
RIKEN Review No. 29 (June, 2000): Focused on Large-scale Calculation of Electronic States

Linear scaling computation of excited states
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The segment-molecular-orbital representation is proposed and combined with the linear-scaling localized-density-
matrix method. A segment-molecular-orbital is a molecular orbital in a segment of an entire molecule. Different
cut-off lengths for different segment-molecular-orbitals are naturally introduced, which results in a drastic reduction
of the computational cost.

Introduction

Ab initio molecular orbital calculations are usually limited to
small- and medium-size molecular systems. The obstacle lies
in the rapid increase of computational cost as the systems be-
come larger and more complex. For the ground state, a num-
ber of linear scaling computational methods are proposed.1,2)

Here the locality of the ground state density matrix was the
key to achieve the linear scaling computation. However, the
linear scaling computation for excited states is a much more
difficult task, since the excited state density matrix is more
delocalized compared with the ground state one. Several lin-
ear scaling calculations based on the noninteracting electron
models have been proposed.3)

Recently we proposed linear scaling computational method,
the localized-density-matrix (LDM) method,4) which solves
the equation of motion of the single electron reduced density
matrix with explicit inclusion of electron-electron Coulomb
interaction. This method has also been applied to the ground
state calculation 5) and as well as excited states. The largest
LDM calculation for excited state properties has been per-
formed for a polyacetylene oligomer containing 33000 carbon
atoms by employing the PPP Hamiltonian.6)

We further improved the efficiency of the LDM method by
introducing segment molecular orbital (SMO) representation.
The LDM/SMO method allows us to investigate much larger
systems than original LDM method.7) We here give the detail
of the idea of SMO representation and its application for the
computation of optical response of very large systems.

Model

Although the LDM/SMO method may employ different mod-
els, we use here the CNDO/S Hamiltonian. In the presence of
an external electric field E(t), the total Hamiltonian is given
by the following expression:

H = HCNDO/S + Hext. (1)

Here the Nishimoto-Mataga formula 8) is employed for two-
electron integrals in HCNDO/S. Hext describes the interac-

tion between the electrons and the external electric field �E(t),
the dipole matrix elements �µij in Hext are evaluated using
the zero differential overlap approximation. Within the time-
dependent Hartree-Fock (TDHF) approximation,9) a closed
nonlinear self-consistent equation of motion is yielded for the

reduced single-electron density matrix ρ(t),

i(~
d

dt
+ γ)ρ(t) = [h(t) + f(t), ρ(t)]. (2)

Here h(t) is the Fock matrix:

hnm(t) = tnm + 2δnm

X
l

vnlρll(t)− vnmρnm(t), (3)

where tnm is the hopping matrix element between orbital m
and n, and vnm is the Coulomb repulsion between two elec-
trons at AOs m and n, respectively. γ is a phenomenological
dephasing constant. f(t) describes the interaction between
an electron and the external field �E(t), fij(t) = e�µij · �E(t).

LDM

We denote the ground state density matrix and Fock matrix
by ρ(0) and h(0), respectively. The i-th order of induced den-
sity matrix or Fock matrix in �E(t) is indicated by the super-
script (i), i.e ., δρ(i) or δh(i), respectively. Thus the equation
for the linear optical response of the density matrix ρ is given
by inserting ρ = ρ(0)+ δρ(1)+ δρ(2)+ δρ(3)+ · · · into Eq. (2),
retaining the first order in �E(t):

i~δρ̇
(1)
ij =

X
l

(h
(0)
il δρ

(1)
lj − δρ

(1)
il h

(0)
lj )

+
X

l

(δh
(1)
il δρ

(0)
lj − δρ

(0)
il δh

(1)
lj )

+
X

l

e�E(t) · (�µilρ
(0)
lj − ρ

(0)
il �µlj). (4)

Because of the locality of the density matrix, we can solve
Eq. (4) with the following approximation when the system is
large enough:

• h
(0)
i,j = 0; ρ

(0)
i,j = 0 if |�ri − �rj | > l0.

• ρ
(1)
i,j = 0 if |�ri − �rj | > l1.

In addition, the FMM6,10) is employed to evaluate Coulomb
interaction in h(1), which leads to the linear-scaling of com-
putational time.

SMO representation

The following procedure is adopted to give the SMO rep-
resentation. First the entire system is divided into many
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segments, and the bonds between adjacent segments are sev-
ered. Each dangling bond is assigned two electrons. Secondly,
the Hartree-Fock solution is determined for each segment by
employing CNDO/S Hamiltonian. Denote respectively the
Hartree-Fock molecular orbital coefficients and energy as Sα

ij

and Eα
j for the j-th MO of the segment α, where i is the index

of the i-th AO. Finally, all the resulting SMOs are taken as
the basis functions, and transformation matrix Sij from the
AO representation to the SMO representation for the entire
molecule is constructed as follows

Sij =

(
Sα

ij i, j ∈ α

0 i ∈ α, j ∈ β (α �= β).
(5)

We denote the SMO representation by bar. For example, the
density matrix ρ̄ in the SMO representation is thus expressed
as

ρ̄ij =
X
i1j1

S†
ii1

ρi1j1Sj1j . (6)

Note that Eq. (6) is merely a change of the representation,
and thus no approximation has been made here.

