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Reduced density matrix and combined dynamics of electrons and nuclei
Yang Zhao, Satoshi Yokojima, and GuanHua Chen
Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong

~Received 11 February 2000; accepted 14 June 2000!

Nuclear dynamics is incorporated into an efficient density matrix formalism of electronic dynamics
which has been applied to molecular systems containing thousands of atoms. The formalism for the
combined dynamics of electrons and nuclei is derived from the Dirac–Frenkel variational principle.
The single electron reduced density matrices and the Glauber coherent states are used for the
electronic and nuclear degrees of freedom, respectively. The new formalism is applicable to
simulate the dynamics of large molecular systems. As an illustration of its validity, the formalism
is employed to calculate the electron and nuclei dynamics of hydrogen molecules. ©2000
American Institute of Physics.@S0021-9606~00!30734-6#

I. INTRODUCTION

Recently a linear scaling method, the localized density
matrix ~LDM ! method, was developed to simulate electronic
dynamics of very large molecular systems containing thou-
sands of atoms.1–3 It is based on the time-dependent
Hartree–Fock~TDHF! approximation, and follows the evo-
lution of a single electron reduced density matrix in real
time. It has been applied successfully to simulate linear op-
tical response of electrons in polyacetylene oligomers, car-
bon nanotubes, and poly~p-phenylenevinylene! ~PPV! aggre-
gates.1–9 In these calculations the nuclei are frozen, and thus
the nuclear dynamics is not included. Since the simulation is
carried out in time domain, it is natural to include the nuclear
dynamics. The LDM simulation time step for the electronic
dynamics is 0.01 to 0.1 fs while the time step is on the order
of 0.1 fs for the Car–Parrinello method10 and 0.1 to 1 fs for
the force field molecular dynamics simulation.11 It is thus
desirable to include the nuclear motion in the LDM calcula-
tion.

Traditionally the dynamics of electrons and nuclei in
molecular systems is treated within the Born–Oppenheimer
~BO! or the adiabatic approximation in which the time scale
of nuclear motion is assumed to be much longer than that of
the electron motion. The nuclear motion is often computed
with potential energy surfaces~PES! or force fields which
are often obtained fromab initio calculations. Numerical
simulations beyond the BO approximation are limited to
small systems due to the requirement of expensive computa-
tional resources for the electronic degrees of freedom. The
electron–nuclear dynamics~END! method has been applied
to diatomic or triatomic molecules.12–15 The electronic and
nuclear wave functions are approximated by the single Slater
determinants and fixed-width Gaussian wave functions, re-
spectively. Other important contributions to the nonadiabatic
dynamics include the surface-hopping approaches by Tully
et al.16 which serve as an alternative to methods of a single
average nuclear path. Also proposed were semiclassical
treatments of curve crossings in reaction dynamics by Miller
et al.,17 and applications of similar nature to the spin-boson
problem and internal conversion processes by Stock.18

In this paper we propose a method for treating the elec-
trons and nuclei simultaneously without assuming different
time scales for electrons and nuclei or the BO approxima-
tion. We therefore do not have to resort to the PES or force
field in the calculation of nuclear dynamics. Since the elec-
tronic degrees of freedom may be handled efficiently with
the LDM method, it is expected that the new method may
ultimately be used to simulate the electronic and nuclear dy-
namics of large complex molecular systems. We adopt a
variational approach for the combined dynamics of electrons
and nuclei. The equations of motion for the electronic and
nuclear degrees of freedom may be derivedrigorously from
the exact Lagrangian using the Dirac–Frenkel variational
principle.19 Similar to the END method, Glauber coherent
states which correspond to the fixed-width Gaussians in real
space are adopted for the nuclear motion. To take advantage
of the LDM treatment of electrons, the reduced density ma-
trices, instead of the wave functions, are used to describe the
electronic dynamics. In parallel to our developments of the
LDM methods for fixed nuclei which started from rather
simple Hamiltonians, the semiempirical Hamiltonian, the
complete neglect of differential overlap in spectroscopy
~CNDO/S!,20 is used as the first implementation to describe
the dynamics of electrons and nuclei. We emphasize that the
adoption of CNDO/S Hamiltonians are not essential to our
approach, and extensions to include more sophisticated
Hamiltonians such as PM3 and the density functional theory
~DFT!21 can easily be implemented as in the case of fixed
nuclei.3,8

The paper is organized as follows. In Sec. II we intro-
duce the Dirac–Frenkel variational principle which allows
for dynamical descriptions of the electrons and nuclei in a
single framework. Formal equations of motion are derived in
their respective subspaces for a single-configurational ansatz
in Sec. II A. The nuclear classical equations of motion are
deduced from the time-dependent variational principle in the
limit of small coherent state widths. Generalizations to in-
clude multiple configurations are discussed in Sec. II B. The
new formalism may be used to simulate the combined dy-
namics of electrons and nuclei in complex molecular sys-
tems. As a first step towards that goal, we adopt the CNDO/S
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Hamiltonian and simulate the dynamics of electrons and nu-
clei in hydrogen molecules. Results are reported in Sec. IV.
Discussions are presented in Sec. V.

II. COMBINED ELECTRONIC AND NUCLEAR
DYNAMICS

The Dirac–Frenkel variational principle19 is a powerful
technique to obtain approximate dynamics for quantum sys-
tems for which exact solutions are elusive. The formulation
starts with the exact Lagrangian

L5^fT~ t !u
i\

2

]J

]t
2ĤufT~ t !&, ~2.1!

wherefT(t) is an ansatz for the full normalized wave func-
tion of a quantum system which hinges on parameters
hm (m51,2,3,...). Herehm can be complexc numbers or
trial wave functions of subsystems. In general, the Dirac–
Frenkel variational principle19 leads to

d

dt S ]L

]ḣm
† D 2

]L

]hm
†

50, ~2.2!

wherehm
† stands for the complex conjugate ofhm .

Below we apply the Dirac–Frenkel variational principle
to a single-determinant ansatz and its multiconfigurational
generalization.

