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Abstract

A non-Markovian theory of dissipative many-electron systems in the presence of arbitrary coherent fields is pre-

sented. The new formulation is constructed via the second-quantization of a complete second-order quantum dissi-

pation theory followed by the random phase or time-dependent Hartree–Fock approximation for electron–electron

correlation. The theory is shown to be of the Fermi–Dirac thermal equilibrium statistics limit if electron–electron

correlation is neglected. The key quantity is the reduced single-electron density matrix instead of the reduced density

matrix of the system, which leads to the drastic reduction of numerical simulation time. The validity of the dynamic

mean-field approximation is tested in a model two-electron spin-conversed system with Ohmic dissipation in the

presence of excitation field.

� 2003 Elsevier Science B.V. All rights reserved.

1. Background

Quantum dissipation is a subject of wide spread

interest in many fields of physics, chemistry and

materials science. Various quantum dissipation

theories (QDTs) have been developed to investi-

gate the dynamic properties of open systems. They

include the Bloch–Redfield theory [1–7], Fokker–

Planck equations [7–14], and semigroup formalism

[15–18]. Most recently, Xu and Yan [19] con-
structed a complete second-order QDT (CS-QDT)

in which the system–bath interaction is treated

rigorously at the second-order cumulant level for
both the initial canonical thermal equilibrium and

the reduced dynamics. The key physical quantity

in these QDTs is the reduced density operator q,
whose dynamics is described by the Liouville–von

Neumann equation of motion, where dissipation is

treated with different forms for different QDTs

[1–27]. Since the system reduced density matrix

needs to be solved, the computational costs of the
above methods are expensive, and the calculations

have been limited thus to low-dimensional sys-

tems. Building on the initial work by Yan, Chen,

Yokojima and coworkers (unpublished), Yokoj-

ima and Chen [28] developed a QDT based on the
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equation of motion (EOM) for the reduced single-

electron density matrix. The resulting EOM was

employed to simulate the excitation and nonradi-

ative relaxation of a butadiene molecule. This re-

duced single-electron density matrix based QDT

opens the possibility for quantum chemistry cal-
culations of large quantum open systems.

We present in this manuscript (Paper I) a dy-

namic mean-field formulation to simulate the dy-

namics of open many-electron systems under

external field driving. Like [28], the new formalism

is based on the EOM for the reduced single-electron

density matrix, and is a direct generalization of the

QDT presented in [28]. The theoretical develop-
ment starts with the second-quantization of the CS-

QDT proposed by Xu and Yan [19], followed by a

random phase approximation (RPA) or time-de-

pendent Hartree–Fock (TDHF) treatment on

electron–electron correlations. The thermal bath

can be the nuclei of system and/or the environment.

The traditional linear dissipation superoperator in

conventional QDTs is now replaced by nonlinear
quantum nonradiative dissipation terms. These

terms include the electron–nuclei couplings and

energy or material exchanges with the environ-

ment. Because only the reduced single-electron

density matrix is considered, realistic open many-

electron systems can be studied efficiently.

2. Theory

2.1. Conventional quantum dissipation theory

Consider an electronic system embedded in a

thermal bath. The total system-plus-bath Hamil-

tonian ĤHT can be expressed as

ĤHTðtÞ ¼ ĤHSðtÞ þ ĤHB þ ĤHSB: ð1Þ

ĤHSðtÞ is the many-electron system Hamiltonian in

the presence of external classical field, assuming

the following form:

ĤHSðtÞ ¼
X
ij

tijc
y
i cj þ

1

2

X
jkk0j0

vjj0;kk0c
y
jc

y
kck0cj0

�~EEðtÞ �
X
ij

~llijc
y
i cj: ð2Þ

Here, cyi (ci) is a creation (annihilation) operator of
an electron on spin-orbital i. The first and the
second terms in Eq. (2) are for the hopping terms

tij and the electron–electron Coulomb integrals
vjj0 ;kk0 , respectively, and can be evaluated via the
ground state geometry. The third term in Eq. (2) is

for the interaction between the system and the

external electric field ~EEðtÞ, and ~llij is the dipole
matrix element. We shall further define

fijðtÞ 	 �~EEðtÞ �~llij. The Hermitian property of ĤHS
implies that tjk ¼ t
kj, fjk ¼ f 
kj, and vjj0 ;kk0 ¼ vkk0;jj0 ¼
v
j0j;k0k. In Eq. (1), ĤHB is the bath Hamiltonian. The
system–bath interaction ĤHSB can be generally de-
composed in terms of

