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Abstract

Ž .A linear-scaling localized-density-matrix LDM method is developed to evaluate the ground-state reduced single-elec-
tron density matrices of one-dimensional molecular systems. The new method may be combined with the existing

Ž Ž . .linear-scaling LDM method for the excited states Yokojima and Chen, Chem. Phys. Lett. 292 1998 379 , and thus leads to
a linear-scaling calculation method for the properties of both the ground and excited states. The combined method is applied
to the polyacetylene oligomers and the linear-scaling of the total computational time is clearly demonstrated. q 1999
Elsevier Science B.V. All rights reserved.

Ž .Recently a localized-density-matrix LDM
method was developed to calculate the excited-state

w xproperties of very large electronic systems 1–3 .
The LDM method includes explicitly the electron–
electron Coulomb interaction and its computational
time scales linearly with the system size. It has been
applied successfully to evaluate absorption spectra of
polyacetylene oligomers containing up to 2000 car-

w x Ž .bon atoms 1 . It starts with the Hartree–Fock HF
ground-state single-electron reduced density matrix
Ž0. Ž .r , truncates the reduced density r t , and solves

Ž .the time-dependent HF TDHF equation of motion
Ž . w xEOM 4

i" r t s h t q f t ,r t 1Ž . Ž . Ž . Ž . Ž .˙
Ž .for the induced reduced density matrix dr t , where

Ž . Ž0. Ž . Ž .r t 'r qdr t , h t is the Fock matrix, and

) Corresponding author. E-mail: ghc@yangtze.hku.hk; fax
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Ž .f t represents the interaction between the electrons
and external field. It was observed that the relation

Ž0. Ž0.h ,r s0 2Ž .

to be satisfied to yield the physical properties. Other-
wise, unphysical results may be obtained, for in-
stance, the gains in the absorption spectrum. The
many linear-scaling algorithms have been developed

w xto calculate the electronic ground state 5–26 . How-
Ž .ever, it is not certain that Eq. 2 is satisfied. In this

Letter, we report a consistent linear-scaling computa-
tion method for the ground- and excited-state re-
duced density matrices. This method is based on the
linear-scaling LDM method for the excited states.
For the excited states, it is exactly the same as the

w xexisting LDM reported in Ref. 2 . For the ground
Ž .state, Eq. 2 is solved for the ground-state reduced

density matrix r Ž0. with the proper truncation of the
reduced density matrix and its idenpotency condi-
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tion. The computational time of the method is ex-
pected to scale linearly with the system size. To
illustrate the validity of the method, we calculate the
ground-state reduced single-electron density matrix
and use it to calculate its absorption spectrum of
polyacetylene oligomers.

Although the method can be applied to ab initio
methods and various models, we here employ the

Ž .Pariser–Parr–Pople PPP Hamiltonian to describe
the electron in the polyacetylene oligomers. In the
absence of the external fields, the p-electrons in the
polyacetylene are well described by the PPP Hamil-

w xtonian 27–29 ,

HsH qH . 3Ž .SSH C

Ž .H is the Su–Schrieffer–Heeger SSH Hamilto-SSH

nian, which consists of the Huckel Hamiltonian plus¨
the electron–phonon coupling. H represents theC

Coulomb interaction among the p electrons and
w xnuclei. We employ the same parameters in Ref. 2 .

The geometry is fixed in the calculation. Here p-
orbitals of N carbon atoms are employed as the basis
set, and m and n represent p-orbitals at the sites m
and n, respectively.

Assuming that a density matrix r is close to the
HF ground-state reduced single-electron density ma-
trix r Ž0., we may partition r into two parts:

rsr Ž0.qdr , 4Ž .
Similarly, the approximate Fock matrix h may be
decomposed in the form,

hshŽ0.qd h , 5Ž .
where hŽ0. is the Fock matrix for the HF ground
state,

hŽ0. s t q2d Õ r Ž0.yÕ r Ž0. , 6Ž .Ýnm nm n ,m nl l l nm nm
l

d h s2d Õ dr yÕ dr . 7Ž .Ýnm n ,m nl l l nm nm
l

Here d s1 is the Kronecker delta and Coulombn,m
w xinteraction Õ is given by the Ohno formula 30 .nm

We have thus,

Ž0. Ž0.w xA r ' h ,r s h qd h ,r qdrŽ .
Ž0. Ž0. Ž0.s h ,r q h ,dr

Ž0. 2q d h ,r qO dr 8Ž .Ž .

