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Abstract

Two forms of dissipation are applied to a system of two coupled harmonic oscillators. Result-
ing quantum master equations are studied with the help of quantum characteristic functions. The
effects of dissipation on quantum entanglement are investigated in the view of recent interest
in separability criteria for density matrices. Decoherence-free subspaces are constructed for a
Lindlad dissipation mechanism.
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1. Introduction

In this paper we extend a previous treatment [1] of one primary oscillator in a
dissipative bath of various types to a system of two coupled primary oscillators. The
purpose here is several fold. We are interested in dynamics of quantum dissipation
in systems which can be described by two coupled harmonic oscillators. Methods
employed in Ref. [1] are naturally extendable to multi-oscillator systems, and are
expected to capture to the full extent the dissipative dynamics of various physical
and chemical natures [2,3]. On the other hand, in the emerging literature [4—10] of
quantum information and communication, a tremendous amount of interest has risen
in bipartite canonical systems of continuous variables which in that field are often
synonymous to a pair of harmonic oscillators. Entanglement (or inseparability) and its
quantification are some of the central issues of fundamental importance to quantum
computing, quantum communication, and quantum mechanics itself.
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Although entanglement properties of bipartite systems have been studied in the pres-
ence of dissipative baths, considerations of the baths have not been extensive [11-13].
In this paper we approach the problem starting from constructing physically meaning-
ful baths. As an extension of our previous work [1] we adopt a form of dissipative
baths first proposed by Agarwal [14]. Three important attributes are desired for any
baths in theories of quantum dissipation, namely, translational symmetry, approach to
eventual thermal equilibrium, and complete positivity for the reduced density matrix of
the system. The Agarwal bath has nice features of translational invariance and thermal
equilibration. Although positivity is not guaranteed for certain initial conditions, it is
for the large part not a problem. We first attach the Agarwal bath to our system of
twin oscillators. Solutions to the dissipative dynamics of the Gaussian wavepackets are
then utilized for separability studies.

Another trick in the bag of quantum dissipative theories is the phenomenology of the
semigroup formalism, which is positivity-preserving by design and intrinsically quantum
mechanical [15,16]. As a direct generalization of pure-dephasing for the one-oscillator
model [1], we employ a form of Lindblad-type dissipation which preserves the system
energy. Equations of motion are derived for first- and second-order moments from
which the translational invariance is found to be broken, and the Schwinger boson
representation is introduced to analyze the dynamics.

Most recently theories of quantum dissipation have been applied to quantum compu-
tations and quantum information manipulations. Although a majority of the work in the
field is concerned with Hilbert spaces with finite dimensions, the interest has recently
been expanded to continuous variable systems, in part because of the experimental
realization of quantum teleportation of coherent states [4]. The concept of density
matrix inseparability is of utmost importance. A separable density matrix can be rep-
resented by a mixture of direct-product states. Measurements made on separable states
exhibit classical correlations. A bipartite density matrix is separable if it can be written
in the form

p=>_ pirly @ ply . (1.1)

where p; >0, and ), p; = 1. An inseparability criterion concerning partial transpose
of the density matrix was proposed by Peres [5], and later shown by Horodecki to be
a necessary and sufficient condition for inseparability of 2 X 2 or 2 x 3 systems [6].

A major issue in quantum computer design is to overcome decoherence of the sys-
tem of interest due to interactions with its environment. In this paper we construct
decoherence free subspaces (DFSs) within a system of two oscillators submerged in
a Lindblad-type bath. Although the subspaces as a whole are coupled to the bath by
phase damping, dynamics with the subspaces are decoupled from the bath, thus pro-
tected from environment-induced dephasing which limits the storage time of quantum
information.

The paper is organized as follows. In Section 2, we give a pedagogical introduc-
tion to quantum master equations and the semigroup formalism to quantum dissipa-
tion. In Section 3, we study the dissipative dynamics of two couple oscillators in an
Agarwal bath. In Section 4, the Agarwal bath is replaced by a Lindblad-type bath
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which preserves the total number of bosons in the system. Discussions are presented in
Section 5.

2. Model and methodology

We are interested in the Brownian motion of quantum harmonic oscillators in a
dissipative bath. For simplicity, we start with a model Hamiltonian describing only
one primary oscillator of frequency wy and mass m coupled to a bath of secondary
oscillators of frequency w; and mass my (k # 0)

Hy=hooala+ Y hoblbi+q4' > giqf . (2.1)
k k

where ¢* and g7 are the coordinate observables for the system and the bath oscillators,
respectively, which are related to the corresponding boson operators by

7 1/2 A 12
S t b _ T )
q (2mw0) (a' +a), qx <2mkwk> (b + br) (2.2)

and g, are the coupling coefficients. The bath oscillators can be various phonon modes
in a solid, or modes of vacuum radiation fields into which an excited atom decays via
spontaneous emission. Adopting the rotating-wave approximation (RWA) widely used
in fields such as quantum optics, the model Hamiltonian reduces to

Hrwa =hooa'a+hY  opbfbe + > gi(bja+ bal) . (2:3)
k k

We note that the RWA neglects the rapidly oscillating terms of Eq. (2.1). For simplicity
we shall set 4 =1 in the rest of the paper.

Agarwal has obtained a Schrodinger-representation master equation for the reduced
density operator p in the limit of an infinite number of bath oscillators (), —

J doy f (o)) [14]

%f +iola'a,p] = L(a,a")p = —pila + a',[a + a', p]]

—y(ala+a',p] —[a+a',pla’ —2p), (2.4)

where y =7 f(wo)|ge(wo)|* is the damping constant, f(w) is the density of bath oscil-
lators, g.(w) is the continuum form of g, 1 = ("7 — 1)~ w is the renormalized
frequency of wq [17],

f(@)|ge(w)?

w — W

w:a)o—l-@@/ do (2.5)
0
and 2% stands for the Cauchy principal part. Approximations assumed in deriving
Eq. (2.4) includes the Born approximation which treats the bath effects in the lowest
order and the short memory hypothesis for the bath.