ĤHSB ¼ �
X
a

ŴWaF̂Fa: ð3Þ

Here, ŴWa is Hermitian operator of the system, and
up to two-electron terms, it assumes

ŴWa ¼
X
jk

sajkc
y
jck þ

1

2

X
jkk0j0

wajj0;kk0c
y
jc

y
kck0cj0 ; ð4Þ

where sajk ¼ ðsakjÞ


, wajj0;kk0 ¼ wakk0;jj0 ¼ wa
j0j;k0k. The

forces F̂Fa in Eq. (3) are Hermitian operators in bath
space, and can thus be considered as the general-

ized Langevin forces. Denote F̂FaðtÞ 	 eiHBt=�h
F̂Fae�iHBt=�h, which are stationary stochastical vari-
ables in the canonical bath ensembles qeqB ¼
e�bHB=�h=Tre�bHB=�h. Their statistical means are set to
be zeros

TrB½F̂FaðtÞqeqB � ¼ 0;
and the correlation functions are defined as

~CCabðt � sÞ 	 TrB½F̂FaðtÞF̂FbðsÞqeqB �: ð5Þ
A conventional quantum dissipation theory

(QDT) for the reduced density operator qðtÞ for
the many-electron system reads as [19]

i�h
d

dt
qðtÞ ¼ ½ĤHSðtÞ; qðtÞ�

� i

�h

X
a

½ŴWa; ~WWaðtÞqðtÞ � qðtÞ ~WW y
a ðtÞ�; ð6Þ

~WWaðtÞ ¼
X
b

Z t

�1
ds ~CCabðt � sÞGðt; sÞŴWbGyðt; sÞ:

ð7Þ
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Here, Gðt; sÞ is the Hilbert–space Green�s function,
satisfying the Schr€oodinger equation: i�hotGðt; sÞ ¼
ĤHSðtÞGðt; sÞ. Eqs. (6) and (7) are a complete sec-
ond-order QDT (CS-QDT) formulation, con-

structed via a rigorous second-order cumulant
expansion for both the initial canonical thermal

equilibrium and the reduced dynamics [19]. How-

ever, the implementation of Eqs. (6) and (7) or

other conventional forms of QDT should be made

with the many-electron eigenstate (or similar)

representation. Unfortunately, solving the eigen-

states of a many-electron system is itself extremely

difficult or intractable. Thus it is almost impossible
to solve Eqs. (6) and (7) numerically for real mo-

lecular systems. In practice, the dynamical prop-

erties of interacting systems are rather studied by

using various indirect techniques [29].

In this work, we shall construct a dynamical

mean-field QDT for the reduced single-electron

density matrix for many-electron systems. To that

end, let us recast Eqs. (6) and (7) in terms of the
equation of motion (EOM) for the expectation

value of an arbitrary (system) operator ÔO,
O 	 Tr½ÔOqðtÞ� 	 hÔOi. Its EOM can be obtained as

i�h
dO
dt

¼ h½ÔO; ĤHSðtÞ�i

� i

�h

X
a

h½ÔO; ŴWa� ~WWaðtÞi
n

� h ~WW y
a ðtÞ½ÔO; ŴWa�i

o
:

ð8Þ
The above equations which are equivalent to

the CS-QDT [Eqs. (6) and (7)] will be used as the

starting point to construct a time-dependent Har-

tree–Fock QDT (TDHF-QDT) for the open

many-electron system under arbitrary coherent

driving.