A. Single-configurational ansatz

The TDHF equation for fixed nuclei can be derived from
the Dirac–Frenkel variational principle.19 The trial wave
function ufHF& for an electronic system is a single Slater
determinant composed ofN single-particle orbitals. One as-
sociates a single-particle density matrixr i j (t) with ufHF&

r i j ~ t !5^fHFuaj
†ai ufHF &, ~2.3!

whereaj
†(ai) creates~annihilates! an electron at thej th (i th)

orbital. The density matrixr i j (t), as a projector onto the
space spanned by occupied orbitals, characterizes the Slater
determinant up to within a phase. This is easily seen by
exchanging two orbitals inufHF& which leavesr i j (t) un-
changed butufHF& with a negative sign. In Appendix A, we
give a brief derivation of the equations of motion for the
density matrixr i j (t).

To include nuclear motion, we generalize the trial wave
function in the TDHF approximation to include the nuclear
degrees of freedom:

ufT&5ufHF&ufN&, ~2.4!

where the normalized single Slater determinantufHF& is
composed ofN single-particle orbitalsf i , and ufN& repre-
sents a normalized nuclear wave function. The Lagrangian
has the form

L5
i\

2 (
i

~^f i uḟ i&2^ḟ i uf i&!1
i\

2
~^fNuḟN&

2^ḟNufN&!2^fTuĤufT&. ~2.5!

We consider a system withM nuclei andN electrons.
The nuclear and electronic coordinates are labeled asrn (n
51,...,M ) and r i

e ( i 51,...,N), respectively. The energy ex-
pression takes the form

E[^fTuĤufT&

5^fNu2(
n

\2

2Mn

]2

]rn
2

1VNN~$rn%!ufN&

1^fTu2(
i

\2

2mi

]2

]r i
e2

1Vee~$r i
e%!ufT&

1^fTuVeN~$rn%,$r i
e%!ufT&, ~2.6!

where Mn are the atomic mass for thenth atom, mi is
the i th electron mass, andVNN($rn%), Vee($r i

e%), and
VeN($rn%,$r i

e%) are the nucleus–nucleus, electron–electron,
and nucleus–electron interaction energies, respectively.

Below we discuss separately the electronic and nuclear
equations of motion derived from the variational procedure.

1. The electronic equations of motion

Applying the time-dependent variational approach,

d

dt S ]L

]^ḟ i u
D 2

]L

]^f i u
50, ~2.7!

we obtain the equations for the electronic degrees of free-
dom:

i\ṙ5@h8,r#, ~2.8!

where the Fock matrixh8 is given by

h8uf i&5
]E

]^f i u
. ~2.9!

The difference betweenh8 and the usual Fock matrixh ~cf.
Appendix A! lies only in thath8, being dependent on

^fHFuVee~$r i
e%!1VeN~$rn%,$r i

e%!ufHF&, ~2.10!

changes with time as the nuclei move. In other words, quan-
tities such asv i j in Eq. ~3.1! are now time dependent inh8 as
compared withh. So far basis orbitals have not been speci-
fied. Orbitals fixed in space are not suitable to describe dy-
namical chemical systems, which may require a large num-
ber of basis functions. One needs to consider basis orbitals
$f i(t)% which move with the nuclei. Equations of motion for
the density matrix in a moving basis is

ṙ i j 5~ i\!21^f i~ t !u@h8,r#uf j~ t !&2r i j ^f i~ t !u
]uf i~ t !&

]r i

•V i2r i j

]^f j~ t !u
]r j

•V j uf j~ t !&, ~2.11!

where r i and V i are, respectively, the position vector and
velocity of the nucleus on which thei th orbital resides. The
details of derivation are given in Appendix B.
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2. Nuclear dynamics as coherent states

The nuclear degrees of the freedom are treated within
the same variational framework. For example, the formal
equation of motion forufN& is derived from

d

dt S ]L

]^ḟNu
D 2

]L

]^fNu
50. ~2.12!

From the energy expression of Eq.~2.6! one readily arrives
at

i\uḟN&5F2(
n

\2

2Mn

]2

]rn
2

1VNN~$rn%!1^fHFuVee~$r i
e%!

1VeN~$rn%,$r i
e%!ufHF&G ufN&. ~2.13!

^fHFuVee($r i
e%)ufHF& is dependent on$rn% in many approxi-

mation schemes, and thus cannot be neglected in Eq.~2.13!.
In order to capture fully the time evolution of nuclear mo-
tion, some detailed form ofufN& has to be specified, and
corresponding equations of motion derived.

For the nuclear wave function, a convenient ansatz to
use is the Glauber coherent state.22 The coherent states are
equivalent to the so-called frozen Gaussian wave packets23 in
the real space representation. Frozen Gaussian wave packets
are robust in time evolution. In contrast, Gaussian wave
packets with variant widths are often found to be prob-
lematic.24,25The coherent state is regarded as a quantum me-
chanical state which approaches a classical state when the
width goes to zero.22,26–28In fact, in a harmonic potential the
coherent state undergoes the same dynamics using classical
mechanics as using quantum mechanics. As\ tends to zero,
the width of the coherent state vanishes, and the nuclei are
reduced to classical particles localized in the phase space.
This makes the coherent states especially suitable for mod-
eling quasiclassical systems.

We approximate the nuclear wave functionufN& with a
coherent state:

ufN&5ua~ t !&5)
i 51

3N

ua i~ t !&, ~2.14!

wherea i ( i 51,...,3N) are complex parameters that charac-
terize the motion ofN nuclei alongx, y, andz directions, and
the coherent stateua i(t)& may be expressed in the site rep-
resentation as

^xua i~ t !&5p21/4expH 2
1

2 FAMiv i

\
x2& Re~a i~ t !!G2

1 i Im~a i~ t !!FA2Miv i

\
x2Re~a i~ t !!G J ,

~2.15!

where v i is the characteristic frequency fori th degree of
freedom which determines the width of the Gaussian wave
packet.

The Lagrangian takes the form

L5
i\

2
~^fNuḟN&2^ḟNufN!&2E8

5
i\

2 (
i 51

3N

~ ȧ ia i* 2ȧ i* a i !2E8 ~2.16!

with

E85^au2(
n

\2

2Mn

]2

]rn
2

1VNNua&

1^au^fHFuVee1VeNufHF&ua&. ~2.17!

This follows from

^a i uȧ i&52
1

2

d

dt
~a ia i* !1^a i ue21/2ua i u

2
ȧ ibi

†ea i bi
†
u0&

52
1

2

d

dt
ua i u21ȧ ia i* , ~2.18!

wherebi
†(bi) is the creation~annihilation! operator fori th

degree of freedom, and is defined as

bi
†5AMiv

2\
qi1A \

2Miv

]

]qi
, ~2.19!

bi5AMiv

2\
qi2A \

2Miv

]

]qi
. ~2.20!

