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Excitation and dissipation of interacting many-electron system
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Abstract

A new formalism based on the equation of motion for the reduced single-electron density matrix has been developed
to simulate the dissipative interacting many-electron systems. The electron correlation is treated within the random
phase approximation. The Markovian bath is adopted. The resulting nonradiative dissipative term is of Lindblad-like
form. The formalism is applied to a butadiene molecule embedded in a liquid or solid environment, where the valence
electrons are taken as the system and the nuclear vibrational modes as the bath. Various excitations are found decaying
differently, e.g., different absorption peak widths are observed. © 2002 Elsevier Science B.V. All rights reserved.

Quantum dissipation is a subject of wide spread
interest in many fields of physics, chemistry and
materials science. Various quantum dissipation
theories (QDTs) have been developed to investi-
gate the dynamic properties of open systems. They
include the Bloch—Redfield theory [1-5], Fokker—
Planck equations [6-12], and Lindblad semigroup
formalism [13]. The key physical quantity in all
these QDTs is the reduced density operator pg of
the system, whose dynamics is described by the
Liouville-von Neumann equation of motion,

d . i
=
where Rpg is the dissipation term whose form
differs for different QDTs [1-19]. Since the system
density matrix needs to be solved, the computa-

[ﬁvﬁs] +RﬁSv (1)

* Correponding author. Fax: +852-2857-1586.
E-mail addresses: yokojima@yangtze.hku.hk (S. Yokojima),
ghc@everest.hku.hk (G.H. Chen).

tional costs of all the above methods are quite
expensive, and the calculations have been limited
thus to the model systems. Friesner and coworkers
[4] generalized the Redfield equation by decom-
posing the Redfield relaxation tensor, and as a
result, applied the Bloch—Redfield theory to much
larger systems. Recently Yan, Chen and cowork-
ers [20] proposed the phenomenological dissipa-
tion 7; and 7> terms in the time-dependent
Hartree-Fock (TDHF) equation of motion
(EOM) for the reduced single-electron density
matrix [21-23]. This new EOM may be used to
study the dynamic processes of the open systems
much larger than those of other approaches. The
resulting EOM is nevertheless not stable numeri-
cally, which causes the difficulty in actual imple-
mentation. Further, the parameters in the two
dissipation terms (77 and 7») cannot be determined
from the first-principles, and are to be determined
by fitting experimental results. It is therefore de-
sirable to seek an alternative or improvement so
that the dissipation terms can be determined from
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the first-principles and the numerical procedure is
stable.

We present here a new formalism to simulate
the electronic dynamics of open systems. Unlike
the existing QDTs [1-19], the new formalism is
based on the EOM for the reduced single-electron
density matrix while including nonradiative
quantum dissipation explicitly. The thermal bath
can be the nuclei of system and/or the environ-
ment. The traditional phenomenological pure
dephasing term in the EOM for the reduced sin-
gle-electron density matrix is replaced by explicit
quantum dissipation terms. These terms include
the electron—nuclei couplings and energy/material
exchanges with the environment. The new for-
malism can be applied to much larger systems
than before. To illustrate its validity, we apply
the new formalism to study the electronic dy-
namics of a butadiene molecule, with the nuclear
vibrational modes as the thermal bath. (For the
study of the molecular electronic relaxation in-
duced by vibrational modes, see, for example,
[18,24,25].)

Consider an electronic system surrounded by a
thermal bath. The total Hamiltonian Hy of the
system plus the bath can be expressed as

HT Zﬁs +HB +ﬁSB> (2)

where Hy is the system Hamiltonian, Hy is the bath
Hamiltonian, and Hsg describes the coupling be-
tween the system and the bath. Specifically

Hy = Zt,,c ¢+ 3 Z vyk;c c .crer — E(¢) - Zﬁi/cjcj.

ijk,l ij (3)

Here c,' (¢;) 1s the electron creation (annihila-
tion) operator for an orbital i. First and second
terms on the RHS of Eq. (3) are the hopping terms
and the electron—¢lectron Coulomb integrals, re-
spectively. The third term on the RHS of Eq. (3) is
for the interaction between the system and the
external electric field E(¢), and H;; is the dipole
matrix element between two orbitals 7 and j. With
the linear coupling approximation, the system-—
bath coupling Hsg is given by

OH
SB - Z aqmi 5qmsv (4)

where ¢, 1s the displacement of atom m along the
direction s. The bath term in the Hamiltonian Hy
is assumed to be harmonic and given as follows,

2
y _ pms 1
HB - £ 2Mm + E § Vm,sxntéqms(sqnta (5)

mn,s,t

where p,,, is the momentum component of the mth
atom along s-direction, V,,,, is the effective inter-
action between two atoms m and n, and M,, is the
mass of mth atom.