The purpose of this paper is to study of the effects of dissipation on the quan-
tum dynamics of two coupled oscillators, and it is straightforward to generalize the
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one-oscillator Agarwal master equation (2.4) to a system of two oscillators. If there
are two primary oscillators coupled to each other in the system with a Hamiltonian

Huo = o(ala; + alay) + J(dlay + alay), (2.6)

where J is the coupling strength, and each oscillator is dissipated by the bath modes
in the form of Eq. (2.4), the master equation for the reduced density matrix for the
two oscillators can be written as

0 S
Lt o) = lez L (aial)p . @.7)

The Agarwal master equation (2.4) has found applications in a variety of fields
despite of a well-known fact that it violates the positivity requirements of the reduced
density matrix, and therefore leads to unphysical steady states for certain initial con-
ditions [18-20]. To remedy the problem of positivity violation in the Agarwal master
equation, Lindblad [21] showed that a completely positive map can be generated by

Lip =Y W pVi1+ Wup, Vi1 (2.8)
from which the equation of motion of the density matrix can be expressed as

0 .

Lvitt =20 (2.9)

Here the V,,’s are the Lindblad dissipation operators. For example, choosing a single
dissipation operator [22]

V =puq+ivp, Vi=ug—ivp, (2.10)
where the operators ¢ and p are defined as

\/Eq:a+aT, (2.11)

iV2p=a—at, (2.12)
one obtains

0p . .

5, = \H = 2w pg. p] = 1[4, (g, 1] = 2ilg. [P, p1. 1 = VI, [P P11 -

(2.13)

If two sets of dissipation operators are chosen instead [23]:

Vi=aiq + b;p, i=1,2 (2.14)

the master equation reads [23,24]

0 .
a—f = —i[wa'a + elq. pl,. p] — 81[q.[9. p1] — S2Lp. [ p. P1]

—0o([g, [ p, P11 + [P, 1q. 1D — in(lg.[p, P11 — [P, [g:p]]) - (2.15)

Variants of Eq. (2.15) can also be derived from generalized Weyl and Wigner transfor-
mations [24]. Eq. (2.15) can be used to describe, for instance, an electromagnetic field
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mode interacting with an equilibrium bath of bosons in quantum optics, or dynamics
of open systems in heavy ion collisions [23]. Due to the Schwartz inequality and the
way Eq. (2.15) is constructed from the dissipation operators V7 and V,, Eq. (2.15) is
a master equation of the Lindblad form if the following conditions are satisfied:

01,00 >0, (2.16)

510, — &% =n/4. (2.17)

Compact expressions of exact solutions for (2.15) for all initial conditions have been
obtained in Ref. [1].

A Lindblad-type bath was constructed very recently for a two-oscillator system [25]
for separability studies. The Lindblad dissipation operators are chosen to be proportional
to p; and ¢; of the two oscillators (v2¢g; = a; + al-T, ivV2p; =a; — af, i=1,2). The
Lindblad dissipation operators, however, can take forms other than linear in ¢ and p
[as in Eq. (2.14)]. For example, the equation of motion (2.4) has been generalized
[26] to include an additional f term

ap

5 = —iola'a, p] — la‘a,[a'a, p]] — yila + a',[a + a', p]]

—y(ala+a', pl —[a+d', pla’ —2p), (2.18)

where the f-term can be derived from the semigroup formalism and by taking the
system Hamiltonian (aa) as the Lindblad dissipation operator. Similar applications of
the semigroup formalism can be found in quantum optics (phase-damped oscillators)
corresponding to a nondestructive measurement of photon number [27-29]. In this
paper we also study the effect of Lindblad-type baths on the system of two oscillators.
For example, one can use the Hermitian operators a}LalJr a;az, and aIaz Jra;al as the
Lindblad dissipation operators:

Lsp=—p [ Z ajal-, [ Z aja,-,pH - ¢[a1a2 + a;m, [aIaz + a;al,p]] .

i=1.2 i=12

(2.19)

The fS-term is a direct generalization of (2.18) while the ¢-term is the off-diagonal
coupling describing the dephasing of bosons as they hop.

Semigroup theories also showed that for harmonic oscillators density-matrix posi-
tivity, translational invariance and approach to thermal equilibrium cannot be satis-
fied simultaneously. The semigroup formalism in general does not guarantee approach
of thermal equilibrium without extra constraints. Detailed balance, however, can be
imposed onto Eq. (2.15) in forms of parameter constraints to ensure final approach
to equilibrium in the framework of semigroup theories. Efforts along this direction
have been a matter of much recent interest [22,28,30]. For instance, Gao has pro-
posed a master equation constructed from one single Lindblad dissipation operator
which is linear in both a and a' with he proper proportionality coefficients to sus-
tain detailed balance [22]. The positivity requirement in Gao’s approach is marginally
satisfied with 16, = #%/4. Gao’s construction of L via a single Lindblad dissipation
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operator has recently found support by a first-principle derivation of master equations
for collision-driven dissipative evolution [30].

In quantum optics, atomic physics and chemical physics, master equations often need
to be solved by numerical integration which may involve continuous evolution of the
density matrix as well as jumps at random instances [31]. Here we adopt a method of
solution which utilizes the quantum characteristic function y(41, 4], 42, 43,¢) [32]

4O, 2t Do, 5 1) = Tr(pehial e =4 @1ghatl g=/iar) (2.20)

where the trace is taken over the system of two oscillators. Instead of dealing directly
with the density matrix, we derive an equation of motion for the characteristic function
1(A1, AT, A2, 45, t) which is then solved by method of characteristics.

The two-oscillator characteristic function (41,4}, 42,45 ) is a direct generalization of
the characteristic function for one oscillator y'(4, A*) [33]:

7 (0, 2%) = Tr(pe’ e ="y . (2.21)

For one oscillator, the quantum characteristic function y!(/, A*) is the Fourier transform
of the phase space distribution function P;(z,z*) of the density matrix p

11,0 = / d’zexp(Az* — A*2)Pi(z,z%) . (2.22)

The phase space distribution function P;(z,z*) is also called Glauber—Sudarshan P
representation of the density matrix p which plays the role of a quasiprobability:

p:/dzzPl(z,z*)\z> (z] . (2.23)

For the case of two oscillators similar relations exist between the characteristic function
7(A1, 24,242, 75) and the phase space distribution function P(z,z{,z,z5) of the density
matrix p:

X(/’Lla )“Ta j'29 /"L’;)
= / d?z, &%z, exp(izy — Ajz1 + Azy — 2522)P(21,27, 22,25 ) . (2.24)

The often-used Wigner distribution function W(z1,z{,z2,25) is the Fourier transform of
the Wigner characteristic function XW(M,AT,AZ,Z;) which is related to y(41, A}, 22, 43)
by a simple factor [34]:

2V (21,25, 72,73
= / d%z; 8z, exp(hizi — Ajz1 + Azy — B322)W (z21,21,22,25) (2.25)