Equations of motion for the complex displacementa i then
assume the simple form

i\ȧ i5
]E8

]a i*
. ~2.21!

Here a i is related to the average nuclear position^qi& t and
momentum^pi& t for the i th nuclear degree of freedom by

a i5AMiv i

2\
^qi& t1 iA 1

2\Miv i
^pi& t ~2.22!

with Mi the corresponding mass.
To understand the physics of Eq.~2.21!, one may as-

sume harmonic potentials for nuclei, for which

E85(
i

~ ua i u211/2!\v i . ~2.23!

The parametersa i follow the equation of motion:

i\ȧ i5\v ia i . ~2.24!

Equation~2.24! is in fact the classical equation of motion for
a harmonic oscillator if̂ qi& t and^pi& t are substituted by the
corresponding classical quantities. This shall become clearer
in the next subsection.

There can be many generalizations for the ansatz of a
single coherent state for the nuclear dynamics. One generali-
zation is a superposition of many coherent states which bet-
ter captures the quantum nature of the nuclear motion.29

When the corresponding electronic state is multiconfigura-
tional, such a generalization becomes absolutely necessary.
In Sec. II B as well as Appendices E and F, we discuss the
scenario of a multiconfigurational ansatz with a multi-

4018 J. Chem. Phys., Vol. 113, No. 10, 8 September 2000 Zhao, Yokojima, and Chen



coherent-state nuclear wave function. Elsewhere in the pa-
per, we shall confine ourselves to the single coherent state.

3. Recovery of nuclear classical equations of motion

Here we show that the equations of motion given by the
Dirac–Frenkel variational principle lead to classical nuclear
dynamics in the limit of vanishing width of the Gaussian
wave packets. We also derive the lowest order corrections.
The site and momentum representations of the coherent state
are listed in Appendix C. By using the identity

]

]a i*
5

1

2

]

]a i8
1 i

1

2

]

]a i9
, ~2.25!

where

a i85Re~a i !, a i95Im~a i !, ~2.26!

the equation of motion~2.21! becomes

\ȧ i85
1

2

]E8

]a i9
,

\ȧ i952
1

2

]E8

]a i8
. ~2.27!

One uses the momentum-space representation of the co-
herent states~cf. Appendix C! to evaluate the kinetic term in
E8, yielding

^q̇i& t5
^pi& t

M i
. ~2.28!

One then uses the site-space representation of the coherent
states~cf. Appendix C! for the potential terms inE8. Assume
the width of the Gaussian wave packets is small so that one
can expand the potential near the mean value^qi& t . To the
second order in the Taylor expansion, one obtains

^ ṗi& t52S ]E8

]qi
D

^qi & t

. ~2.29!

The width of the Gaussian wave packets enters the equation
of motion if the potential is expanded to the fourth order in
the vicinity of ^qi& t . The lowest order correction to Eq.
~2.29! is quadratic in the wave packet widthai

2
&ai

2

8\ S ]3E8

]xi
3 D

xi5&a
i8

, ~2.30!

where the dimensionless quantityxi is related to the position
qi by

xi5AMiv i

\
qi , ~2.31!

andai5A\/(Miv i) gives the width of the coherent state. To
the second order in the Taylor expansion of the potential
near the mean valuêqi& t , the classical equations of motion
are fully recovered. Quantum effects are presented by the
third-order terms which are proportional to the width
squared.

B. Multiconfigurational ansatz

A multiconfigurational ansatz which contains more than
one Slater determinants may take the form

ufT&5(
m

cmufm
HF&ufm

N&, ~2.32!

whereufm
HF& are single Slater determinants for the electrons,

ufm
N& are the nuclear wave functions,cm are the configuration

coefficients, and the configurational indexm runs from 1 to
M. The trial state~2.32! includes the multiple-trajectory fea-
ture that the surface-hopping approach,16 and recently, the
full-multiple-spawning method,44 attempt to reproduce. The
fully quantum-mechanical state~2.32! avoids artificial draw-
backs such as undesired coherence destruction of the surface-
hopping method. Starting from a single electron–nuclear
configuration, a system should evolve on a single potential
surface, and no bifurcation of the nuclear trajectory should
occur until a curve crossing or a transition region is reached.
Then an additional electron–nuclear configuration is intro-
duced to describe the appearance of the new electronic state.
The corresponding time dependence ofcm , ufm

HF& and ufm
N&

can be derived from the Dirac–Frenkel variational principle.
As two nuclear trajectories diverge, their overlap vanishes.
We may neglect the interference between them. Each trajec-
tory evolves virtually independently. In Appendix E we dem-
onstrate how a multiconfigurational ansatz of the form~2.32!
is handled in a time-dependent variational procedure.

The trial wave function~2.32! bears close resemblance
to the Davydov ansatz for the lattice Holstein model~cf.
Appendix F!:30,31

uF~ t !&5(
n

cn~ t !Bn
†u0&exexpF(

q
~lnq~ t !bq

†2H.c.!G u0&ph,

~2.33!

where the indexn labels the lattice sites,u0&ex(u0&ph) is the
vacuum state for both the exciton~phonon! degrees of free-
dom,Bn

† creates an exciton on siten, andbq
† creates a phonon

of frequencyvq . For each electronic configurationBn
†u0&ex,

a unique lattice wave function is assigned. The time-
dependent parameterscn(t) and lnq(t) which characterize
the Davydov ansatz can also be determined from the Dirac–
Frenkel variational principle. Details of ensuing equations of
motion are given in Appendix F.