2.2. TDHF-QDT for many-electron systems

The key quantity here is the reduced single-

electron density matrix r, whose element is defined
as the expectation value of the single-electron op-

erator r̂rjk 	 cykcj; i.e., rjk 	 hr̂rjki ¼ hcykcji: Let us
now derive the EOM for the reduced single-elec-

tron density matrix r according to Eq. (8). Let us
first consider the contribution of the first term in
Eq. (8). By using the anti-commutation relation

for fermions, we have

½r̂rjk; ĤHSðtÞ�
¼
X
n

½tjn
�

þ fjnðtÞ�cykcn � ½tnk þ fnkðtÞ�cyncj
�

þ
X
mnn0

vjm;nn0c
y
kc

y
ncn0cm

�
� vmk;nn0cymcyncn0cj

�
: ð9Þ

The Hartree–Fock approximation to the ex-

pectation value of the two-particle operator in-

volves the following Wick�s factorization:

hcymcyncn0cm0 i � hcymcm0 ihcyncn0 i � hcymcn0 ihcyncm0 i: ð10Þ

The above two equations lead to h½r̂rjk; ĤHSðtÞ�i ¼
½hðtÞ; r�jk; with the Fock matrix

hjkðtÞ ¼ tjk þ fjkðtÞ þ
X
mn

ðvjk;nm � vjm;nkÞrmnðtÞ:

ð11Þ

Obviously, the above Hartree–Fock approxima-

tion amounts formally to the following replace-

ment:

ĤHSðtÞ )
X
jk

hjkðtÞcyjck: ð12Þ

The contribution of the second term in Eq. (8) is

more complicated. In general, ~WWa contains any
order of many-body operators. Should it be re-

tained up to two-body terms, the evaluating for

the second term in Eq. (8) would require treating

four-body interactions. In this work, we adopt the

following ansatz (i.e., Hartree–Fock approxima-
tion) in which [cf. Eqs. (2), (12) and (4)]

ŴWa )
X
jk

ga;jkðtÞcyjck; ð13Þ

ga;jkðtÞ ¼ sajk þ
X
mn

ðwajk;nm � wajm;nkÞrmnðtÞ: ð14Þ

The above ansatz together with Eq. (12) lead

Eq. (7) to

~WWa )
X
jk

~gga;jkðtÞcyjck; ð15Þ

~ggaðtÞ ¼
X
b

Z t

�1
ds ~CCabðt � sÞ �GGðt; sÞgbðsÞ �GGyðt; sÞ:

ð16Þ
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Here, �GGðt; sÞ is the Green�s function in the

Hartree–Fock space; i.e., i�hot �GGðt; sÞ ¼ hðtÞ �GGðt; sÞ.
By using Eqs. (13) and (15) for Eq. (8) whose

second term is now only treating with two-elec-

tron operators, the expectation value is then
evaluated via again the Wick�s factorization as
Eq. (10).

The final TDHF-QDT formulation for the sin-

gle-electron density matrix rðtÞ can now be sum-
marized as (see Appendix A for details)

i�h _rr ¼ ½h; r� � i

�h

X
a

½ga; r�trfð~gga � ~ggy
aÞrg

� i

�h

X
a

½ga; ð1� rÞ~ggar � r~ggy
að1� rÞ�: ð17Þ

This equation constitutes the main formal re-

sult (TDHF-QDT) of the present work. It is de-

rived rigorously via a CS-QDT plus a dynamic

mean-field approach. It takes account for the ef-

fect of second-order system–bath coupling on

both dynamics and the stationary (equilibrium)

state [19]. The similar formalism can be derived
for bosonic systems. The EOM of a bosonic

system corresponding to Eq. (17) can be obtained

via replacing 1� r by 1þ r in Eq. (17) and re-
placing the minus sign in Eqs. (11) and (14) by

plus.

2.3. Fermi–Dirac statistics

For a noninteracting system in which vjj0;kk0 ¼
wajj0 ;kk0 ¼ 0, the matrices h and g are time-indepen-
dent provided there is no external driving field. In

this case, the Hartree–Fock Green�s function
�GGðt; sÞ ¼ e�ihðt�sÞ, and Eq. (16) becomes