— o AP (0% 00, 25) (2.26)

The Wigner distribution function W(z,z{,z,,2z5) gives a description of quantum states
in close resemblance to the phase-space classical descriptions, which is related to the
Weyl classical-quantum correspondence [35].
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We wrap up this section with an illustration of our method of solutions for the
problem of one oscillator in an Agarwal bath [cf. Eq. (2.4)]. An equation for y'(4,1*)
follows from the quantum master equation (2.4):

axl 0y 1 axl

. 2% /( . 2% *
o +[—iwi+yp(A+ 4 )]ﬁ—&-[lam + (A 4+ A9)] e

= — (A + )yt (2.27)

Eq. (2.27) is solved by the method of characteristics [36]. Assuming the characteristic
function

7' (A, 4%) = exp

> Cmn(t)i’”(—i*)”] : (2.28)

where C,,,(t) are the coefficients to be determined, one arrives at the set of differential
equations for C,,:

Cio = (iw —7)Cio + 7Co1 (2.29)
Cor = (=i —7)Co1 + 7Clo , (2.30)
Ca0 =2(i — 7)Cap — (1 — C11) (2.31)
Ci1 =29(i — C11) +29(Coz + Coo) (2.32)
Coy = —=2(iw + 7)Co2 — 97 — C1) . (2.33)

Analytical solutions for all initial conditions are conveniently listed in Appendix A.

3. Two oscillators in an Agarwal bath

In this section, we apply the quantum characteristic functions introduced in the pre-
vious section to a system of two coupled harmonic oscillators in an Agarwal bath. Our
focus is to derive a set of general equations for the time evolution of the Gaussian
wavepackets with arbitrary initial means and variances.

From the master equation for the reduced density matrix for the two oscillators one
can derive an equation of motion for the characteristic function (4,4}, 42,45,1):

8){ .4 ax s A% aX
% + :Z [(mm, 07/1, + 104; o

1% (3}{ 6)( — *\2
+/(/L+/u,~)<a)yi+w>+vn()»,+/1,-)x]

0 0 9 0
i (4 yris (=L 4 —0. 3.1
1J<2a;.1+ 1%)“”(%&* 1&);)% G.1)
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We assume that the characteristic function has the form

12502, 05, 0) = exp | > Comua (=21 25(=03)"| - (3.2)
mnkl

The Gaussian wavepackets are obtained by restricting m+n+k+/ < 2 in the summation
over m,n,k,[. Aside from the first- and second-order moments introduced for each
individual oscillator, four more cross moments, namely, Cio.01, Co1.10, Ci0,10, and Co1.01,
are added to account for cross correlations of the two oscillators. The second-order
terms in the exponent of Eq. (3.2) can be put in a matrix form:

—Ci,00  2Co200 —Cio01  Cio0 A

1, . . 2C000 —Cioo  Cioio —Ciom A7

S Gt 2 5 ha) L (33)
—Cio01  Coror  —Coo11 2Co0,02 /2
Cio,io —Cor,io 2Co0,20  —Coo,11 7

One can also write the second-order exponent in the form
1
E(ﬂff AR IMOR XK )T, (3.4)

where the new basis is related to (A7 4 43 Z)T by

;Llle % % 0 0 )»1
i —L L0 o]
Al 7o o ¢ 1|4 (3:3)
2 2 2 2
7 0 0 —-Lf L)\A%
and M is a real symmetric matrix
o Vi
M= (3.6
VLo on
with
C20,00 + Co2,00 — Ci1,00 1(C20,00 — Co2,00)
vi=2( : (.7
1(Ca0,00 — Co2,00) —Co2,00 — C20,00 — Ci11,00
Co0,20 + Coo,02 — Coo, 11 i(Coo,20 — Co0,02)
=2 (3.8)
i(Coo,20 — Coo,02) —Coo,02 — Coo,20 — Coo, 11
and

v < C10,10+Co1,01 —Cl10,01 —Cor1, 10 1(C10,10—Co1,01 + Cr0,01—Co1,10) )
2= .

i(C10,10—Co1,01—C10,01 + Co1,10)  —C1o,10 — Cot,01 — Cro,01—Co1,10
(3.9)



Y. Zhao, G.H. Chen/ Physica A 317 (2003) 13—-40 21

The corresponding Wigner characteristic function Xw(ﬂul,/l’f,/lz,};) can also be written
in a matrix form

1 4 -
1NN, 09, ) = exp | =5 (U Ay 23 AW UL A 7 )t (3.10)
where the matrix W
W=I-M (3.11)

with / the identity matrix.
Various operator averages can be calculated from the first and second moments, for
example, for the first oscillator, one has

{ar) = Cor00 » (3.12)
(a}) = C10.00 , (3.13)
(a7) =2Co2,00 + (Cor.00)” » (3.14)
(@f®y =2C20,00 + (Cr0,00)* » (3.15)
{alar) = Ci1,00 + C10,00Co1,00 (3.16)
similar relations exist for the second oscillator; and for cross correlations:
(a}az) = Cr0.00Con.01 + Cro.01 » (3.17)
(@Yar) = Co1,00Co0.10 + Cor.10 » (3.18)
(a}a}) = C10,00Co0,10 + Cio,10 » (3.19)
(a1az) = Cot,00Co0,01 + Coro1 - (3.20)

Equations of motion for the moments can be derived from (3.1). The first-order
moments obey four coupled differential equations:

Co,00 = (i® — 7)C10,00 + 7Co1,00 + i/Co0,10 » (3.21)
Cot.00 = (—i®w = 7)Cot,00 + 7C10,00 — i/Coo01 » (3.22)
Coo,10 = (i — 9)Coo,10 + 7Co0,01 + iJC10,00 » (3.23)
Coo,01 = (—iw — 7)Coo,01 + 7Co0,10 — i/Cor,00 - (3.24)

Egs. (3.21)—~(3.24) obey the Ehrenfest theorem which expresses a formal connection
between the time dependence of expectation values of canonically conjugate variables
and the Hamiltonian equations of classical mechanics:

d
T (Cro,00 + Cot,00 + Coo,10 + Coo,01)

=i(w 4+ J)(Cr0,00 — Co1,00 + Coo,10 — Coo,01) - (3.25)
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Second-order moments including the cross moments follow:

C20.00 = 2(iw — 7)Ca0,00 — (7 — Ci1.00) + i/Cio,10 » (3.26)
Ci1,00 = 29071 — Ci1,00) + 27(Coz,00 + C20,00) + i/ (Cor.10 — Cro01) » (3.27)
Coz.00 = —2(i® + 7)Co2,00 — 7(71 — Ci1,00) — i/Coro1 » (3.28)
Cio,10 = 2iwCio,10 + 2/ (Ca0,00 + Co0.20) + 7(Cro.01 + Cor,10 — 2C10,10) »

(3.29)
C10,01 =1J(Coo.11 — Ci1,00) + (Cor,01 + Cio,10 — 2Ci0,01) » (3.30)
Cor10 = —iJ(Coo.11 — Ci1.00) + 7(Cor.01 + Cio.10 — 2Co1.10) » (3.31)
Cor,01 = —2iwCor,01 — 2/ (Co2,00 + Co0.02) + 7(Cio.01 + Cor.10 — 2Co1,01) »

(3.32)
Co0.20 = 2(iw — 7)Co0,20 — 7(71 — Co0,11) + iJC10,10 » (3.33)
Coo.11 = 29(71 — Co0.11) + 29(Co0.02 + Co0.20) — i/ (Cor.10 — Cio.01) » (3.34)
Coo.02 = —2(iw + 7)Coo,02 — 7(i1 = Coo,11) — iJCoy,01 - (3.35)

For a state with initial zero first-order moments, the dissipative dynamics and the prop-
erties of the Gaussian density matrix as a function of time are completely determined
by the above ten coupled equations.

An inseparability criterion based on the combined variance of a pair of Einstein—
Podolsky—Rosen (EPR) type operators was proposed by Duan et al. [8] for continuous
variable systems. A maximally entangled state of continuous variables can be written as
a co-eigenstate of a pair of EPR type operators resulting in a zero combined variance
of the two operators [37]. However, for any separable state, a lower bound exists to
the combined variance of the two EPR type operators. The separability criterion of
Duan et al. can be expressed conveniently in terms of the second-order moments as
follows. Consider two EPR type operators:

h=rq +r'qy, (3.36)
b=rpi—r"'pa, (3.37)
where 7 is a nonzero real number, and the operators ¢; and p; (i=1,2) are defined as
V2gi=a; +a , (3.38)
V2pi=a;—al . (3.39)

The sufficient criterion for inseparability is that the variances of the operators @ and ¢
satisfy

(AGY?) + (ADY) <2 4772 (3.40)

For Gaussian states (as the case of two harmonic oscillators in an Agarwal bath
investigated in this section) the condition (3.40) is also necessary only if the parameter
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r is chosen in a particular way [8]. For general r, condition (3.40) is not necessary.
The variances of the operators # and ¢ can be written in the second-order moments:

R 1 _
((Ah)?) = 7 (" + 772 + 7 (Coz,00 + C20,00 + Ci1,00)

+77%(Co0,02 + Co0,20 + Coo,11)
+ Cot,01 + Cio,10 + Cio,01 + Cot,10 (3.41)

. 1 _
((AD)) = 5 (* +772) = *(Coz,00 + C20,00 — Ci1,00)

—1r72(Co0,02 + Co0,20 — Co0,11)
=+ Co1,01 + Cio,10 — Cio,01 — Cot,10 - (3.42)
Therefore their sum is
((AG)*) + ((AD)*)
=r* + 72+ 2r*Cii,00 + 2r *Coo,11 + 2(Co1,01 + Cio,10) - (343)
The sufficient condition for inseparability is then
1 . N _
S LR + ((AD2) = (2 +772)]
=r*Ci1.00 + 7 2Co0.11 + Cor.01 + Cr0,10 <O (3.44)

For r =1, this requires

5= 3 LA +{(A8) ~ (2 4 r )y

= Cio,10 + Co1,01 + Ci1,00 + Coo,11 < 0. (3.45)

This means that the system is inseparable whenever the sum of the four second-order
moments, Cio,10 + Cor,01 + Ci1,00 + Coo,11, 1s not positive. It is also interesting to look
at the difference between the two variances

((AR)*) — ((ADY)
=2r*(Co2,00 + C0.00) + 27 *(Co0.02 + Co0.20) + 2(Cro.01 + Cot.10) - (3.46)
If » =1, then one half of this difference is
1 . .
=5 [((AR)*) — ((AD))]|r=1

= 20,00 + Co2,00 + Co0,02 + Coo,20 + Cro0,01 + Cor,10 - (3.47)

So it turns out that while S is the sum of four out of the ten second-order moments
defined in Eq. (3.3), 4 is the sum of the remaining six second-order moments. From
the set of coupled equations for second moments one can derive equations of motion
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for S in Eq. (3.45) and 4 in Eq. (3.47):
S=—29(S — 271) + 294 + 2iJ (C20,00 — Co2,00 + Co0,20 — C00,02)
+2i(Cro,10 — Cor,01) » (3.48)

A= =294+ 2y(S — 21) + 2iJ(C1o,10 — Co1,01)

+ 2iw(C20,00 — Co2,00 + Coo,20 — Co0,02) - (3.49)

It is obvious that S asymptotically goes to 27 at long times, and 4 to zero. Adding
the above two equations,

S+ A =2i(J + ©)(C0.00 — Co2.00 + Co0.20 — Co0.02 + Ci0.10 — Cor.01) -
(3.50)

Now we are in a position to look at some examples. One of the most frequently
mentioned example in quantum teleportation is the two-oscillator squeezed state which
was also utilized in the experimental realization of continuous-variable teleportation
[4]. If the initial state is the highly entangled two-oscillator squeezed state

e—s(afa;—alaz)|0> (351)

with s a real number and |0) the vacuum state for both oscillators, the characteristic
function at time ¢ =0 has the form

X(/’Lla )viky j~23 /’L;a 0)

1
=exp | — sinh 2s(Ai/> + 2533) — sinh? s[4 + | 2] (3.52)

Details of the derivation of Eq. (3.52) are given in Appendix B. Therefore, at £ =0
there are only four nonzero second moments, namely,

Ci1,00(0) = Coo,11(0) = sinh” s, (3.53)

C10,10(0) = Co1,01(0) = —1 sinh 2s . (3.54)
The pure state =@ —@@)|0) at ¢ =0 has an S value

S =2sinh’s —sinh2s =e > — 1. (3.55)

The sufficient condition for inseparability (3.45) is satisfied at t =0 for s > 0. This is
not true, however, for s < 0. One needs to seek another pair of EPR type operators.
We pick

0 = rgy — r_lqz s (356)

o =rpi+r'ps. (3.57)

For this pair of EPR type operators the sufficient condition for inseparability is then
1 R R _
SLQ@P) + (A0 = (2 +772)]

=r2Ci1.00 + 7 2Co0.11 — Cor.01 — Ci0,10 < O . (3.58)
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Fig. 1. The product of S and D (solid) and S (dashed) are plotted as a function of wt for s = %, 7=0.01,

J =0, and y/o = 0.1. The system remains inseparable until ws = 17.34.