The similarities between the two ansa¨tze can be explored
to better understand Eq.~2.32!. Both ansa¨tze attach a distinct
nuclear wave function to an electronic configuration. For the
lattice Holstein model, each configuration (Bn

†u0&ex) corre-
sponds to a single exciton stationed on a specific lattice site.
For Eq. ~2.32!, each configuration corresponds to a Slater
determinant made of individual orbitals. The Holstein model,
however, does not require changing electronic configurations
to adapt to changes of the lattice wave functions. Because the
number of distinct one-exciton configurations equals the
number of lattice sites regardless of detailed information on
lattice deformation. It is not true for the trial state~2.32!. The
individual orbitals of which the Slater determinants are com-
posed change as the nuclei move.
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III. THE CNDOÕS HAMILTONIAN

In this section we adopt a specific Hamiltonian for
the electronic degrees of freedom, and restrict ourselves
to closed shell molecules. The semiempirical CNDO/S
Hamiltonian20,32 is employed to describe the electrons and
nuclei in molecules. With the CNDO/S Hamiltonian as the
approximate Hamiltonian,hi j8 takes the form

hi j8 5t i j 12d i j (
k

v ikrkk2v i j r i j , ~3.1!

whered i j is Kroenecker delta, andv i j is the Coulomb repul-
sion between two electrons at orbitalsi and j. The CNDO/S
model adopts the zero differential overlap~ZDO! approxima-
tion, and the total energy of closed shell electronic system
may be classified into one-atom and two-atom terms:

Etot5(
n

En1 (
n,m

Enm , ~3.2!

where

En52(
i

i Pn

r i i Uii 1 (
i j

i , j Pn

~2r i i r j j 2r i j r j i !gnn , ~3.3!

Enm5(
i

i Pn

(
j

j Pm

~4r i j b i j 22r i j
2 gnm!1

ZnZm

r nm
2PnnVnm

2PmmVmn1PnnPmmgnm . ~3.4!

Various quantities in Eqs.~3.3! and ~3.4! are defined as fol-
lows. Uii is a one-center term defined as

Uii 5^ i u2 1
2 “ i

22Vi u i &, ~3.5!

whereVi is the potential of electroni from nuclei and core
electrons.gnm is the average Coulomb repulsion energy be-
tween an electron in any valence atomic orbital of thenth
atom and another in an orbital of themth atom, andVnm is
the interaction energy of an electron in any valence orbital of
nth atom with the core ofmth atom.Zn is the core charge
~including the nucleus and inner shells! of the nth atom,r i j

is the usual one-electron density matrix, andPnn is the total
valence electron charge on thenth atom

Pnn52(
i

i Pn

r i i . ~3.6!

The off-diagonal core matrix elements between atomic orbit-
als on different atoms are estimated by

b i j 5bnm
0 Si j , ~3.7!

whereSi j the overlap integral, andbnm
0 is a parameter de-

pending on the nature of atomsn andm. r nm is the distance
between two nuclein andm.

The average interaction energygnm was first calculated
by Roothaan.33 Various approximations ofgnm were later
proposed. For example, in the Nishimoto–Magata
approximation,34 gnm is estimated from the

gnm5e2S 2e2

gnn1gmm
1RnmD 21

, ~3.8!

wheregnn is the average on-site repulsion energy for atomn.
If the internuclear distanceRnm is large~above 3.5 Å!, gnm

becomes the interaction between two charged spheres. In the
opposite limit when the nuclei coincide,gnm reduces to the
repulsion of two electrons on the same nucleus. These one-
centergnn are approximated by the well-known method in-
troduced by Pariser35

gnn5 1
2 ~ I n1An!, ~3.9!

whereI n andAn are the valence state ionization potential and
the electron affinity, respectively. Following the CNDO/2
method,32 Vnm is approximated byZmgnm neglecting the
penetration effects in which electrons in an orbital of one
atom penetrate the shell of another leading to net attraction.

The force acting on the nucleus of thenth atom can be
calculated from

Fn52“n~Etot1VNN!. ~3.10!

To simplify our simulation, we set

]r

]rn
'0. ~3.11!

Thus

Fn52“n (
m

mÞn

Enm2“nVNN , ~3.12!

where“n stands for the derivative with respect to the posi-
tion vectorrn of nth nucleus. The reader is referred to Ap-
pendix D for details of the nuclear-force evaluation.

IV. HYDROGEN MOLECULE

To demonstrate the feasibility of our approach to capture
complex dynamics of electrons and nuclei, we simulate the
dynamics of a hydrogen molecule under an incident external
electric field. The ground state for the hydrogen molecule is
a symmetric state formed from the atomic 1s orbitals, and
the excited state, on the other hand, corresponds to the anti-
symmetric configuration. Each simulation is composed of
two runs. In the first run, the electronic ground state is ob-
tained via a self-consistent-field~SCF! calculation, and the
equilibrium nuclear configuration is generated by allowing
the nuclei to relax from an arbitrary set of initial positions.
The electronic relaxation is simultaneously carried out by the
time domain LDM ground state calculation.5 Since the pur-
pose of this run is to achieve both electronic and nuclear
equilibria, the nuclear kinetic energy is depleted rapidly for
fast convergence. In the second run, the equilibrium nuclear
configuration is adopted as the initial configuration, and the
external field is applied to perturb the combined system of
electrons and nuclei. A time-domain Gaussian profile is
given to the external field with an adjustable widthtg . This
provides an electronic excitation up to;\/tg . To achieve
excitation at a specific frequencyve , an oscillating term
exp(2ivet/\) is added to the external field. Dissipative
mechanisms are introduced to relax both the electronic and
nuclear subsystems. The electronic system is relaxed via the
phenomenological dephasing, while the nuclear system is
dissipated with small fraction~;0.05%! of nuclear kinetic
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energy taken out at each time step. Much weaker nuclear
damping is adopted as compared with the first run in which
1–2 % of the nuclear kinetic energy is depleted per time step.
Simulation is completed when the system recovers its initial
state prior to the application of external field.

The time-evolution of the hydrogen–hydrogen bond
length during the second run is displayed in Fig. 1. The field
is applied along the line which connects the two hydrogen
atoms so that no rotational motion is introduced. The elec-
tronic excitation disturbs the neutrality of the atoms causing
a bond contraction in the first few femtoseconds. This is
followed by bond oscillations with its mean gradually return-
ing to equilibrium as the electronic excitation is dephased.
The oscillation period is about 2.0 fs. Figure 2 shows the
position displacement of one of the two nuclei in the second
run. After the external field is applied, the nuclear movement
exhibits a second oscillation with a much higher frequency.
This is attributed to an electronic transition upon the external
excitation which has an oscillating frequency of 18.54 eV.

This in turn affects the nuclear movements. This high-
frequency mode is absent in the bond length evolution shown
in Fig. 1.