~gga ¼
X
b

Z 1

0

ds ~CCabðsÞe�i
�LLsgb; ð18Þ

which is also time-independent. In Eq. (18),
�LL 	 ½h; �� being the Hartree–Fock Liouvillian. As
pointed out by Yan et al., Eq. (18) contains the

contributions from both the interaction bath

spectral and dispersion functions [13,19]. The lat-

ter accounts mainly for the system renormalization

energy [19]. Adopt the standard Redfield approx-

imation,

~gga �
1

2

X
b

Z 1

�1
ds ~CCabðsÞe�i

�LLsgb

	 1
2

X
b

Cabð� �LLÞgb; ð19Þ

which amounts to the neglect of the bath dispersion

dynamics effects. Here, Cabð� �LLÞ is the function of
�LL defined by the bath interaction spectrum,

CabðxÞ 	
Z 1

�1
dteixt ~CCabðtÞ ¼ ebxCbað�xÞ: ð20Þ

The second identity in the above equation

stands for the detailed-balance required by the
canonical bath statistics. It is well known that

auto-correlation spectrum CaaðxÞ is nonnegative,
while cross-correlation spectrum CabðxÞ ¼ C


baðxÞ
[the spectrum matrix fCabðxÞg, denoted as C, is
Hermitian] can be complex. In Appendix B we

show that the spectrum matrix C is of complete

positivity. Let us now prove that the well-known

Fermi–Dirac statistics

r0eq ¼
ke�bh

1þ ke�bh
; ð21Þ

is the stationary solution to Eq. (17). By the

symmetric and detailed-balance relation of bath

spectrum we can have that [cf. Eq. (19) and note
that g are Hermitian],

~ggy
a ¼

1

2

X
b

C

abð �LLÞgb ¼

1

2

X
b

Cbað �LLÞgb

¼ eb �LL~gga 	 ebh~ggae�bh: ð22Þ
The above relation leads directly to (cf.

½h; r0eq� ¼ 0)
trð~ggy

ar
0
eqÞ ¼ trð~ggar0eqÞ; and

r0eq~gg
y
að1� r0eqÞ ¼ ð1� r0eqÞ~ggar0eq:

ð23Þ

We thus prove that the well-established quan-

tum statistics, r0eq [Eq. (21)], does constitute the
stationary solution of our TDHF-QDT [Eq. (17)]

under the Redfield approximation.

3. Test: excitation and relaxation of a two-level

system

To test the validity of TDHF ansatz proposed

in Section 2.2, let us consider a simple two-electron
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(one " and one # spin) two-level system. Here the
system Hamiltonian is given by [cf. Eq. (2)]

ĤHS ¼
X2
i¼1

X
k¼"#

�hxic
y
ikcik þ

X2
i¼1
vcyi"c

y
i#ci#ci"

þ
X
k 6¼k0

v12c
y
1kc

y
2k0c2k0c1k

� EðtÞ
X

k

lðcy1kc2k þ c
y
2kc1kÞ; ð24Þ

where c1" is the annihilation operator of an elec-
tron with spin up at the level 1. Other creation and

annihilation operators are similarly defined. The

system–bath interaction Hamiltonian is given by

[cf. Eqs. (3) and (4)]

ĤHSB ¼ �ŴW F̂F ; with ŴW ¼
X2
i;j¼1

X
k¼"#

sijc
y
ikcjk: ð25Þ

The spectral density JðxÞ, which relates to the
bath correlation function ~CCðtÞ as

~CCðtÞ ¼
Z 1

�1
dxe�ixt

JðxÞ
1� e�bx

; ð26Þ

is assumed to be Ohmic, i.e.,

JðxÞ ¼ gB�hx expð�jxj=xcÞ:

Since the model two-electron two-level system is

simple, we can carry out the CS-QDT [Eqs. (6) and

(7)] calculation to examine the excitation and dis-

sipation of system. Note that the CS-QDT is rig-

orous in the weak system–bath interaction limit in
which the system–bath interaction is treated

completely up to the second order and the higher-

order contributions are partially resummated

through second-order cumulant expansion. The

CS-QDT results are used to assess the validity of

the TDHF approximation in Eq. (17). The pa-

rameters we have chosen for the test simulation

are �hx1 ¼ 0:0 eV, �hx2 ¼ 0:2 eV, v ¼ 0:02 eV,
v12 ¼ 0:01 eV, s11 ¼ s22 ¼ 0:1 eV, s12 ¼ s21 ¼
0:2 eV, gB ¼ 0:2 fs/eV, and xc ¼ 0:4 eV. The
driving field is taken as EðtÞ ¼ E0e�ðt=tcÞ2 ; with
lE0 ¼ 1:13 eV and tc ¼ 0:5 fs.
We calculate the polarization P ðtÞ ¼ tr½lrðtÞ�

and make a Fourier transformation to obtain

P ðxÞ. Unless the strong external electronic field is

employed, the time dependence of ~gga [Eq. (16)],
which comes from the time dependence of the