Ž0. Ž0. 2s h ,dr q d h ,r qO drŽ .
sLLdrqO dr 2 . 9Ž .Ž .

where LL is the linearized Liouville operator:

LL 'd hŽ0.yd hŽ0.q2d Õ yÕ r Ž0.Ž .i j ,m n j ,n im i ,m jn m ,n in jn i j

yd Õ r Ž0.qd Õ r Ž0. . 10Ž .i ,m in jn j ,n jm im

Since the density matrix r is close to the HF
ground-state density matrix r Ž0., we may use this r

as an initial guess to the ground-state density matrix.
Ž .dr may be evaluated via Eq. 9 . And we thus have

y1
dr, LLq i G A r , 11Ž . Ž . Ž .
where the damping term i G is introduced to ensure

Ž0.the convergence of r toward r , and 0-G<1.
Denote that

r
X sryRe dr . 12Ž . Ž .

We use this r
X as the new approximation to the r Ž0..

Ž . Ž . Ž .Eq. 8 and Eq. 10 ; Eq. 12 may be iteratively
< <used until any matrix element dr is less than am n

< <criteria dr , i.e., dr (dr . The convergence isc m n c

thus achieved and the current r
X may be taken as an

approximation to r Ž0..
Since r Ž0. satisfies the idempotency condition

r Ž0.sr Ž0.r Ž0. , 13Ž .
Ž . Xwe may impose the condition 13 on r via the

w xfollowing equations 9,31 :

2 3XX X X
r s3 r y2 r 14Ž . Ž . Ž .
and r

XX is thus the improved approximation to r Ž0..
Ž .Eq. 14 may be used repeatedly until a convergence

is reached, and r Ž0. is thus determined. The above
procedure may be modified so that the computational
time for r Ž0. scales linearly with the system size. As

w xwe have done in Refs. 1,2 , we introduce: dr s0i, j
< <for iy j )a or r ) l where r is the distancei j 1 i j

between atom i and j. Here l is chosen because dr1

corresponds to the excited states. The same critical
length l can be applied to hŽ0. and d h. This leads to1

a reduction of the dimension of dr or LL . For
instance, in an one-dimensional system, the dimen-

2 Ž . Žsion is reduced from N to D ' 2aq1 Nya aL
.q1 , where a is the number of the atomic orbitals

within the distance l . We denote the resulting re-1

duced density matrix as dr, and arrange its elements˜



( )S. Yokojima, G. ChenrChemical Physics Letters 300 1999 540–544542

in the following increasing order: dr , dr , . . . ,˜ ˜1,1 1,2

dr , dr , dr , . . . , dr , dr , . . . ,˜ ˜ ˜ ˜ ˜1, aq1 2,1 2,2 2,aq2 3,1

dr .˜N, N
Ž .The third term on the r.h.s. of Eq. 10 contributes

Ž . Ž .to A r in Eq. 9 by

2 Õ yÕ r Ž0.dr . 15Ž . Ž .Ý i n jn i j nn
n

Because of the cancellations between Õ and Õi n jn
Ž Ž0. w x.caused by the ‘nearsightedness’ of r 23,32 , and
among different dr , it is observed that the summa-nn

Ž .tion over n in Eq. 15 may be limited approximately
Ž Žbetween k and k , where k smax 1,min iya , j0 1 0 c

.. Ž Ž . .ya , k smin max iqa , jqa , N . Here ac 1 c c c

is the number of the atomic orbitals within the
distance l . The critical length l is for the summa-c c

Ž .tion in Eq. 15 and l ; l for our system. There-c 1

fore, lastly we keep only those third terms on the
Ž .r.h.s. of Eq. 10 whose m or n runs between k and0

k .1

The combination of those approximations result in
zero values of most LL . With the particulari j,m n

ordering of dr, the resulting Liouville matrix, de-˜
˜noted as LL , has a band diagonal form in one

w x Ž .dimensional system 2 . There are 2bq1 D yL
˜Ž .b bq1 elements within the diagonal band of LL ,

Ž .where bs2aa qa . Eq. 9 thus becomes,c c

˜ ˜LLq i G drsA , 16Ž .Ž . ˜
˜ ˜w Ž . x < <where As h r ,r and A s0 for iy j )a .˜ ˜ i j

˜The band diagonal form of LL enables us to solve

Fig. 1. CPU time on an SGI Origin 200 workstation for 40, 60,
80, 100, 140, 200, 300, 400, and 500. G s0.001 meV and
a s20.