In Fig. 3 we plot the weak-field optical response of H2.
The vertical axis represents the value of Im@D(v)#, where
D(v) is the Fourier transform of H2 dipole moment in the
frequency domain. The electric field is weak so that the nu-
clei are only slightly disturbed. Clearly there is a peak at
18.54 eV which corresponds to the higher frequency oscilla-
tion in Fig. 2. The ground state of the hydrogen molecule is
a symmetric bonding state while the excited state is a disso-
ciative antibonding state. The energy gap between the
ground state and the excited state is therefore represented by
the peak at 18.54 eV. There are structures barely visible on
the two sides which are phonon-induced and whose ampli-
tudes strengthen upon increasing the external field. In Fig. 4
we display the strong-field optical response of the hydrogen
molecule to a strong external field with a Gaussian packet

FIG. 1. H–H bond length of a hydrogen molecule with an external field.
The field is applied att50 along the line connecting the two hydrogen
atoms with an oscillating frequency of 18.54 eV. An electronic dephasing of
0.04 eV is adopted.

FIG. 2. Movement of one hydrogen atom driven by external field at 18.54
eV. The field is applied att50 along the line connecting the two hydrogen
atoms with an oscillating frequency of 18.54 eV. An electronic dephasing of
0.04 eV is adopted.

FIG. 3. The weak-field optical response of a hydrogen molecule: Im@D(v)#
versusv, whenD(v) is the dipole moment of H2. The field is applied along
the line connecting the two hydrogen atoms. An electronic dephasing of
0.04 eV is adopted. The main peak is located at 18.54 eV.

FIG. 4. The strong-field optical response of a hydrogen molecule: Im@D(v)#
versusv. The field is applied along the line connecting the two hydrogen
atoms. The time-domain width of the pulse is 0.1 fs. An electronic dephas-
ing of 0.04 eV is adopted.
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width of 0.1 fs. There is a predominant structure at 18.54 eV.
Phonon-induced features appearing on two sides are sepa-
rated from the main structure by 1.1 eV which corresponds
to the bond length oscillation frequency shown in Fig. 1.

In order to simulate a realistic system where atomic col-
lisions frequently occur, we introduce a mechanism for en-
ergy fluctuations in which the temperature is kept constant.36

A stochastic collision term is added to the equations of mo-
tion for nuclear dynamics. The resulting stochastic differen-
tial equations bear close resemblance to the Langevin equa-
tions for the Brownian motion.37–39Each stochastic collision
is an instantaneous event which affects the momentum of
one particle. The times at which different particles undergo
collisions are statistically uncorrelated. The probability for
the collision to take place betweent and t1dt is

p~ t !dt5n exp~2nt !dt, ~4.1!

where the characteristic collision time is 1/n. Alternatively,
one may state that the time intervals between two successive
collisions are distributed according top(t). Therefore the
probability for each individual atom to experience the next
collision increases with time~counting from the previous
collision!

E
0

t

p dt512exp~2nt !. ~4.2!

If a collision occurs, the momentum of the atom is replaced
at random from a Boltzmann distribution at the temperature
T

1

~A2pmkBT!3
expS 2

px
21py

21pz
2

2mkBT Ddpx dpy dpz . ~4.3!

The effect of collisions on the strong-field responses of a
hydrogen molecule is shown in Fig. 5. The characteristic
collision time 1/n in Eq. ~4.1! is 1 fs. The temperature from
which the Boltzmann distribution is drawn is 225 K. Apart
from the added collision term, the system parameters are

kept the same as those in Fig. 4. Compared with Fig. 4, the
signs of the stochastic process are obvious in Fig. 5, although
the basic features in Fig. 4 survives the collision effect.

V. DISCUSSION

We have developed a method for simulating the com-
bined dynamics of electrons and nuclei in complex systems.
The dynamics is described by the single reduced density ma-
trices for electrons and the Glauber coherent states for nuclei.
Since the linear-scaling LDM method may be used to simu-
late the electronic dynamics, the method opens up a wide
range of applications and may be employed to calculate the
combined dynamics of large complex systems.

The simulations run so far are mostly in the Born–
Oppenheimer regime as the energy scale in the electronic
system greatly exceeds that of the nuclear system, although
nuclear movements on the same order of frequencies as the
electrons are shown to exist under a high-frequency driving
field. Our approach can be generally applied to nonadiabatic
regimes where the two energy scales are comparable. Similar
nonadiabatic methods with combined quantum and classical
dynamics for electrons and nuclei were applied to scattering
problems and small systems.12,15,40 Determinantal wave
functions41,42 were used instead of density matrices for the
electronic dynamics. These calculations were restricted only
to small systems. In comparison, our approach has the po-
tential to be applied to much larger systems. Generalizations
to include multiple configurations and more sophisticated
nuclear wave functions are also possible. In Appendix E we
illustrate how nuclear and electronic wave functions are
handled in a multiconfigurational ansatz.

The single-trajectory approach employed here belongs to
the class of theories based on the time-dependent self-
consistent-field method~TDSCF!.43 Compared with multi-
ple-trajectory approaches such as the surface-hopping
method16,39 and the full-multiple-spawning algorithm,44 nu-
clei follow an average mean path in TDSCF. Therefore
TDSCF may not be a good approximation when the excited
state acquires a significant population and its adiabatic po-
tential surface greatly diverges from that of the ground state.
Since in the cases examined here the excited state population
is kept small at all times, the validity of our approach should
hold.

The CNDO/S method gives a larger force constant than
that is experimentally observed for the case of the hydrogen
molecule~about twice too large, see Ref. 45!. However, the
purpose of our example is mainly to demonstrate the feasi-
bility of our method instead of providing a close comparison
with the experiments. Furthermore, as we have demonstrated
for fixed nuclei, the simplified electronic Hamiltonian
CNDO/S employed in this paper can be generalized to
Hamiltonians of higher sophistication~for instance, PM3 and
DFT! in order to better describe nuclear potential surfaces
for complex molecules. We have previously extended our
LDM calculations from CNDO/S Hamiltonians to PM3
Hamiltonians for fixed nuclei with ease.7,8 We expect such
extensions to include more sophisticated electronic Hamilto-
nians carried out for mobile nuclei in the next stage of de-
velopments.