For r =1, this requires
D = Cy1,00 + Coo,11 — Cio,10 — Cor,m <0, (3.59)
which shows the state with a negative s is also inseparable.

In Fig. 1 we plot both the product of S and D (solid line) and S (dashed line) for

a case s= 5, n=0.01, J=0, and y/w=0.1. Most of the time S and D are alternatively

negative although there are some time intervals within which both are positive. S and
D cannot be negative at the same time because that would falsely imply

(@la) + (abaz) = Ci1,00 + Coo11 < 0. (3.60)

Since either one of the two being negative is sufficient to label the system as insep-
arable, the two-mode squeezed state is entangled for all the time interval plotted in
Fig. 1 (as will be shown in Fig. 2 the system remains inseparable until wt = 17.34).

The Peres—Horodecki condition for inseparability concerns the positivity of partial
transpose (PPT) of the density matrix. When it is applied to Gaussian states in a
two-oscillator system, it can be written in the form [10]

E() <0, (3.61)
where the auxiliary function Z(z) is defined as
E(t) =Det[l — V] Det[I — V3]
+(1 — [Det[V12]))* = Te[(I — V1)KViK(I — V2)V K]
— Det[l — V] — Det[l — V] (3.62)

with the matrix K

K 0! 3.63
“\-1 0/ (3:63)
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Fig. 2. Z(¢) as a function of wt for s=1/2, 7=0.01, J =0, and y/w =0.1. The system remains inseparable
until wt = 17.34.

The Peres—Horodecki condition is both necessary and sufficient for inseparability for
the system of two harmonic oscillators in an Agarwal bath (for which the wavepacket
is Gaussian) as shown by Simon [10]. Since the determinant of / —M can be written as

Det[/ — M]=Det[l — V] Det[I — V]
+Det’[Vi5] — Tr[(I — VKV K(I — V2)VHK] (3.64)

the inseparability condition is equivalent to
Det[M — I+ 2|Det[Vy;]| — Det[Vy —I] —Det[V, —I] > 1. (3.65)

In Fig. 2 we plot Z(¢) for the same case as in Fig. 1 with s =1/2, 7=0.01, J =0.
The system is inseparable until wt¢ reaches about 17.34, which confirms our earlier
conclusions drawn from Fig. 1 using the criterion of Duan et al. At this low temperature
the system is inseparable for most of the time leading to thermal equilibrium.

In Fig. 3 we plot Z(¢) for a high temperature 7 = 0.5 with the rest of parameters
unchanged from Fig. 2. Thermal fields render the system separable at earlier times as
the temperature increases. The asymptotic values of Z(¢) at long times also increase
rapidly with the bath temperatures. This can be shown by substituting the asymptotic
form of the M matrix

M(00) = diag(27i + 1,27 + 1,271+ 1,271 + 1) (3.66)
into Eq. (3.62) which leads to
E(o0) = 167%(1 4 7). (3.67)

This means that for any finite temperatures it takes a finite amount of time to reach
the separable thermalized state from an initial two-mode squeezed state, while for zero
temperature the initial two-mode squeezed state will always stay inseparable until #=oc.
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wt

Fig. 3. Z(¢) as a function of wt for s=1/2, 7=0.5, J =0, and y/w =0.1. The system remains inseparable
until wr = 2.50.
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Fig. 4. In the main figure, wtsp is plotted as a function of 77 for y/w = 0.1 and s = 1/2. In the inset, wisep
is plotted versus 1/7.

Starting from the two-mode squeezed state, the original inseparable state will become
separable at time #,, which depends sensitively on the bath temperature 7. In Fig. 4
we display wts, as a function of 7i. At zero temperature #., =00, while #., approaches
0 as T tends to oo. In the inset of Fig. 4 wt,, is plotted versus 1/ shows t, at high
temperatures asymptotically goes to zero.

So far the pair of oscillators is decoupled (J = 0). In Fig. 5 we plot Z(z) after
adding a finite value of the coupling strength (J = 0.5) to the decoupled oscillators.
The upper panel corresponds to 7=0.01, s=1/2, and the lower panel, 7=0.5, s=1/2.
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Fig. 5. Z(¢) as a function of wt for s =1/2, J =0.5, and y/w =0.1. Two temperatures are plotted, 7= 0.01
(upper panel), and 77 = 0.5 (lower panel).

It is interesting that for finite J and at low temperatures the system can go from being
inseparable to being separable and again back to being inseparable. While for the J =0
cases, Z(t) is an even function of the squeezing parameter s, for nonzero J’s, Z(t)
changes as s switches signs. In Fig. 6 we plot Z(¢) for s = —1/2 with the rest of
parameters identical to those in Fig. 5. For both temperatures 7 = 0.01 and 0.5, Z(¢)
differs from that in Fig. 5.
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Fig. 6. £(t) as a function of wt for s=—1/2, J=0.5, and y/w=0.1. Two temperatures are plotted, 7=0.01
(upper panel), and 77 = 0.5 (lower panel).

4. Dissipation via semigroup

Apart from the on-site Agarwal-type dissipation discussed in Section 3, various
Lindblad-type dissipation mechanisms can occur in the system of two coupled oscilla-
tors. For example, one can use the Hermitian operators a}Lal + agag, and aJ{az + alal
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as the Lindblad dissipation operators:

LSp——ﬁ[Za al,[Za ai, p H [a a2—|—a2a1,[a a2—|—a2a1,p]] “4.1)

i=1,2 i=1,2

where f§ and ¢ are the coupling strengths.
The equation of motion for the quantum characteristic function y(4, 42, A7, ;) will
acquire additional terms from the f-term in Lg:

, 0 ., 0 , 0 o\
2ﬁ</hla/ll_/blw>( aA ZGA)A ﬁz(lﬁi ’(%)'{'

(4.2)

On the other hand, the ¢-term in Lg contributes

o[22} 2 2
a;* EYN R azz X
o (o . K 2
¢ () o (am )] :
o (. 0 2
20 [% (a)*a( _akfﬂ

o [ o [0
) (L) 4
X [a;; (azl A‘) T <az2 2” X (4.3)

Both the fi- and ¢-terms conserve the total boson number and the system energy, i.e.,

[Z afai,lflxwo] =

i=1.2

aIag + aial, Z a:-[a,-] = [a}Laz + aial,h}two] =0. (4.4)
i=12

Addition of the Lindblad-type dissipation Lg, however, violates the Ehrenfest the-
orem. Eq. (3.25) ceases to stand in the presence of Lg, and the time derivative of
<a]1L +a; + ag + ay) will then depend on (aI +a; + ag + ay), which signals the violation
of translational invariance of the two-oscillator system. In general, approach to thermal
equilibrium is not guaranteed by the Lindblad-type dissipation.