Table 1
Comparison between the LDM and exact HF ground-state ener-
gies

N Energy HF Energy LDM
Ž . Ž .eV eV

40 y243.7554 y243.7531
60 y366.0529 y366.0490
80 y488.3505 y488.3450

100 y610.6480 y610.6410
140 y855.2431 y855.2330
200 y1222.1358 y1222.1211
300 y1833.6235 y1833.6012
400 y2445.1113 y2445.0813
500 y3056.5990 y3056.5615

Ž . Ž .Eq. 16 in the frequency domain via a simple O N
w x Ž .scaling algorithm 2 . Eq. 14 is then used iteratively

to ensure the idempotency. The additional computa-
Ž .tional time is of O N scaling as well.

It is very important to start with a good initial
guess r to the ground-state reduced density matrix
r Ž0.. The following procedure, which is similar to

w xthat of Refs. 5,18 , has been employed to determine
r.
1. We determine the values of r and r where i isi j ji

fixed and j includes all the nearby atomic orbitals
that satisfies r ( l . This is achieved by per-i j 1

forming a HF calculation for all the atoms within
the range r ( l .i j 1

2. The entire matrix r may be obtained by repeating
Ž .the above 1 for all i.

Fig. 2. Relative energy error r for 40, 60, 80, 100, 140, 200, 300,
400, and 500. G s0.001 meV and a s20.
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Fig. 3. Absorption spectra for Ns60.as20. Solid line: the LDM method. The dashed line: the full TDHF calculation. The
phenomenological dephasing constant Gs0.1 eV for excited states. The second figure is scaled 300r15 times the first one.

The above procedure is applicable to any atomic
Ž .systems, and is of O N scaling. Since polyacety-

lene is quite uniform, the computational effort is
reduced by performing the HF calculation once.

Fig. 1 shows that the computational time of the
ground state goes linearly with increasing the size of
the polymer. Gs0.001 meV, a s20, and dr s0 c

10y5 have been set in the calculation. Convergence
is achieved after three iterations for Ns40 to 500.

Ž .Idempotency condition is satisfied via applying 14
< XX X < y4once with the criteria r yr -10 for all i andi j i j

j.
To test the accuracy of our calculation, the com-

parison between the LDM and exact HF ground-state
energies is given in Table 1. The ground-state energy
calculated by LDM is in an excellent agreement with
the exact HF ground-state energy for any oligomer
with N between 40 and 500. The relative energy
error versus the size is examined in Fig. 2. The
relative energy error r is expressed as

E yEHF LDM
rs . 17Ž .

EHF

The value of r increases for 40(N(200, and
Ž .saturates for N)200. This reflects the two facts: i

the percentage of the cutoff reduced density matrix
elements increases with N and the rate of increase is

Ž . Ž0.proportional inversely to N; and ii r goes toi j

zero exponentially with increasing r , i.e. thei j
Ž0. w x‘nearsightedness’ of r 23,32 . In this method,

computational accuracy is controlled by l , G , and1

dr . Higher accuracy is attainable by larger l andc 1

smaller G and dr .c

The calculated absorption spectrum via the LDM
is shown by the solid line in Fig. 3. The dashed line
is for full TDHF. The computational times for the
ground and excited state within the full TDHF calcu-

Ž 3. Ž 6.lation scale as O N and O N , respectively.
There is an excellent agreement between the two
methods up to 3.5 eV in frequency. Better agreement
for higher frequency may be obtained by increasing
l .1

Vanderbilt and co-workers have developed a lin-
w xear-scaling method for ground state 9 , in which the

w Ž .xenergy E' tr r hym is minimized. In compari-
w xson, r,h is set to zero via an numerical iterative

procedure in the new frequency domain LDM
Ž .method. The LDM method is only of O N scaling

for one-dimensional systems. For two- or three-di-
Ž .mensional systems, Eq. 9 may be solved in the

time domain, and it is readily shown that the compu-
tational time should scale linearly with the system

w xsize 1,33 . Cut-off is employed in evaluation of Eq.
Ž .15 , and this may be replaced by the fast multipole

Ž . w xmethod FMM 22,34,35 .
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