FIG. 5. Effect of collisions on the strong-field optical response of a hydro-
gen molecule. The time-domain width of the pulse is 0.1 fs. The character-
istic collision time 1/n is 1 fs. The temperature for the Boltzmann distribu-
tion is 225 K.
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Dynamics calculations in the literature often treat the
environment of a quantum system classically.46–48 Attempts
were also made to infer absorption lineshapes from such hy-
brid calculations.49 Our method which mixes the quantum
electronic system with its classical nuclear environment is
expected to capture quantities that have classical interpreta-
tions. These include time-dependent observables such as
electronic populations and mean positions and momenta of
vibrational modes. However, it is not able to reproduce the
vibronic features in the absorption spectra. The failure is
caused by inability of classical nuclear dynamics to describe
the nuclear wave function overlaps at different times. Al-
though the full quantum vibronic spectra are not reproduced
with the lattice treated classically, peaks atveg6nvnuclear~n
is an integer! are observed from the hybrid simulations, al-
beit often with negative signs. It is understood as a lattice
perturbation to the electronic transition. The signs of the
peaks shall depend on the relative phase between the elec-
tronic and nuclear oscillations as demonstrated by the simple
identities:

2 sinx siny52cos~x1y!1cos~x2y!, ~5.1!

2 sinx cosy5sin~x1y!1sin~x2y!, ~5.2!

2 cosx cosy5cos~x1y!1cos~x2y!. ~5.3!

From the first identity, the two peaks atveg6vnuclear will
have opposite signs, while from the last two identities, the
peaks will have the same sign. We point out that the optical
response shown in Figs. 3 and 4 are not absorption spectra.
The coupled equations of motion for electrons Eq.~2.11! and
nuclei with the nuclear force given by Eq.~3.12! are not
expanded in terms of the external electric field and thus the
optical responses we obtained include linear and nonlinear
components.

In our model the nuclear motion can be viewed as a
classical bath that is coupled to the electronic degrees of
freedom. The combined system of electrons and nuclei there-
fore serves as a paradigm for chromophore-bath systems. If
the nuclear motion is harmonic then the bath is bosonic. A
simple anharmonic bath is a collection of two-level systems
~TLS!50 which are responsible for the chromophore transi-
tion frequency modulation in glasses. Strong anharmonicity
is expected in the hydrogen molecule disturbed by a moder-
ate external field. We have simulated the transfer of the elec-
tronic energy from the incident laser light into the nuclear
~bath! system. It is found that such transfers in the hydrogen
molecule require;100 fs to complete after excitation by
strong external pulses.

There have been studies of the simultaneous dynamics of
electrons and nuclei in a linear monatomic chain and in a
zig–zag chain of nitrogen atoms.40 What constitutes a physi-
cally more interesting system are polymers such as poly-
acetylene and poly~p-phenylenevinylene!. Polarons and soli-
tons are among the different entities which emerge in those
polymers.51–58 Modern techniques of femtosecond spectro-
scopy59 shall reveal, in details previously unavailable, the
complex dynamics of electrons and nuclei in these materials.
Since the polymers are flexible and can change its shape
easily, spectroscopic properties of polymers depend heavily

on nuclear motion. Most computations of the optical re-
sponse of large polymers treat the nuclear effect phenomeno-
logically because of the excessive computational cost to
determine the PES. In comparison our method is not con-
strained by PES computations. The density-matrix formula-
tion given here which can be readily incorporated into the
LDM method is a computationally efficient tool to model
combined dynamics of electrons and nuclei in large systems.
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APPENDIX A: THE TIME-DEPENDENT
HARTREE–FOCK APPROXIMATION

The TDHF equations can be derived from the time-
dependent variational approach. First, one defines the La-
grangian

L5^fTu
i\

2

]J

]t
2ĤufT&. ~A1!

Here the trial wave functionufT& is a normalized single
Slater determinant so that Lagrange multipliers are not
needed. Equations of motion for the trial wave functionufT&
are obtained from

d

dt S ]L

]^f i u
D2

]L

]^f i u
50, ~A2!

whereuf i& are the individual orbitals which make up the HF
wave function. We then arrived at

2 i\uḟ i&1
]E

]^f i u
50 ~A3!

with

E[^fTuĤufT&. ~A4!

The complex conjugate of Eq.~A3! has the form

i\^ḟ i u1
]E

]uf i&
50. ~A5!

Define the single-electron density matrixr as

r5(
i

occ

uf i&^f i u ~A6!

and the Fock matrixh as

huf i&5
]E

]^f i u
. ~A7!

From ~A7!, it is easy to show thath is a function ofr. Thus,
one readily obtains the closed equation of motion forr from
Eqs.~A3! and ~A5!,

i\ṙ5@h,r#. ~A8!
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APPENDIX B: EQUATIONS OF MOTION IN A MOVING
BASIS

Orbitals fixed in space are prone to convergence prob-
lems in the time evolution. To consider basis orbitals which
move with the nuclei, we write the one-electron density ma-
trix in terms of a time-dependent basis:

r5(
i j

r i j ~ t !uf i~ t !&^f j~ t !u, ~B1!

whereuf i(t)& is the orbitals that centers on the moving nu-
clei. Then the equation of motion forr i j (t) follows:

~ i\!21@h8,r#5 ṙ5(
i j

ṙ i j uf i~ t !&^f j~ t !u

1r i j

]uf i~ t !&
]r i

•V i^f j~ t !u

1r i j uf i~ t !&
]^f j~ t !u

]r j
•V j , ~B2!

where r i and V i are, respectively, the position vector and
velocity of the nucleus on which thei th orbital resides. The
individual elements of the density matrix therefore follows
Eq. ~2.11!. The last two terms in Eq.~2.11! describe the
difference between changes ofi th and j th orbitals. In a hy-
drogen molecule, the two terms cancel each other. When the
velocities of the nuclei are small, the two terms can be ne-
glected in general.

APPENDIX C: COHERENT STATES IN SITE AND
MOMENTUM REPRESENTATION

The coherent states in one dimension are related to the
number states by

ua&5e2~ uau2/2! (
n50

`
an

An!
un&. ~C1!

In the site-space representation the number states are60

^xun&522~n/2!p2~1/4!
1

An!
e2~x2/2!Hn~x!, ~C2!

whereHn(x) are the Hermite functions. The dimensionless
quantityx is related to the positionqx by

x5AMv

\
qx . ~C3!

The factorAMv/\ determines the width of the Gaussian
wave packet. Utilizing the identity

e2t212tx5 (
n50

`

Hn~x!
tn

n!
, ~C4!

one obtains the site-space expression of the coherent states

^xua&5p2~1/4! exp$2 1
2 @x2& Re~a!#2

1 i Im~a!@&x2Re~a!#%. ~C5!