In this section we will focus on the pure dephasing f-term

- p [Z a;rai, lz a:-fa,',pH , 4.5)

i=1.2 i=12

which, by construction, conserves the total number of the bosons on the two
oscillators. It will become apparent that this mechanism of pure-dephasing allows
constructions of DFSs which remain unitary during the time evolution. Following
the dissipative master equation, the first-order moments obey four coupled
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differential equations:

Ci0.00 = (i — B)Cio,00 + i/Co0.10 » (4.6)
Cot,00 = (—iw — B)Cor,00 — /Coo.01 - (4.7)
Coo,10 = (iw — B)Coo,10 + iJCi0,00 » (4.8)
Coo.01 = (—iw — B)Coo,01 — i/Co1,00 - (4.9)

Adding the above four equations confirms the violation of the Ehrenfest theorem for
nonzero f3. Since the first-order equations are self-contained and homogeneous, for an
initial state with zero first-order moments, all first-order moments will remain zero for
all times. The second-order moments follow:

C20,00 = 2iwCa0,00 + i/C1o,10 — 4BCa0,00 — B(Cio,00)° (4.10)
Ci1.00 = iJ(Cor.10 — Cro.01) + 28C10,00Co1.00 5 (4.11)
Co2,00 = —2iwCo2,00 — /Co1.01 — 4BCo2,00 — B(Cor,00)° (4.12)
Cio,10 = 2iwCio,10 + 2/ (C20,00 + Co0.20) — 4BCi0,10 — 2BC10,00Co0.10 »

(4.13)
Cro.01 =i/ (Coo,11 — Ci1,00) + 2BC10,00Co0.01 » (4.14)
Cor.10 = —iJ(Coo.11 — Ci1.00) + 28Co1.00C10.00 » (4.15)
Cot,01 = —2iwCor,01 — 2iJ(Coz.00 + Co0.02) — 4BCor.01 — 2BCo1.00Co0,01 »

(4.16)
C20,00 = 2iCoo,20 + iJC10,10 — 4BC20,00 — B(Coo.10)° (4.17)
Coo.11 = —iJ(Cor,10 — Cro,01) + 2BCo0,10Co0,01 - (4.18)
Co0,02 = —2iwCoo,02 — iJCo1,01 — 4BC0.02 — P(Co0,01)” - (4.19)

Taking into account the first-order equations, the equations for second-order moments
can be mapped to equations of operator averages:

& fafa) = ~is(lafas) — {alar)) (4.20)
d d
4 (day) = -4 (dlay) , (4.21)
% (alar) =i ((d}ar) — (alan)) , (4.22)
d d
dr <a§al> =74 (aJ{ag) ) (4.23)
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% (aJ{aD = 2ia)<a]1Lag> + iJ((a}Lz> + (ay}) - 4ﬁ<a1ra;> , (4.24)

d d .

g (@) =5, (ajd)", (425)

d . .

5 (@) = 2(iw — 2B)(al?) +i2J (alal) , (4.26)

d 2\ i T2\ %

a (a1) = ds (ai")", (4.27)

% (@) =2(i0 — 2B) (a}?) + 2 (aldl) , (4.28)

d 2\ g T2\ %

3 () = g () (4.29)
Some of the operator averages are not dephased by the fS-term:

d? ;

32 () — (dar)) = ~47((afar) — (alar)) . (430)

d2

52 (ala) — (@lar) = ~47((aar) — (a]a)) . (431)
while others are not modulated by the J-term in H o

d .

5 (al®) = (al*)) = 2(iw — 2B)((al?) — (), (4.32)

d .

3 (@) = {al)) = =2(io + 2B)((a3) — (a1)) - (4.33)

We can construct DFSs with the f-term being the sole dissipative mechanism. The
corresponding Hamiltonian for the system plus bath can be written as

Hsp=Huwo®Ip +Is@Hg +F B, (4.34)

Hy =" axblby , (4.35)
k

F=Y dla, (4.36)
i=12

where B is the bath operator, /g (I5) is the identity operator on the physical space of
the bath (system or two oscillators), and Hy is the bath Hamiltonian. According to
Ref. [38], the necessary and sufficient condition for the DFS is that (i) all the basis
vectors in the DFS are the degenerate eigenvectors of F; and (ii) the evolution of
the system is confined within the DFS once it starts inside, or in another word, H o
leaves the system invariant within the DFS. Any number states of the two oscillators
are the eigenstates of F , and the system Hamiltonian H wo commutes with the total
occupation number operator or F. Thus, the number states of the two oscillators with
the total occupation number fixed form one of the DFSs. This can be made clear by
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introducing the Schwinger boson representation. The two oscillators in Hyo can be
viewed as two Schwinger bosons which represent spin operators [39]

St =ala,, (4.37)

S~ =dla, (4.38)
1

§F = E(a{ ay — alay) . (4.39)

The spin magnitude S defines a physical subspace within which the dynamics are
unperturbed by the global dephasing (the f-term):

28 =dla, +dla; . (4.40)
In the Schwinger boson representation, the system Hamiltonian is written as
Hiwo =20S +J(ST+857). (4.41)

The spin raising and lowering operators S* and S~ change only the projector of the
total spin but not the amplitude. Within the fixed S subspace, the system evolves
under the unitary transformation of H., only. This is also demonstrated by the first
four equations in the set of equations for operator averages, namely, Eqgs. (4.20)—(4.23),
as well as Egs. (4.30) and (4.31), where the dissipative § term is not involved in the
dynamics. Qubits within the DFS can be used for computation without the risk of being
corrupted by noise. We may also construct the DFS for other types of dissipation, for
instance, the ¢ dissipative term.

