrÞ

)
: ðA:7Þ

The last two terms are zero when we take the average of Eq. (A.7) over an optical cycle. The Maxwell

transverse vector electric field and magnetic field have been partitioned into two parts as

ÊE?ðr; tÞ ¼ ÊEextðr; tÞ þ ÊE0ðr; tÞ; B̂B?ðr; tÞ ¼ B̂Bextðr; tÞ þ B̂B0ðr; tÞ:

The primed fields are the induced fields due to the multipole scattering of the incoming wave by the charge

distribution and can be expressed in terms of retarded Green�s functions [45]. Then Eq. (A.7) will be

changed to
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A ¼ �
X
j

Z
d3r
h
� ixjEðr;xjÞ �P�ð1Þ ðr;xjÞ þ ixjE

�ðr;xjÞ �Pð1Þðr;xjÞ

� ixjBðr;xjÞ �M�ð1Þ ðr;xjÞ þ ixjB
�ðr;xjÞ �Mð1Þðr;xjÞ

i
: ðA:8Þ

The average of Eq. (A.8) over an optical cycle has been made. We also have assumed that the probe field
envelop varies slowly in time compared with its optical period. The induced linear polarization and

magnetization may be given by

Pð1Þðr;xÞ ¼
Z

d3r0aðr; r0;xÞ � Eðr0;xÞ þ
Z

d3r0bðr; r0;xÞ �Bðr0;xÞ; ðA:9Þ

Mð1Þðr;xÞ ¼
Z

d3r0cðr; r0;xÞ � Eðr0;xÞ þ
Z

d3r0jðr; r0;xÞ �Bðr0;xÞ: ðA:10Þ

a, b, c and j are the nonlocal response tensors which describe all linear optical phenomena. Substituting
Eqs. (A.9) and (A.10) into Eq. (A.8), we have

A ¼ �
Z

d3r

Z
d3r0

X
j

�
� ixj Eðr;xjÞ � a�ðr; r0;xjÞ � E�ðr0;xjÞ

�
þ Eðr;xjÞ � b�ðr; r0;xjÞ �B�ðr0;xjÞ þBðr;xjÞ � c�ðr; r0;xjÞ � E�ðr0;xjÞ
þBðr;xjÞ � j�ðr; r0;xjÞ �B�ðr0;xjÞ

�
þ ixj E�ðr;xjÞ � aðr; r0;xjÞ � Eðr0;xjÞ

�
þ E�ðr;xjÞ � bðr; r0;xjÞ �Bðr0;xjÞ þB�ðr;xjÞ � cðr; r0;xjÞ � Eðr0;xjÞ
þB�ðr;xjÞ � jðr; r0;xjÞ �Bðr0;xjÞ

��
:

¼
Z

d3r

Z
d3r0

X
j

2xjIm E�ðr;xjÞ � aðr; r0;xjÞ � Eðr0;xjÞ
�

þ E�ðr;xjÞ � bðr; r0;xjÞ �Bðr0;xjÞ

þB�ðr;xjÞ � cðr; r0;xjÞ � Eðr0;xjÞ þB�ðr;xjÞ � jðr; r0;xjÞ �Bðr0;xjÞ
�
: ðA:11Þ

That is, the rate of energy absorption A is proportional to the imaginary part of the linear susceptibility a, b,
c and j. These response tensors can be obtained from Pðr; tÞ and Mðr; tÞ. Therefore the central problem in

the fs pump–probe experiment lies in the calculation of Pðr; tÞ and Mðr; tÞ, i.e.,
Pðr; tÞ ¼ hUðr; tÞjP̂PðrÞjUðr; tÞi ¼ TrðqP̂PðrÞÞ; ðA:12Þ

Mðr; tÞ ¼ hUðr; tÞjM̂MðrÞjUðr; tÞi ¼ TrðqM̂MðrÞÞ: ðA:13Þ
Using the Liouville space notation [44], the density qðtÞ can be written as

i �h
d

dt



þ c

�
qðtÞ ¼ L̂LqðtÞ þ L̂LintqðtÞ: ðA:14Þ

L̂L and L̂Lint are Liouville space operators defined by their actions on an operator A, that is

L̂LÂA ¼ ½ĤH ; ÂA�; L̂Lint ÂA ¼ ½ĤHint; ÂA�:
The first-order density matrix can be expressed as [44]

dqð1ÞðtÞ ¼ � i

�h

Z t

t0

dt0hðt � t0Þ exp
  

� i
L̂L
�h
� c
�h

!
ðt � t0Þ

!
L̂Lintðt0Þ � hðt0 � t0Þ exp

  
� i

L̂L
�h
� c
�h

!
ðt0 � t0Þ

!
qðt0Þ

¼ � i

�h

Z 1

0

dt1hðt1Þ exp
  
� i

L̂L
�h
� c
�h

!
t1

!
L̂Lintðt � t1Þqð0Þ: ðA:15Þ
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Since qðt0Þ represents the equilibrium density operator, it does not evolve with time when subject to the

material Hamiltonian with no field. This implies

hðt0 � t0Þ exp
  

� i
L̂L
�h
� c
�h

!
ðt0 � t0Þ

!
qðt0Þ ¼ qðt0Þ:

Here hðtÞ is Heavyside step function [hðtÞ ¼ 1 for t > 0, hðtÞ ¼ 0 for t < 0]. The first-order polarization

Pð1Þðr; tÞ and magnetization Mð1Þðr; tÞ take the forms

Pð1Þðr; tÞ ¼ Tr½P̂PðrÞdqð1ÞðtÞ�

¼ Tr P̂PðrÞ
 "

� i

�h

Z 1

0

dt1hðt1Þ exp
  

� i
L̂L
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!
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!#
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� t1Þ þ
Z

d3r0M̂Mðr0Þ � Bðr0; t � t1Þ; qð0Þ
�)

; ðA:16Þ

Mð1Þðr; tÞ ¼ Tr M̂MðrÞdqð1ÞðtÞ
h i

¼ Tr M̂MðrÞ
 "

� i

�h

Z 1

0

dt1hðt1Þ exp
  

� i
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�h
� c
�h

!
t1

!
Lintðt � t1Þqð0Þ

!#

¼ Tr M̂MðrÞ i
�h

Z 1

0

dt1hðt1Þ exp
  (

� i
L̂L
�h
� c
�h

!
t1

!

�
Z

d3r0P̂Pðr0Þ � Eðr0; t
�

� t1Þ þ
Z

d3r0M̂Mðr0Þ � Bðr0; t � t1Þ; qð0Þ
�)

: ðA:17Þ

Then the nonlocal response tensors aðr; r0; tÞ, bðr; r0; tÞ, cðr; r0; tÞ and jðr; r0; tÞ are written as:

aðr; r0; tÞ ¼ i

�h
Tr P̂PðrÞhðtÞ exp

  "
� i

L̂L
�h
� c
�h

!
t

!
½P̂Pðr0Þ; qð0Þ�

#
; ðA:18Þ

bðr; r0; tÞ ¼ i

�h
Tr P̂PðrÞhðtÞ exp

  "
� i

L̂L
�h
� c
�h

!
t

!
½M̂Mðr0Þ; qð0Þ�

#
; ðA:19Þ

cðr; r0; tÞ ¼ i

�h
Tr M̂MðrÞhðtÞ exp

  "
� i

L̂L
�h
� c
�h

!
t

!
½P̂Pðr0Þ; qð0Þ�

#
; ðA:20Þ

jðr; r0; tÞ ¼ i

�h
Tr M̂MðrÞhðtÞ exp

  "
� i

L̂L
�h
� c
�h

!
t

!
½M̂Mðr0Þ;qð0Þ�

#
: ðA:21Þ

These nonlocal tensors will be switched to the frequency domain after the Fourier transformation as

aðr; r0;xÞ ¼ �Tr P̂PðrÞð�hx
h

� L̂Lþ icÞ�1½P̂Pðr0Þ; qð0Þ�
i
; ðA:22Þ
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bðr; r0;xÞ ¼ �Tr M̂MðrÞð�hx
h

� L̂Lþ icÞ�1½P̂Pðr0Þ; qð0Þ�
i
; ðA:23Þ

cðr; r0;xÞ ¼ �Tr P̂PðrÞð�hx
h

� L̂Lþ icÞ�1½M̂Mðr0Þ; qð0Þ�
i
; ðA:24Þ

jðr; r0;xÞ ¼ �Tr M̂MðrÞð�hx
h

� L̂Lþ icÞ�1½M̂Mðr0Þ; qð0Þ�
i
: ðA:25Þ

In TDHF equation, the discussion above is slightly modified due to the nonlinearity of the equation of

motion in terms of q. Instead, equation of motion for linear response (Eq. (36)) is used and L̂L is replaced by

the linearized Liouville operator L [49]

Lqð1Þ � ½dhð1Þ; qð0Þ� þ ½hð0Þ; dqð1Þ�: ðA:26Þ
Under the above replacement, Eqs. (A.22)–(A.25) hold. So far we have presented a methodology to cal-

culate the response tensor of an arbitrary molecular system.
We do not invoke the dipole approximation. If the dipole approximation is employed, the rate of energy

absorption at x is

AðxÞ ¼ 2xIm E�ðxÞ � aðxÞ � EðxÞð Þ; ðA:27Þ
which just depends on the tensor a ¼ �Tr½l̂lð�hx � L̂Lþ icÞ�1½l̂l; qð0Þ��.
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