Whena is real,

^xua&5p2~1/4! exp$2 1
2 @x2& Re~a!#2%, ~C6!

which is a simply displaced ground state~the ‘‘vacuum’’
statef05p2(1/4)e2(1/2)x2

!. The phase factor in Eq.~C5! is in
fact the so-called ‘‘electron translation factor’’ which are
usually multiplied to atomic orbitals to describe molecules in
motion.

The momentum-space representation can be derived via
a Fourier transform

^pua&5
1

A2p
E dx e2 ipx^xua&

5p2~1/4! exp$2 1
2 @p2& Im~a!#2

2 i Re~a!@&p2Im~a!#%, ~C7!

where the dimensionless quantityp is related to the momen-
tum px by

p5
1

A\Mv
px . ~C8!

Equations~C5! and ~C7! are essential for the derivation of
classical dynamics from the time-dependent variational ap-
proach in Sec. II A 3.

APPENDIX D: THE CNDO ÕS APPROXIMATIONS

The Slater-type basis functions are used in the CNDO/S
calculations:

xa~r ,u,f!5
~2za!na1~1/2!

A~2na!!
r na21 exp~2zar !Yl am~u,f!,

~D1!

wherena , l a , and m are the principal, azimuthal, and the
magnetic quantum numbers, respectively, andYl am(u,f) is
the real normalized spherical harmonics.za is the orbital
exponent.

The overlap integralSab can be written in terms of the
reduced overlap integrals(na ,l a ,m,na ,l b ,a,b):

Sab~na ,l a ,m,nb ,l b ,a,b!

5
za

na1~1/2!
zb

nb1~1/2!

A~2na!! ~2nb!!
s~na ,l a ,m,na ,l b ,a,b!r ab

na1nb11,

~D2!

where

a5zar ab , b5zbr ab , ~D3!

s~na ,l a ,m,na ,l b ,a,b!5D~ l a ,l b ,m!(
i j

Ci j l

3Ai S a1b

2 DBj S a2b

2 D . ~D4!

HereD( l a ,l b ,m) is a function ofl a , l b , andm, andCi j l are
matrices labeled byl which itself is a function ofna , nb ,
l a , l b , andm:

l5l~na ,nb ,l a ,l b ,m!. ~D5!

The auxiliary functionsA(x) andB(x) are defined as
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Ak~x!5e2x(
n51

k11
k!

xn~k2n11!!
, ~D6!

Bk~x!52Ak~x!2ex(
n51

k11
~21!k2nk!

xn~k2n11!!
. ~D7!

From Eq.~D2!, the derivative of the overlap integralSab

with respect tor ab is composed of two terms:

dSab

drab
5~na1nb11!

Sab

r ab
1

za
na1~1/2!

zb
nb1~1/2!

A~2na!! ~2nb!!

ds

drab
r ab

na1nb11,

~D8!

where

ds

drab
5D~ l a ,l bm!(

i j
Ci j l

F dAi S a1b

2 D
drab

Bj S a2b

2 D

1Ai S a1b

2 D dBj S a2b

2 D
drab

G . ~D9!

The internuclear forces may now be derived from the
energy expressions developed:

Fn52 (
m

mÞn
dEnm

drnm
“nr nm2“nVNN , ~D10!

where

“r nm5
rn2rm

r nm
, ~D11!

dEnm

drnm
52

ZnZm

r nm
2

1
dSnm

drnm
(

i

i Pn

(
j

j Pm

4r i j bnm
0

1
dgnm

drnm
S PnnPmm2PnnZm2PmmZn

1(
i

i Pn

(
j

j Pm

2r i j
2 D . ~D12!

Here the derivative of the overlap integralSnm with respect
to r nm(dSnm /drnm) follows Eq. ~D8!.

In the remainder of this appendix we discuss some spe-
cifics of the hydrogen molecule. The one-electron density
matrix is calculated from

r i j 5(
n

oc

cn icn j , ~D13!

wherecn j is the coefficients of expansion of the molecular
orbitals in terms of the valence atomic orbitals. Greek indi-
ces are used to denote the molecular orbitals. For the case of
the hydrogen molecule, all elements of the ground state den-
sity matrix equal12. The total molecular energy for H2 in the
CNDO/2 approximation has the form

ET52~ I 1A!H2
1

2
gHH22bHH

0 SHH82
3

2
VHH81

1

RHH8
,

~D14!

where I H and AH are the ionization potential and electron
affinity of hydrogen, respectively. For two hydrogen atoms,
gHH8 has the form33

gHH85
z

r F12S 11
11

8
r1

3

4
r21

1

6
r3De22rG , ~D15!

wherez is the orbital exponent,r5zRHH8 . The above ex-
pression forgHH8 is different from the Nishimoto–Magata
approximation. The difference in their derivatives with re-
spect to the nuclear separationRHH8 is even greater. Adopt-
ing the Nishimoto–Magata approximation therefore results
in less accurate equilibrium bond lengths. To remedy the
problem, we add a proportionality constant~on the order of
1–2! to the second term on the right-hand side of Eq.~D12!
calculating the forces so that the experimental values of the
bond lengths are reproduced.

APPENDIX E: A MULTICONFIGURATIONAL ANSATZ

In this appendix we show how the nuclear and electronic
trial wave functions are handled in a multiconfigurational
ansatz in one space dimension. The ansatz has the form

ufT&5(
m

cmufm
HF&ufm

N&, ~E1!

whereufm
HF& are single Slater determinants for the electrons,

ufm
N& are the nuclear wave functions,cm are the configuration

coefficients, and the configurational indexm runs from 1 to
M. We need to introduce in the variation a Lagrange multi-
plier l to ensure

N5^fTuFT&5(
mn

cn* cm^fn
HFufm

HF&^fn
Nufm

N&51. ~E2!

From

d

dt S ]L

] ċk*
D 2

]L

]ck*
5l

]N

]ck*
, ~E3!

we give the equations of motion forcm ,

2 i\(
m

@ ċmI mk1cm~^fk
Nufm

N&^fk
HFuḟm

HF&1^fk
HFufm

HF&

3^fk
Nuḟm

N&!#1
]E

]ck*
5l(

m
cmI mk , ~E4!

where

E5^fTuĤufT&, ~E5!