The EOM for the reduced single-electron den-
sity matrix p;(t) = Trg(TrB(ﬁ(t))cjc,«), where Trg
and Trg are the traces over the system and the
bath, respectively, is found as:

ih%ﬁy’(i) = Trs([FIs7 TrB(ﬁ([))]Cj«c[)
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where

. a
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)

Assuming an exponential decay for the nuclear—
nuclear correlation over the time

TrB(ehHB‘ DO, s € i (t "G mys, Pp)

t—1 o
~ eXp ( - W)TrB(éqmlsl 5qmsng), (8)

and that Jt is small enough (i.e., the Markovian
bath) and employing the random phase approxi-
mation (RPA) or the TDHF approximation [26],
we obtain the EOM for the reduced single-electron
density matrix p

ihp = [h, p| +[f, p]
i Vv vy v v
f%érZ(pKK +K'K'p —2K'pK"),  (9)
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fit) = =E(0) - iy, (11)

Oh;; % Bho
K.v. = i h pha, , 12
ij ; anv \/Zmev cot ( 3 )Qms? ( )

where f=1/kT, and w, and Q'  are the fre-
quency and the mth atom’s displacement along the
s-direction for the vth nuclear vibrational mode,
respectively. In the derivation, the nuclear-nuclear
correlation Trg(dgum s, 0qmys, Pp) 18 calculated by
assuming nuclear vibrational modes are in thermal
equilibrium at a temperature 7.

The detailed balance is not satisfied in Eq. (9).
The energy is exchanged among the excitations,
while the total number of the electrons is con-
served. The parameter ot can be determined from
the molecular mechanics simulation. Note that
although the dissipative term in Eq. (9) is of
Lindblad-like form, it has very different physical
meanings. Eq. (9) is the EOM for the reduced
single-electron density matrix p not the system
density matrix ps. Moreover, Kj; itself depends on
p through Fock matrix #; as in Eq. (12). It is
observed that the derivatives of ¢; with respect to
gms are much larger than those of v, and we thus
keep only 0¢/0q in the evaluation of 04/0g in our
calculations. To the first-order, Eq. (9) becomes

indp = (A, 6p] + [k, p ) + [, p")]

— %57: Z (0pK’K' + K'K"0p — 2K"pK"),

(13)
where p¥ is the ground state reduced single-elec-
tron density matrix in the absence of the dissipa-
tion term and the external field, and A is the
corresponding Fock matrix, i.e., Eq. (10) is eval-
uated at p,; = pfj(-)). We can show that all the
induced modes in Eq. (13) decay to the ground
state. As a result, it is numerically stable to solve
Eq. (13).

The excitation and subsequent relaxation of
1,3-butadiene upon the incidence of an external
electric pulse are investigated using the above
formalism. The butadiene molecule is embedded in
a liquid or solid matrix and is in thermal equilib-
rium with the matrix. The temperature is 7. The
Markovian bath approximation is thus justified