We are also concerned with the separability of the two-oscillator system under the
fB-term pure-dephasing. We shall employ the number-state representation of partial
transposition. The Peres—Horodecki criterion is then invoked to determine its sepa-
rability. At =0 the density matrix for the initial the two-mode squeezed state (3.51)
has a form [41]

p(0)= —

cosh® s

Z (—tanh s)"™"2|ny, ny) (ny, ny| . (4.42)

ny,ny

In the Schwinger—boson representation, S can take only integer values (as opposed to
half-integers) in states |n,n). Since the projected portions of the two-mode squeezed
state onto the subspaces labeled by the integer S only evolve within those same sub-
spaces and remain unaffected by the f-term, only phase coherences between the dif-
ferent S states are dissipated during the process. An expression for the density matrix
for arbitrary ¢ can be obtained for the case of J =0 as follows. Assume that in the
interaction picture the density matrix read

1 ny+n
5 E Oy, () (—tanh s)" "2 |ny, ny ) (o, na| (4.43)
cosh” s o

pr(t) =

The parameters oy, ,,(¢) are constrained by

Gy (1) = —4B(n1 = 120y (1) 5 (4.44)
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which follows from

% =—p [ Z ajal-, [Z a?a,-,p;H . (4.45)

i=1.2 i=12

Therefore,
Oy, (1) = €~ 4P =m)'t (4.46)
The system will asymptotically evolve into
1
)= — tanh s)**|n, n)(n,n| , 4.47
pi(c0) coshzs;( )" n,m) (n, | (447)

which is apparently separable from the definition of separability (1.1) and the fact that

o0
> (tanh5)*" = cosh’s . (4.48)
n=0
But for any finite time ¢, the story is quite different. To see this, one resorts to the Peres—
Horodecki criterion, also called the partial transposition criterion, which is a sufficient
condition of inseparability in general, and a sufficient and necessary condition for
inseparability for the special case of Gaussian wavepackets of two harmonic oscillators.
If the bipartite system is composed of subsystems A and B, the partial transposition
of a density matrix p on the subsystem B is defined as

P = (i klpli i D)okl - (4.49)
ijk]
Under partial transpose of the second oscillator (labeled by B),
1 >
Tg __ —4pB(ny—np)t ny+ny
= e —tanh s ny,ny)(ny,myl . 4.50
P coshzsz ( Y g, na) (g, ny (4.50)

np,ny

If the squeezing parameter s > 0, one finds for a finite ¢, and |y) = (|0, 1) + |1,0))/v/2

T —4B tanh
WP O = (0. 11+(1L0DE- (0, 1)+{1,0) =-S5 <0, @s1)

cosh? s

Therefore for any finite ¢ the density matrix p(z) is inseparable. A similar conclu-
sion can be drawn for s < 0. At f = co, however, the argument breaks down because
inequality (4.51) no longer stands.

5. Discussions

There is widespread interest in quantum dissipation across many disciplines [18,22,
30,42]. Compatibility between quantum mechanics and Markovian motion, which is
manifested by the Lindblad exclusion principle of complete positivity, translational
invariance, and approach to canonical equilibrium, lies at the center of quantum
theories of dissipation. In this paper we study dissipative dynamics of two coupled
harmonic oscillators in two types of baths with special attention paid to the separabi-
lity of the bipartite system and construction of DFSs suitable from quantum compu-
tation. The normal-ordered quantum characteristic function is utilized to help probe
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the dissipative dynamics of the two oscillator system. In the case of the Agarwal
bath exact dynamics are derived with the evaluation of the time-dependent covariance
matrix. Separability of the bipartite system is studied with the help of the covariance
matrix. For the pure-dephasing Lindblad-type bath equations of motion for first- and
second-order moments are derived to elucidate the dynamics of the DFSs labeled by the
spin magnitude S in the Schwinger—boson representation. Separability of the uncoupled
two-oscillator system (J=0) under influence of pure-dephasing is also investigated with
the Peres—Horodecki criterion.

While dissipation is well described in classical mechanics by the Langevin or the
Fokker—Planck equations, a quantum description of dissipation has been a challenging
task. The choice of baths remains at the heart of a successful dissipation theory. The
Agarwal bath used in this paper has the appearance of the perfect bath from the
physical perspective: it preserves the translational invariance of the system, and delivers
the eventual thermal equilibrium to the dissipative process. For most initial conditions
and moderate-to-high temperatures density matrix positivity is also supplied by the
Agarwal bath. Pathology of the density matrix does appear, and its occurrence is usually
accompanied with low temperatures, and will be studied in detail elsewhere [40]. In
contrast, the Lindblad-type baths are designed to preserve density matrix positivity at
the sacrifice of other desirable traits of the dissipative master equations. If the Lindblad
dissipation operator is chosen as the system Hamiltonian a;ral + alaz, dissipation is
added to the system dynamics in forms of pure dephasing which does not preserve
translational invariance as is evident from adding the first-order equations. Applications
of Lindblad-type baths are therefore restricted only to systems other than extended
ones. The pathology of dissipative baths is attributed to the failure of a Hamiltonian
description of dissipative systems and a lack of proper quantization procedures.

The dynamics of a coupled pair of harmonic oscillators in a dissipative bath have
been an important problem in physics and chemistry. An enormous amount of inter-
est has recently emerged in quantum information and computation regarding infinite-
dimensional systems, also known as systems of continuous variables, of which a pair of
harmonic oscillators is an important paradigm. Our treatment here pays ample attention
to the construction and characteristics of dissipative baths in contrast with other work
[11-13]. Gaussians states evolving under the Agarwal bath are adequately described
by the normal-ordered characteristic functions. Our approach can be readily extended
to tripartite systems of harmonic oscillators considering that tri-mode entanglement
has come to attention lately with the advent of experiments of continuous variable
teleportation [4].