I mk5^fk
HFufm

HF&^fk
Nufm

N&. ~E6!

Including Eq.~E2!, there are altogetherM11 equations for
M11 variables~ck andl!.

Next, assuming the nuclear wave functions take the co-
herent state form

ufn
N&5uan&, ~E7!

we derive the nuclear part of the equations of motion from

d

dt S ]L

]ȧm*
D 2

]L

]am*
5l

]N

]am*
. ~E8!
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Utilizing

^anuam&5exp~an* am2 1
2 uamu22 1

2 uanu2!, ~E9!

^anuȧm&5exp~an* am2 1
2 uamu22 1

2 uanu2!

3S 2
1

2

]

]t
uamu21an* ȧmD , ~E10!

^ȧnuam&5exp~an* am2 1
2 uamu22 1

2 uanu2!

3S 2
1

2

]

]t
uanu21ȧn* amD , ~E11!

one obtains the equations of motion foram :

i\ȧm5
]~E2lN!

]am*
1

i\

4 (
nÞm

Fam~K̇nm2K̇mn!

2
d

dt
~2anKnm!G2

i\

2 (
kn

FJkn

]^anuak&
]am*

2
]Kkn

]am*
S 1

2

d

dt
uaku22

1

2

d

dt
uanu21an* ȧk2ȧn* akD G ,

~E12!

where

Jmn5cn* cm^fn
HFuḟm

HF&1cn* ċm^fn
HFufm

HF&2cn* cm^ḟn
HFufm

HF&

2 ċn* cm^fn
HFufm

HF&, ~E13!

Kmn5cn* cm^fn
HFufn

HF&^fn
Nufm

N&. ~E14!

We are now left with the derivation of the equations of
motion for the electronic degrees of freedom. If the inner
products of two Slater determinants^fn

HFuḟm
HF& are written as

^fn
HFuḟm

HF&5dnm(
i

^f i
muḟ i

m&1~12dnm!^fn
HFuḟm

HF&,

~E15!

whereuf i
m& is the individual orbitals making upufm

HF&, equa-
tions of motion for

rk5(
i

occ

uf i
k&^f i

ku ~E16!

can be obtained from

2 i\uḟ i
k&1

]~E1F2lN!

]^f i
ku

2
d

dt S ]F

]^ḟ i
ku
D 50 ~E17!

in a similar fashion as the single configuration case in Ap-
pendix A. Here

F5
i\

2 (
nm

~12dnm!cn* cm^fn
Nufm

N&~^fn
HFuḟm

HF&

2^ḟn
HFufm

HF&!1
i\

2 (
nm

cn* cm^fn
HFufm

HF&~^fn
Nuḟm

N&

2^ḟn
Nufm

M&!1
i\

2 (
nm

~cn* ċm2 ċn* cm!^fn
HFufm

HF&

3^fn
Nufm

N&. ~E18!

The equations of motion forrm so obtained have the form

i\ṙm5@hm,rm# ~E19!

with the generalized Fock operatorhm given by

hmuf i
m&5

]~E1F2lN!

]^f i
mu

2
d

dt S ]F

]^ḟ i
mu
D . ~E20!

The density matrixrm has a one-to-one correspondence with
the Slater determinantufm

HF& up to a phase. This can be un-
derstood from Eq.~E16! in which uf i

k& are the eigenstates
~with eigenvalues 1 or 0! that diagonalize the density matrix.
For a given density matrix, therefore, its diagonalization de-
termines the molecular orbitalsf i

m , with which a Slater de-
terminant differing fromufm

HF& is constructed upon by a
phase factor.

APPENDIX F: THE DAVYDOV ANSATZ

In this appendix we shall take, as an example, the Davy-
dov ansatz to illustrate how a multiconfigurational trial wave
function is applied in a time-dependent variational proce-
dure. The Davydov ansatz

uF~ t !&5(
n

cn~ t !Bn
†u0&exexpF(

q
~lnq~ t !bq

†2H.c.!G u0&ph

~F1!

is adopted for the Holstein Hamiltonian29,30 also known as
the molecular crystal model,

Ĥ5Ĥex1Ĥph1Ĥex–ph, ~F2!

Ĥex52J(
n

Bn
†~Bn111Bn21!, ~F3!

Ĥph5(
q

\vqbq
†bq , ~F4!

Ĥex–ph5g(
nq

\vq~bq
†e2 iqn1bqeiqn!Bn

†Bn . ~F5!

HereJ is the exciton transfer integral between nearest neigh-
bor sites, andg is the diagonal exciton-coupling coupling
strength. We define the Debye–Waller factorSmn(t) as

Smn~ t !5pĥ 0uexpF(
q

~lmq* ~ t !bq2H.c.!G
3expF(

q
~lnq~ t !bq

†2H.c.!G u0&ph, ~F6!

or alternatively,

Smn~ t !5^Lm~ t !uLn~ t !&, ~F7!

where

uLn~ t !&5expF(
q

~lnq~ t !bq
†2H.c.!G u0&ph. ~F8!

From Eq.~2.1! the Lagrangian is given by
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L5
i\

2 (
n

~ ċncn* 2ċn* cn!

1
i\

2 (
nq

ucnu2~ l̇nqlnq* 2l̇nq* lnq!2H, ~F9!

whereH is defined as

H[^F~ t !uĤuF~ t !&. ~F10!

From the Dirac–Frenkel variational principle, one arrives at

i\ċn1
i\

2
cn(

q
~ l̇nqlnq* 2l̇nq* lnq!5

]H

]cn*
, ~F11!

i\

2
ucnu2l̇nq1

i\

2

d

dt
~ ucnu2lnq!5

]H

]ln*
, ~F12!

whereH is explicitly given by

H52J(
n

cn* ~cn11Sn,n111cn21Sn,n21!

1(
nq

\vqucnu2~ ulnqu21ge2 iqnlnq* 1geiqnlnq!.

~F13!

After simplifications, one obtains

i\ċn52J~cn11Sn,n111cn21Sn,n21!

2cnF i\

2 (
q

~ l̇nqlnq* 2l̇nq* lnq!1\vq~ ulnqu2

1ge2 iqnlnq* 1geiqnlnq!G ~F14!

and

i\cnl̇nq5\vqcn~lnq1ge2 iqn!2Jcn11Sn,n11~ln112ln!

2Jcn21Sn,n21~ln212ln!. ~F15!
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