for nuclear-nuclear correlation. The PM3 Hamil-
tonian [27] is used for Hs and Hsg. As for the ge-
ometry and the bath Hamiltonian Hy, we found
that the PM3 calculation leads to the optimized
geometry and vibrational frequencies of butadiene
molecule that are quite different from the experi-
mental data [28]. It was reported that BLYP cal-
culation resulted in the optimized geometry and
vibrational frequencies that are in good agreement
with the experimental ones [28]. Therefore, in this
work we adopt the optimized geometry, vibra-
tional modes and vibrational frequencies cal-
culated by the BLYP method [29-31] with
6-311G(d,p) basis set [32]. The dipole matrix
element fi; is evaluated with the neglect of di-
atomic differential overlap (NDDO). The resulting
1,3-butadiene is placed in x—y plane as depicted in
Fig. 1. The electric pulse is expressed as E(¢) = E,
exp(—t/)* with 7= 0.1 fs, and its polarization is
along the x-direction. Eq. (13) is solved in the time
domain and ot = 0.1 fs is used. The absorption
spectrum can be obtained by Fourier transforming
the induced polarization P(r) = Tr(fidp(t)), and is
plotted in Fig. 1a. The first peak appears at 4.6 eV
and its half width is found to be 0.40 eV. The new
formalism includes the interactions between the
valence electrons and all vibrational modes. This
means that the calculated half widths AEyw cor-
respond to both homogeneous and inhomoge-
neous broadenings. The 0.40 eV half width of the
first peak agrees approximately with the experi-
mental measure of ~ 0.5 eV [33]. This is the reason
why the value 0.1 fs of Jt is adopted in the cal-
culations. Another major absorption peak is found
at 8.7 eV with a less half width of 0.31 eV. The
different peak widths indicate the different decay
rates of the two excitations at 4.6 and 8.7 eV. Fig.
1b shows the amplitudes of the two excitation
modes versus time. The decay half time At;), for
4.6 and 8.7 eV at temperature 7 = 300 K are 2.3
and 3.3 fs, respectively. It is verified that AEgw
At/ ~ I for the two excitations. The decay half
time of individual electronic mode is found de-
pendent on temperature 7. This is because that the
nuclear motion varies with changing temperature.
For example, the decay half time for the two
excitations at 4.6 and 8.7 eV are 3.3 and 3.7 fs at
T =100 K, respectively. Note that the 4.6 eV
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Fig. 1. (a) Absorption spectrum at 7 = 300 K; (b) shows the
relaxations of the two excitations (4.6 and 8.7 eV): amplitude of
the mode versus ¢. 1,3-butadiene is placed as shown in the inset.
Solid line and long dashed line are for the 4.6 and 8.7 eV ex-
citations at 7 = 300 K, respectively. Short dashed and dotted
line are for the two excitations at 7 = 100 K, respectively.

excitation is more sensitive on 7, and it decays
much faster than the 8.7 eV excitation as 7 is
raised. This is because that the 4.6 eV excitation
couples more strongly to the nuclear motion.

Fig. 2 shows the population relaxation after the
incidence of the electric pulse. The density matrix
Jp is mapped onto the Hartree—-Fock molecular
orbital representation [26], and the induced
populations of the highest occupied molecular
orbital (HOMO), HOMO — 1, HOMO — 2, the
lowest unoccupied molecular orbital (LUMO),
LUMO+1, and LUMO+2 are plotted versus the
time ¢. The negative value indicates the depletion
of the electron or the existence of holes. The
induced populations of the HOMO and LUMO
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Fig. 2. The population relaxations for HOMO, LUMO,
HOMO - 1, LUMO+1, HOMO — 2, and LUMO+2. The solid
line (HOMO), for example, shows dpyomo Homo VErsus time ¢ in
Hartree-Fock molecular orbital representation [26].

(also HOMO — 1 and LUMO+1) are almost the
mirror images of each other, while the populations
of the HOMO — 2 and LUMO+2 are completely
different. The larger numbers of induced electrons
(holes) at the LUMO (HOMO) indicates the effi-
cient transition of electrons from the HOMO to
the LUMO immediately after the application of
the electric pulse E(¢). All the induced populations
(electrons or holes) decay to zero, i.e., relaxes to
the ground state. The population relaxation to the
ground state is due to the existence of the electron—
hole (hole—electron) components of K.

We have shown that the new formalism can be
employed to simulate the nonradiative relaxations
of interacting many-electron systems that are in
contact with thermal baths. Various excitations
may couple differently to the thermal bath, and
this is taken into account naturally by the new
formalism. The simulation on the butadiene mol-
ecule is meant to be more of an illustration than a
serious attempt to reproduce the details of its
electronic relaxation. Our equation does not con-
sider the large amplitude motion and photoiso-
merization. Those effects are beyond the scope of
this work which is intended to develop and illus-
trate the new formalism. In the formalism, the
interaction among electrons are explicitly consid-
ered. It would be interesting to quantify the effects
of the electronic interaction on the relaxation
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processes. Switching off the electronic interaction
leads to drastically different electronic structure.
This makes the direct comparison between the
interacting and noninteracting electronic systems
difficult. A possible solution is to starting from the
noninteracting electronic system and then turn on
gradually the electronic interaction while measur-
ing the related effects. It is emphasized that this
formalism is based on the EOM of reduced single-
electron density matrix and is very different from
the conventional QDTs that follow the dynamics
of the reduced density matrix of system. Therefore,
this formalism can be applied for much larger and
realistic systems, as we did here. In our calculation,
we include explicitly all valence electrons (total of
22 electrons) and take into account the couplings
between all valence electrons and all vibrational
modes. For most conventional QDTs, one solves
the electronic structures first and then adds 7; and
T, relaxation terms phenomenologically [1,18]. In
principle, the 77 and 7, relaxation terms can be
evaluated explicitly [18]. However, because of ex-
treme large computational resources are required,
this has not been done for realistic many-electron
systems [18]. Our formalism introduces for the first
time the quantum chemistry methodology to sim-
ulate the dissipative many-electron systems. For
the moment it employs the semiempirical Hamil-
tonian. We can implement easily our formalism
with the first-principle quantum chemistry meth-
ods, for instance, the time-dependent density
functional theory (TDDFT) [34]. This makes the
first-principle simulations of open systems possi-
ble. Combined with a recently developed localized-
density-matrix (LDM) method [21-23], the new
formalism is expected to simulate the electronic
dynamics of very large open molecular systems.