Fock matrix hðtÞ, is not important in this model.
Thus, the ground state Fock matrix is employed to

determine ~gga (see Appendix C for the details). The
resulting spectra Im½P ðxÞ� are shown in Figs. 1 and
2. We have chosen two simulation temperatures

300 and 500 K. Fig. 1 shows the comparison be-

tween the CS-QDT result (dashed line) and

TDHF-QDT result (sold line) for the lowest ex-

cited state. The two results show very similar in

terms of peak position, width and height, espe-

cially for 300 K. The TDHF-QDT does not re-

produce the peak near 0.21 eV, which corresponds
to the excitation from the state where one electron

occupies level 1 and the other for level 2, to the

state where both occupy level 2.

Fig. 1. Im½P ðxÞ� is shown for the lowest excited state. Tem-
perature is chosen at (a) 300 K and (b) 500 K. Solid line,

TDHF-QDT; dashed line, CS-QDT.
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The excitation spectra at the two-electron exci-

tation regime is shown in Fig. 2. A factor of 5000 is

multiplied for Im½P ðxÞ� in Fig. 2 compared with in
Fig. 1. Although we can find larger energy splitting

compared with Fig. 1 for two different methods,

the overall result is very similar. Again the two
results for 300 K shows better consistency.

Obviously, the applicability of the TDHF-QDT

is limited by the TDHF theory itself where the el-

ementary excitation is described very well. The test

in this section shows that the extension of the

TDHF for the open system gives surprisingly good

results for the positions, heights, and widths of the

elementary excitations in Im½P ðxÞ�. As the TDHF
does not have the sufficient many-body correlation

effect to describe the cooperative excitation of the

optical response, it is rather natural to find some

discrepancy between the TDHF-QDT and the CS-

QDT in Fig. 2. However, the similar line shapes

indicate that the present TDHF-QDT may even be

able to explore the dynamics of multielectron ex-

citation to certain extent. Observed is also that the

TDHF-QDT produces better result for the lower
temperature. It will, thus, be interesting to examine

the effects of temperature, together with other

properties of TDHF-QDT. However, this is be-

yond the scope of this Letter and will be investi-

gated in future publication.

4. Discussion

Eq. (17) has close resemblance to the conven-

tional TDHF EOM [30] except that the pure

dephasing terms in the conventional EOM are re-

placed by the dissipative terms. The dissipative

terms lead to the energy dissipation while the pure

dephase terms in the conventional TDHF conserve

the system energy. In another word, the conven-
tional TDHF cannot describe the nonradiative

decay. In the TDHF-QDT, the dissipative terms

are derived from the first-principles, and the non-

radiative decay is accounted for naturally. While

the radiative decay has not been included pres-

ently, it can be accounted within the TDHF-QDT.

The energy dissipation causes the energy exchange

between the electrons and nuclei, and leads to the
deterioration of the Hartree–Fock approximation.

This may cause the breakdown of Eq. (10). Unlike

the TDHF where the first order of the optical re-

sponse only induce the electron–hole part of the

density matrix, dissipation terms in Eq. (17) mix

the electron–hole, electron–electron, hole–hole

parts. This is the direct consequence of the energy

loss due to dissipation. The formalism, therefore,
is limited to the weak system–bath interaction.

In the formalism the interaction among elec-

trons are explicitly considered. It would be inter-

esting to quantify the effects of the electronic

interaction on the relaxation processes. Switching

off the electronic interaction leads to drastically

different electronic structure. This makes the direct

comparison between the interacting and noninter-
acting electronic systems difficult. A possible solu-

tion is to start from the noninteracting electronic

(a)

(b)

Fig. 2. Im½PðxÞ� is shown for the higher excited state. Tem-
perature is chosen at (a) 300 K and (b) 500 K. Solid line,

TDHF-QDT; dashed line, CS-QDT.
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system and then turn on gradually the electronic

interaction while measuring the related effects.