The Peres—Horodecki criterion, also called the partial transposition criterion, has
been instrumental in the separability studies of multipartite systems. In this paper we
have successfully applied Peres—Horodecki criterion to the bipartite system of twin
oscillators. The separability criterion of Duan et al. which utilizes a pair of EPR-type
operators is compared with the Peres—Horodecki condition with good agreements. From
an initial two-mode squeezed state the system of two oscillators takes less time to
become separable at higher temperatures in an Agarwal bath. When the two oscillators
are coupled with a direct exchange J-term, the system appears to be able to regain
inseparability after spending some time being separable.
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In quantum communication maximally entangled states are used for transmitting in-
formation between two remote parties. Interactions with the environment inevitably
render those states mixed even though they may remain entangled (inseparable). A
procedure first proposed by Bennett et al. allows to distill maximally entangled states
from the mixed entangled states by using only local operations and classical communi-
cation [43]. However, not all mixed entangled states are distillable. Nonpositivity of the
partial transposition is also a necessary condition in general for distillibility, and is a
necessary and sufficient condition for distillibility in particular for distillibility of 2 x 2
and 2 x 3 systems. Gaussian states of two oscillators are either separable or distillable,
however, a Gaussian state with PPT has been constructed recently not to be distillable
using a subtraction method when there are two oscillators on each of the two subsys-
tems [44]. This calls more detailed investigations of multipartite Gaussian systems.
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Appendix A. One oscillator in an Agarwal bath

For one oscillator in an Agarwal bath, the analytical solutions to the equations of
the coefficients C,, for arbitrary initial conditions are given below. The first-order
coefficients are

Cio= ) e VI () — (/2 — ?)
v

A , .
+ 20V g 4 /32 — a?), (A1)
Y
Cor = A1e=0FVP =0 | fre=(mViP—omr (A2)
The second-order coeflicients are
—2pt

Ci=it om0 s [~ B’ + By cosh(211/7 — ?)

+2i(B, — B3)ywsinh? (11/72 — @?)

+ (B + B3)yV/ 72 — w?sinh 21/ 2 — w?)], (A3)
—2yt
Cop = 207 o) © ) [cosh(2t/7? — w?)(—iB1yw + B2)y* + B3y? — 2 B3)

12 — w? sinh(2¢4/92 — w?)(yB1 — 2iwB3)
+iB1yo — (B2 — Bs)] , (A4)
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e—2yt

Cy = [cosh(2¢+/72 — w?)(iB1yw + By)* + B3y — 200°By)

2(* — ?)
+ v/7? — w? sinh(2t+/y? — w?)(yB1 + 2iwB;)
—iBiyw +7*(B; — B3)] - (A.5)

Here A’s and B’s are the constants to be determined by the initial conditions. If initially
the primary oscillator is in a coherent state with a displacement o [45], i.e.,

p(t=0) = |o)(a, (A.6)
then
Bi=-n, By,=B3;=0. (A7)

The finite temperature solution for y(4,4*,¢) has the form (in the notation of Savage
and Walls [46])

7 (A, A%, 1) = exp[Aua™ — var)

— 2F (o — va*) — a(2Puv + 2P o) — Al AP (uf + 0* = 1)].

(A.8)

Here u and v are given by

—p—t 4 e—hit —p—t _ e it
u=S T ,E c . (A.9)
2 e — My

—H—t _ o=t

p=pS ¢ (A.10)
H—— Hy

with

U+ =7y /92 — 0?2 (A.11)

Appendix B. Characteristic function for the two-oscillator squeeze state
For the two-oscillator squeeze state the normal-ordered characteristic function reads
by definition
X(//Lla )VTa /125 /,L;a 0)

_ Tr[efs(a;ra; —araz) |0> <0|es(alTa; 7a1a2)e/11a}\ ef/lf‘al eﬂvza; ef).;ag] ) (B 1)

We first make use of the identity [41]

T tay+1)
es(a;'a;—alaz) — el"al'aZT e—ln(coshs)(af(zlﬂz2 2 e Taa , (B.2)

where I =tanhs. Since |0) is the vacuum state for both oscillators, i.e.,

e—ln(cosh s)(afa|+a;az+l)e—Fa|az|O> _ e—ln(coshs)|0> , (B3)
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one arrives at
\ _ _ T gx T gx _r, bt
X(;Lla )VT, /12, /L>2r<’ 0) —e 21n(coshs)<0‘e Falazeilal e A ale).zaz e h e Taja; ‘0> .

(B4)

We would like to move the two exponential operators ¢h4l and ¢4 to the left of the
double annihilation operator e~ T“1%. We need to apply to Eq. (B.4) three times the
identity

elef = M-8l (B.5)
provided that

[[4,B],4] =[[4,B],B]=0. (B.6)
It then follows from Eq. (B.4) that

221,47, 42,25, 0)

_ ) _ T ok o it

—e 2 ln(coshs)<0|e Fmaze I"alazeﬂ.za2 e Mg V5 aa TI'ala, |0> (B7)

_ 6721n(cosh s) <0|efl"/llaz e).zag efl"izal efl"alazefif‘al efi.;‘azefl“a}tag |0> (BS)
_ S i — _ _ g _g* _r,t T

—e 21n(coshs)<0|e rAlAze F/haze F).zale Famze A alg—A g I'aja, ‘0> ) (BQ)

We are now left to evaluate

(0]e* 1P mg—Tmme=Talal ) (B.10)
with

o =Ty — I, (B.11)

B =Tk — . (B.12)

Expanding all four exponential operators, one has

<0|ex*a1+ﬂ*azefl"a1azefl"afa§ |0>

o9}
=(0]e* el e N " (—I')[n,n) (B.13)
n=0
war B*a (— F)1+nn|
= (0fe* &P 22%; TCET ln—1Ln—1) (B.14)
n

(@ )"(B*)" o= ( F)’+ﬂ
|3 3 R S S

m=0 m’'=0

(e

o N ()" (B Sy (D) !
:Z Z a\/W ZZ l'(l’l ;l 5m,nflém',nfl (B16)

m=0 m'=0

—ILn— 1> (B.15)
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B o) . n - O(*ﬂ* n—I n!

B ’;(—r) ;(_1) ( r ) IN(n—D)(n— 1) (B.17)

_ ) L (WI{;*> (Fz)n ) (B.18)
n=0

where L,(x) is Laguerre polynomial of order n [47,48]. The series in (B.18) is just
the generating function of Laguerre polynomials:

o0
gz)=(1—-2)""e D =N "L,(x)", 2| <1. (B.19)
n=0
Therefore
*a1+p ay ,—Tara _ratal _ O!*ﬂ*r
<0|ea 1 26 1420 1 2|0> = 1—12 exp(l 12 . (BZO)

where the prefactor (1 — I'?)~! exactly cancels out the prefactor e~2!n(coshs) jp
Eq. (B.7). Substituting «* and f*, one finally obtains

2(A1, A5 72,43, 0)
=exp (—Fﬂ,liz — i@;) (B.21)
moxp [~ + )~ s+ ) (B22)
where the coefficients can be simplified as
% = %sinh 25, (B.23)
% — sinh’s . (B.24)
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