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Abstract

A linear-scaling localized-density-matrix (LDM) method is developed to evaluate the ground-state reduced single-elec-
tron density matrices of one-dimensional molecular systems. The new method may be combined with the existing
linear-scaling LDM method for the excited states (Y okojima and Chen, Chem. Phys. Lett. 292 (1998) 379), and thus leads to
alinear-scaling calculation method for the properties of both the ground and excited states. The combined method is applied
to the polyacetylene oligomers and the linear-scaling of the total computational time is clearly demonstrated. © 1999

Elsevier Science B.V. All rights reserved.

Recently a localized-density-matrix (LDM)
method was developed to calculate the excited-state
properties of very large electronic systems [1-3].
The LDM method includes explicitly the electron—
electron Coulomb interaction and its computational
time scales linearly with the system size. It has been
applied successfully to evaluate absorption spectra of
polyacetylene oligomers containing up to 2000 car-
bon atoms [1]. It starts with the Hartree—Fock (HF)
ground-state single-electron reduced density matrix
p©, truncates the reduced density p(t), and solves
the time-dependent HF (TDHF) equation of motion
(EOM) [4]

i7p(t) = [h(t) + (1) ,p(1)] (1)

for the induced reduced density matrix Sp(t), where
p(D)=p©@ + 8p(t), h(t) is the Fock matrix, and
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f(t) represents the interaction between the electrons
and external field. It was observed that the relation

[h®,p@] =0 (2)

to be satisfied to yield the physical properties. Other-
wise, unphysical results may be obtained, for in-
stance, the gains in the absorption spectrum. The
many linear-scaling algorithms have been devel oped
to calculate the electronic ground state [5—26]. How-
ever, it is not certain that Eq. (2) is satisfied. In this
L etter, we report a consistent linear-scaling computa-
tion method for the ground- and excited-state re-
duced density matrices. This method is based on the
linear-scaling LDM method for the excited states.
For the excited states, it is exactly the same as the
existing LDM reported in Ref. [2]. For the ground
state, Eq. (2) is solved for the ground-state reduced
density matrix p© with the proper truncation of the
reduced density matrix and its idenpotency condi-
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tion. The computational time of the method is ex-
pected to scale linearly with the system size. To
illustrate the validity of the method, we calculate the
ground-state reduced single-electron density matrix
and use it to calculate its absorption spectrum of
polyacetylene oligomers.

Although the method can be applied to ab initio
methods and various models, we here employ the
Pariser—Parr—Pople (PPP) Hamiltonian to describe
the electron in the polyacetylene oligomers. In the
absence of the external fields, the m-electrons in the
polyacetylene are well described by the PPP Hamil-
tonian [27-29],

H = Heggy + He - (3)

Hesy is the Su—Schrieffer—Heeger (SSH) Hamilto-
nian, which consists of the Hiickel Hamiltonian plus
the electron—phonon coupling. H. represents the
Coulomb interaction among the = electrons and
nuclei. We employ the same parameters in Ref. [2].
The geometry is fixed in the calculation. Here -
orbitals of N carbon atoms are employed as the basis
set, and m and n represent m-orbitals at the sites m
and n, respectively.

Assuming that a density matrix p is close to the
HF ground-state reduced single-electron density ma-
trix p@, we may partition p into two parts:

p=p"+38p, (4)

Similarly, the approximate Fock matrix h may be
decomposed in the form,

h=hO + sh, (5)

where h©@ s the Fock matrix for the HF ground
state,

h(nor%:tnm—l_z‘sn,mzvnl pI(IO)_Unmpr(l(r)%’ (6)
|
ahnmzzan,mzvnlspll _Unmapnm' (7)
|

Here 6, ,, =1 is the Kronecker delta and Coulomb
interaction v,,,, is given by the Ohno formula [30].
We have thus,

A(p)=[hp]= [h(o) + 6h,p©@ + Sp]
= [h<°’,p<°>] + [h<0>,5p]