We have shown in Section 2.3 that for a non-

interacting electronic system the TDHF-QDT

leads ultimately to the Fermi–Dirac distribution.

For the interacting electronic systems, similar
conclusion exists. Moreover, the above conclusion

can be generalized to the bosons. For a bosonic

system, our dynamic mean-field QDT leads the

system to its Bose–Einstein distribution. Beyond

the Redfield approximation [cf. Eq. (19)], the

TDHF-QDT [Eq. (17)] describes actually the bath-

correlated reduced quantum statistical equilibrium

state.
As we pointed out earlier, Eq. (17) is the main

result of this work. We emphasize that the quan-

tum dissipative terms in Eq. (17) are derived rig-

orously by starting from the total Hamiltonian

and integrating subsequently the bath degrees of

freedom. Unlike many other QDTs, our quantum

dissipative terms are not phenomenological and

can be determined from the first principles. The
most important feature of Eq. (17) is that it is the

EOM for the reduced single-electron density ma-

trix r instead of the reduced system density matrix
q. This leads to the drastic reduction of the degrees
of freedom in numerical simulation. The TDHF-

QDT developed in this work can thus be used to

simulate the realistic and complex open molecular

systems. In the subsequent manuscript (Paper II)
[31], we apply the TDHF-QDT to investigate the

photo-excitation and nonradiative decay of an

embedded butadiene molecule.

To summarize, we have shown that the new

formalism can be employed to simulate the non-

radiative relaxations of interacting many-electron

systems that are in contact with thermal baths. To

test the validity of the TDHF-QDT formalism, we
applied it to the two-electron two-level system.

The comparison between the TDHF-QDT and the

CS-QDT shows that it is very successful to de-

scribe the elementary excitation and relaxation,

where even some electron cooperative optical re-

sponse can be simulated. Since the key entity is the

reduced single-electron density matrix, we expect

that the TDHF-QDT can be employed to simulate
the quantum dissipative processes in large molec-

ular systems.
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Appendix A. Derivation of Eq. (17)

Let us consider two single-electron operators

ÂA ¼
P

mn Amnc
y
mcn and B̂B ¼

P
mn Bmnc

y
mcn. We can

obtain that

½r̂rjk; ÂA� ¼
X
n

Ajnr̂rnk
�

� Ankr̂rjn
�
: ðA:1Þ

By Wick�s theorem [cf. Eq. (10)], we can further
obtain that:

h½r̂rjk; ÂA�B̂Bi

¼
X
nmm0

AjnBmm0 hr̂rnkr̂rm0mi
�

� AnkBmm0 hr̂rjnr̂rm0mi
�

�
X
nmm0

AjnBmm0 ðdnmrm0k



� rnmrm0k þ rnkrm0mÞ

� AnkBmm0 ðdjmrm0n � rjmrm0n þ rjnrm0mÞ
�
;

ðA:2Þ
hB̂B½r̂rjk; ÂA�i

¼
X
nmm0

AjnBmm0 hr̂rm0mr̂rnki
�

� AnkBmm0 hr̂rm0mr̂rjni
�

�
X
nmm0

AjnBmm0 ðdkm0rnm



� rnmrm0k þ rnkrm0mÞ

� AnkBmm0 ðdm0nrjm � rjmrm0n þ rjnrm0mÞ
�
:

ðA:3Þ

The above equations can be written in the ma-

trix form as

h½r̂r; ÂA�B̂Bi ¼ ½A; ð1� rÞBr� þ ½A; r�trðBrÞ; ðA:4Þ

hB̂B½r̂r; ÂA�i ¼ ½A; rBð1� rÞ� þ ½A; r�trðBrÞ: ðA:5Þ

By applying Eqs. (A.4) and (A.5) to Eq. (8) with

the operators ŴWa and ~WWa assuming the forms of
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Eqs. (13) and (15), the TDHF-QDT Eq. (17) is

thus derived in due course.