Acknowledgements

Authors wish to thank Dr. YiJin Yan for
stimulating discussion. Support from the Hong
Kong Research Grant Council (RGC) and the
Committee for Research and Conference Grants

(CRCG) of the University of Hong Kong is
gratefully acknowledged.

References

[1] F. Bloch, Phys. Rev. 70 (1946) 460.
[2] A.G. Redfield, Adv. Magn. Reson. 1 (1965) 1.
[3] A. Suarez, R. Silbey, I. Oppenheim, J. Chem. Phys. 97
(1992) 5101.
[4] W.T. Polland, R.A. Friesner, J. Chem. Phys. 100 (1994)
5054.
[5] J. Cao, J. Chem. Phys. 107 (1997) 3204.
[6] G.S. Agarwal, Phys. Rev. 178 (1969) 2025.
[71 G.S. Agarwal, Phys. Rev. A 4 (1971) 739.
[8] A.O. Caldeira, A.J. Leggett, Physica A 121 (1983) 587.
[9] Y. Tanimura, R. Kubo, J. Phys. Soc. Jpn. 58 (1989) 101.
[10] Y. Tanimura, Y. Maruyama, J. Chem. Phys. 107 (1997)
1779.

[11] YJ. Yan, S. Mukamel, J. Chem. Phys. 89 (1988) 5160.

[12] Y.J. Yan, Phys. Rev. A 58 (1998) 2721.

[13] G. Lindblad, Commun. Math. Phys. 48 (1976) 119.

[14] R.P. Feynman, F.L. Vernon Jr., Ann. Phys. 24 (1963) 118.

[15] H.M. Sevian, J.L. Skinner, J. Chem. Phys. 91 (1989) 1775.

[16] J.S. Bader, B.J. Berne, J. Chem. Phys. 100 (1994) 8359.

[17] H. Dekker, Phys. Rep. 80 (1981) 1.

[18] S. Mukamel, Principles of Nonlinear Optical Spectroscopy,
Oxford, New York, 1995.

[19] D. Kohen, C.C. Marston, D.J. Tannor, J. Chem. Phys. 107
(1997) 5236.

[20] H.Y. Zhang, X.Q. Li, Y.J. Yan, S. Yokojima, G.H. Chen,
Chem. Phys., unpublished.

[21] S. Yokojima, G.H. Chen, Phys. Rev. B 59 (1999) 7259.

[22] S. Yokojima, G.H. Chen, Chem. Phys. Lett. 292 (1998)
379.

[23] W.Z. Liang, S. Yokojima, D.H. Zhou, G.H. Chen, J. Phys.
Chem. A 104 (2000) 2445.

[24] A. Nitzan, J. Jortner, Theor. Chim. Acta 29 (1973) 97.

[25] J.G. Saven, J.L. Skinner, J. Chem. Phys. 99 (1993) 4391.

[26] A. Takahashi, S. Mukamel, J. Chem. Phys. 100 (1994)
2366.

[27] J.J.P. Stewart, J. Comput. Chem. 10 (1989) 209.

[28] C.H. Choi, M. Kertesz, S. Dobrin, J. Michl, Theor. Chem.
Acc. 102 (1999) 196.

[29] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.

[30] A.D. Becke, Phys. Rev. A 38 (1988) 3098.

[31] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys.
Lett. 157 (1989) 200.

[32] M.J. Frisch et al., GaussiaN 94 (Revision C.3), Gaussian
Inc., Pittsburgh, PA, 1995.

[33] D.L. Phillips, M.Z. Zgierski, A.B. Myers, J. Phys. Chem.
97 (1993) 1800.

[34] E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52 (1984) 997.