Computationally, there are two advantages for employing the
SMO representation for the LDM calculation.
(1) In the AO representation many orbitals have a long cut-
off length for the density matrix, whereas in the SMO rep-
resentation the SMOs far from the Fermi energy or chemical
potential have much shorter cutoff length. By introduction
of different cutoff lengths for different pairs of SMOs, we may
reduce drastically the number of density matrix elements to
be considered explicitly, and consequently save much of the
computational time.
(2) Those SMOs far away from the Fermi energy or chemi-
cal potential are optically inactive the visible range, and may
be simply cut off from the density matrix and the equation
of motion.

In our calculation we keep all SMOs but adopt different cut-
off lengths for different SMO pairs, i.e ., employing only the
approximation 1.

LDM/SMO method

By transforming the Eq. (4) from AO to SMO we have

i~δ ˙̄ρ
(1)
ij =

X
l

(h̄
(0)
il δρ̄

(1)
lj − δρ̄

(1)
il h̄

(0)
lj )

+
X

l

(δh̄
(1)
il δρ̄

(0)
lj − δρ̄

(0)
il δh̄

(1)
lj )

+
X

l

e�E(t) · (�̄µilρ̄
(0)
lj − ρ̄

(0)
il

�̄µlj), (7)

where

δh̄
(1)
ij = 2

X
i1j1mn

S†
ii1

Si1jvi1j1Sj1mδρ̄(1)
mnS†

nj1

−
X

i1j1mn

S†
ii1

vi1j1Si1mδρ̄(1)
mnS†

nj1
Sj1j . (8)

A theoretical investigation of the locality of the density ma-
trix shows that the density matrix in the spatial representa-
tion decays exponentially,11)

ρ(�r1, �r2) ∼ exp(−γ|�r1 − �r2|), (9)

where γ is proportional to the energy gap for semiconductors
and insulators. Therefore a critical distance for |�r1 − �r2| is
introduced beyond which ρ(�r1, �r2) is neglected. This criti-
cal distance is proportional to the inverse of the HOMO and
LUMO energy gap. The above result is obtained for infinite
periodic system in the weak-binding limit. We observe that
different types of orbitals have different critical distances.
For instance, deeply bounded orbitals or high empty orbitals
rarely contribute to the optical response and thus, they have
a much smaller cutoff lengths. Thus, the cutoff lengths for the
ground state density matrix ρ̄(0) in the SMO representation
may be given as follows:

Cij = l0 × Eα
g

t0|Eα
i − Eα(i)|+ Eα

g

× Eβ
g

t0|Eβ
j − Eβ(j)|+ Eβ

g

× Ēg

t0|f(Eα
i , Eβ

j )|+ Ēg

, (10)

f(Eα
i , Eβ

j ) = (Eα
i − Eα(i))− (Eβ

j − Eβ(j)). (11)

Here Cij is the cutoff length for orbitals i and j. i and j
are in two different segments α and β, respectively. Eα

g (Eβ
g )

is half of the energy gap in α (β), and Ēg is half of the
averaged energy gap for the entire system. Eα(i) is the
HOMO (LUMO) energy of segment α if Eα

i is below HOMO
(above LUMO). Eβ

j is similarly defined. We set the density

matrix element ρ̄
(0)
ij = 0 in Eq. (7) when the distance between

the centers of mass for α and β is longer than Cij . The first
term on the right hand side (R.H.S.) of Eq. (10), l0, is simply
the cutoff length when i and j are either HOMO or LUMO
of respective segments. The second and third terms on the
R.H.S. of Eq. (10) take into account that further the orbital
i or j from the HOMO or LUMO, the shorter the critical
length. |Eα

i − Eα(i)| and |Eβ
j − Eβ(j)| measure the energy

difference of i and j with respect to their segment HOMO
or LUMO. t0 is a scaling constant which is introduced to
control the variation of critical length for orbitals other than
segment HOMO or LUMO. The fourth term accounts for the
following fact: the larger the energy difference between i and
j, the smaller their critical length.

The cutoff lengths for excited states are given by replacing
(l0, t0) with (l1, t1). To take into account the bonding infor-
mation between segments correctly, we include all the density
matrix elements ρ̄ij for i and j which reside on the same seg-
ment or the nearest neighbors. When we take t0 = t1 = 0,
LDM/SMO method is almost equivalent to the original LDM
except that the LDM/SMO method uses the distance be-
tween the centers of mass of two segments instead of the
distance between two atoms.

Result and discussion

The absorption spectra of the 8-unit 4-chain PPV aggregates,
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which contain 456 atoms (1220 orbitals), is shown in Fig. 1.
The calculation is carried out in time-domain with SMO rep-
resentation. It is an important issue whether the excitations
in PPV is intra- or inter-chain excitations. However, calcu-
lating an optical response of a system with multiple chains
is a difficult task because of the increasing number of the
orbitals compared with the single chain case. For example,
the lowest excitation of PPV spread out about 8-unit for π-
orbitals. It would have required the full TDHF calculation, if
it were not for SMO. The LDM/SMO method automatically
selects the relevant density-matrix elements, which results in
the large reduction of the computational tasks. The num-
ber of the density-matrix elements used for obtaining Fig. 1 is

Fig. 1. Absorption spectra of the 8-unit 4-chain PPV aggregates. The
electric field is polarized along the chain axis (solid line), or perpen-
dicular to the plane of A (dashed line).

382524 with l0 = l1 = 32 Å and t0 = t1 = 0.35. This is about
1/4 of the total number of the density-matrix elements. Since
there are some mixing between σ and π orbitals because of
the special arrangement of the chains, some of the σ orbitals
contribute to the optical response.
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