Appendix B. Positivity of spectrum matrix

In the bath ĤHB-eigenstate representation fjmig,
we have that,

CabðxÞ ¼
Z 1

�1
dteixtCabðtÞ

¼
Z 1

�1
dteixtTrB½F̂FaðtÞF̂Fbð0ÞqeqB �

¼ 2p
X
m;n

ðqeqB Þmmdðx � xnmÞF amnF bnm: ðB:1Þ

Since the matrix C is Hermitian, it can be di-

agonalized by a unitary transformation matrix S
(SyS ¼ 1),

SyCS ¼ K 	 diagðk1; k2; . . .Þ orX
a;b

S
aa0CabSbb0 ¼ ka0da0b0 : ðB:2Þ

Here, the eigenvalues (k1; k2; . . .) are real and we
shall in the following prove that they are non-

negative as well. Note that C, S and K are all de-

pend on x. Let us now define a vector K with

Ka 	
P

a0 pa0Saa0 . Here, pa0 are arbitrary numbers.
By Eq. (B.2), we have

KyCK ¼
X
ab

K

aCabKb

¼
X
aba0b0

p
a0S


aa0Cabpb0Sbb0 ¼

X
a

jpaj2ka: ðB:3Þ

On the other hand, we have

KyCK ¼2p
X
m;n

ðqeqB Þmmdðx � xnmÞ

�
X
a

K

aF

a
mn

 ! X
b

KbF bnm

 !

¼2p
X
m;n

ðqeqB Þmmdðx � xnmÞ

�
X
a

KaF anm

�����
�����
2

P 0: ðB:4Þ

Since pa0 in Eq. (B.3) is arbitrary, we thus prove
that ka is nonnegative.

Appendix C. Evaluation of ~ggaðtÞ

There are many methods possibly we can use

to calculate ~ggaðtÞ. For example, we can calculate
the Green�s function following the time evolution
and perform the integration of Eq. (16) for each

time step. This method works perfectly, however,

it is computationally demanding. Here we pres-

ent another method. This method does not

give the time dependence of ~ggaðtÞ, thus it is for
the weak excitation. However, as long as the

excitation is weak, this method and the direct

integration of Eq. (16) give results which differ
little.

If the system is in the ground state, the Fock

matrix hij does not change with time. Therefore,
we can use its kth eigenvalue ek and the corre-
sponding eigenvector Uik to calculate the Green�s
function and Eq. (16) is written as [denoting

xkl 	 ðek � elÞ=�h]

~gga;ij ¼
X
b;klmn

Z 1

0

ds ~CCabðsÞe�ixklsUikðU yÞkmUnl

�ðU yÞljgb;mn: ðC:1Þ

The time integration in Eq. (C.1) is carried out

[7,19] byZ 1

0

dteixt ~CCabðtÞ ¼
1

2
½CabðxÞ þ iDabðxÞ�; ðC:2Þ

CabðxÞ 	
Z 1

�1
dteixtCabðtÞ and

DabðxÞ 	 1
p
P

Z 1

�1
dx0 Cabðx0Þ

x � x0 ;

ðC:3Þ

and P denotes the principal value integration.

Thus, we have

~gga;ij ¼
X
b;k;l

1

2
CabðxlkÞ½ þ iDabðxlkÞ�UikðU ygbUÞklU

y
lj:

ðC:4Þ
Since ga requires the information of the ground

state Fock matrix, we have to determine the

ground state itself. Let us write Eq. (17) as
_rri;j ¼ Li;jðrÞ. Then, the ground state denoted as rg
is obtained by solving Li;jðrgÞ ¼ 0: Since this is a
nonlinear equation of r, we have to solve it iter-
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atively by denoting the solution as rg 	 rI þ dr.
We first start with rI which should be close to rg.
Deviation can be assumed to be dr, thus we have
(up to the first order of dr),

X
mn

oLi;jðrÞ
ormn

����
r¼rI

drmn � �Li;jðrIÞ: ðC:5Þ

Obtained rI þ dr will be used for the next step
of the iteration as rI. We continue these procedure
until rI approaches rg.
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