+[8h,p@] + O(8p?) (8)

=[h®,8p] + [8h,p@] + O(8p?)
=%8p+ O(8p?). (9)
where . is the linearized Liouville operator:
Zin =8 ,h% =8 h¥+28, (vin— an)p-(-o)

ij,mn j,n"tim i,m'fjn ij
0 0
- 8i,mUin pj(n) + 5j,ntm pi(m)' (10)

Since the density matrix p is close to the HF
ground-state density matrix p©@, we may use this p
as an initial guess to the ground-state density matrix.
dp may be evaluated via Eqg. (9). And we thus have

Sp=(Z+iT') " A(p), (11)

where the damping term i I” is introduced to ensure
the convergence of p toward p©@, and 0< I'< 1.
Denote that

p'=p—Re(dp). (12)
We use this p’ as the new approximation to the p©.
Eqg. (8) and Eq. (10) ~ Eq. (12) may be iteratively
used until any matrix element |8p,,,| is less than a
criteria 8p;, i.e, |8pm,l < 8p,. The convergence is
thus achieved and the current p’ may be taken as an
approximation to p©.
Since p©@ satisfies the idempotency condition

p(O) = p(O)p(O) , (13)

we may impose the condition (13) on p’ via the
following equations [9,31]:

p'=3(p) —2(p)° (14)
and p” is thus the improved approximation to p .
Eq. (14) may be used repeatedly until a convergence
is reached, and p© is thus determined. The above
procedure may be modified so that the computational
time for p© scales linearly with the system size. As
we have done in Refs. [1,2], we introduce: &p; ;=0
for [i —jl>a or r;;>1, where r;; is the distance
between atom i and j. Here |; is chosen because ép
corresponds to the excited states. The same critical
length 1, can be applied to h® and §h. This leadsto
a reduction of the dimension of 6p or . For
instance, in an one-dimensiona system, the dimen-
sion is reduced from N? to D, = 2a+ DN — ala
+ 1), where « is the number of the atomic orbitals
within the distance I,. We denote the resulting re-
duced density matrix as 8p, and arrange its elements
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in the following increasing order: 8p, 1, 6py,, ...,
Sel,aﬂv 8p21: OP22: -ov OPoar2r OP31s -,
8Py, N-

The third term on the r.h.s. of Eq. (10) contributes
to A(p) in Eq. (9) by

22( Uin — an)pi(?)‘spnn . (15)
n

Because of the cancellations between v, and v,
(caused by the ‘ nearsightedness’ of p© [23,32]), and
among different ép,,,, it is observed that the summa-
tion over n in Eq. (15) may be limited approximately
between k, and k,, where k, = max(1,min(i — «., ]
—ay), k;=min(max(i + «,j + a.),N). Here a,
is the number of the atomic orbitals within the
distance |.. The critical length I is for the summa-
tion in Eq. (15) and |, ~ I, for our system. There-
fore, lastly we keep only those third terms on the
r.h.s. of Eq. (10) whose m or n runs between k, and
K.

The combination of those approximations result in
zero values of most ;... With the particular
ordering of 8p, the resulting Liouville matrix, de-
noted as .#, has a band diagona form in one
dimensional system [2]. There are (23 + 1)D_ —
B( B+ 1) elements within the diagonal band of .,
where B =2aa, + a,. Eq. (9) thus becomes,

(Z+iT)op=A, (16)

where A=[h(p),p] and A~u;:0 for |i—jl> a.
The band diagona form of ¥ enables us to solve
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Fig. 1. CPU time on an SGI Origin 200 workstation for 40, 60,
80, 100, 140, 200, 300, 400, and 500. I' =0.001 meV and
a=20.

Table 1
Comparison between the LDM and exact HF ground-state ener-
gies

N Energy HF Energy LDM
(ev) (ev)

40 —243.7554 —243.7531
60 —366.0529 —366.0490
80 —488.3505 —488.3450
100 —610.6480 —610.6410
140 —855.2431 —855.2330
200 —1222.1358 —1222.1211
300 —1833.6235 —1833.6012
400 —2445.1113 —2445.0813
500 —3056.5990 —3056.5615

Eg. (16) in the frequency domain via a simple O(N)
scaling algorithm [2]. Eq. (14) is then used iteratively
to ensure the idempotency. The additional computa-
tional time is of O(N) scaling as well.

It is very important to start with a good initial
guess p to the ground-state reduced density matrix
p©. The following procedure, which is similar to
that of Refs. [5,18], has been employed to determine
p.

1. We determine the values of p;; and p; wherei is
fixed and | includes all the nearby atomic orbitals
that satisfies r;; <I;. This is achieved by per-
forming a HF calculation for al the atoms within
therange r;; <.

2. The entire matrix p may be obtained by repeating
the above (1) for all i.

Relative energy error (X109)

0.9 |

0.8

0 100 200 300 400 500 600
N

Fig. 2. Relative energy error r for 40, 60, 80, 100, 140, 200, 300,

400, and 500. I" = 0.001 meV and « = 20.
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T T T T T T T T

1 12 14 16 18 2 22 24 26 28
 (eV)

42 44 46 48 5

3 32 34 36 38 4
 (eV)

Fig. 3. Absorption spectra for N=60.a=20. Solid line: the LDM method. The dashed line: the full TDHF calculation. The
phenomenological dephasing constant I"= 0.1 eV for excited states. The second figure is scaled 300,15 times the first one.

The above procedure is applicable to any atomic
systems, and is of O(N) scaing. Since polyacety-
lene is quite uniform, the computational effort is
reduced by performing the HF calculation once.

Fig. 1 shows that the computational time of the
ground state goes linearly with increasing the size of
the polymer. I'=0.001 meV, a,= 20, and &p, =
107° have been set in the calculation. Convergence
is achieved after three iterations for N = 40 to 500.
Idempotency condition is satisfied via applying (14)
once with the criteria | p{; — p{;| < 10™* for &l i and
j-

To test the accuracy of our calculation, the com-
parison between the LDM and exact HF ground-state
energiesis given in Table 1. The ground-state energy
calculated by LDM isin an excellent agreement with
the exact HF ground-state energy for any oligomer
with N between 40 and 500. The relative energy
error versus the size is examined in Fig. 2. The
relative energy error r is expressed as
r— EHF - ELDM . (17)

Eve
The value of r increases for 40 < N <200, and
saturates for N > 200. This reflects the two facts: (i)
the percentage of the cutoff reduced density matrix
elements increases with N and the rate of increase is
proportional inversely to N; and (i) pY goes to
zero exponentialy with increasing r;;, i.e. the
‘nearsightedness of p@©@ [23,32]. In this method,

computational accuracy is controlled by 1,, I, and
dp.. Higher accuracy is attainable by larger 1, and
smaller I and 6p,.

The calculated absorption spectrum via the LDM
is shown by the solid line in Fig. 3. The dashed line
is for full TDHF. The computational times for the
ground and excited state within the full TDHF calcu-
lation scale as O(N3®) and O(N®), respectively.
There is an excellent agreement between the two
methods up to 3.5 eV in frequency. Better agreement
for higher frequency may be obtained by increasing
l,.

Vanderbilt and co-workers have developed a lin-
ear-scaling method for ground state [9], in which the
energy E=tr[ p(h— w)] is minimized. In compari-
son, [ p,h] is set to zero via an numerical iterative
procedure in the new frequency domain LDM
method. The LDM method is only of O(N) scaling
for one-dimensional systems. For two- or three-di-
mensional systems, Eq. (9) may be solved in the
time domain, and it is readily shown that the compu-
tational time should scale linearly with the system
size [1,33]. Cut-off is employed in evaluation of Eq.
(15), and this may be replaced by the fast multipole
method (FMM) [22,34,35].
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