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Generalized linear-scaling localized-density-matrix method

Wanzhen Liang, Satoshi Yokojima, and GuanHua Chen
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

(Received 12 June 1998; accepted 23 October 1998

A generalized linear scaling localized-density-matfiXDM) method is developed to adopt the
nonorthonormal basis set and retain full Coulomb differential overlap integrals. To examine its
validity, the method is employed to evaluate the absorption spectra of polyacetylene oligomers
containing up to 500 carbon atoms. The semiempirical Hamiltonian forrtiedectrons includes
explicitly the overlap integrals among theorbitals, and is determined from tlad initio Hartree—

Fock reduced single-electron density matrix. Implementation of the generalized LDM method at the
ab initio molecular orbital calculation level is discussed. 199 American Institute of Physics.
[S0021-960609)31104-1

I. INTRODUCTION frequency domain scales @ N®) while in the time domain
it scales aO(N%). Since the calculation of the many-body

There is a growing interest in numerical evaluation ofwave functions is avoided, the computational effort is greatly
the electronic structures of complex and large systems likeeduced compared to the conventional sum-over-state
proteins, aggregates and nanostructubdsinitio and semi-  methods® >3 The TDHF approximation includes complete
empirical molecular orbital calculations are usually limited single electron excitations and some partial double, triple and
to small and medium size molecular systems. The obstaclether multi-electron excitations. It has been applied success-
lies in rapidly increasing computational costs as the systemflly to investigate the optical properties of conjugated
become larger and more complex. The computational tim@olymers?®® An O(N?) scaling density-matrix-spectral-
tepy is proportional to a certain power of the system size,moment algorithrif* has been developed to calculate the en-
i.e., tcpue N, whereN is the number of electrons, amds an  velope of the entire linear and nonlinear optical spectra of
exponent which is usually larger than 1. For instance, theonjugated polymers containing up to 300 carbon atoms. In
computational time ofb initio Hartree—FockHF) molecu-  Ref. 35, it has been shown that the ground state off-diagonal
lar orbital calculation has a®(N3~%) scaling, i.e.,x=3 elementsp;; are negligible when the distancg betweeni
~4. To determine the electronic structures of very large sysandj is larger than a critical length,. This is a consequence
tems, it is essential that the computational cost scales linearlyf “the near-sightedness of equilibrium systenf§.When
with N. SeveralO(N) methods have been developed to cal-the system is subjected to an external figl), the field
culate the electronic ground stat&® The physical basis of induces a changép in the reduced density matrix. The in-
these methods is “the nearsightedness of equilibriurduced density matriXp has a similar “near-sightedness,”
systems.”* The excited states of very large electronic sys-i.e., the off-diagonal elementp;; is approximately zero as
tems are much more difficult to determine. Several lineathe distance betweenand] is large enougf® Different or-
scaling calculations based on the noninteracting electroders of responses B(t) have different critical lengths. Usu-
models have been carried out to determine the excited statdly the higher the order of responsgthe longer the critical
properties of large system$2° Explicit inclusion of elec- lengthl,, i.e., |y<I;<l,<l3<.---. We may truncate the
tronic correlation in the linear scaling calculation of the ex-nth order induced density matrix respondg™ (note, 5p
cited state properties has proven much more challenging. = 8p™+ 5p+ 5pG)+ - . .) by setting its elementsp{” to

A reduced single-electron density matgixcontains im-  zero if rj;>1,,. This truncation may lead to a drastic reduc-
portant information of an electronic system. Expressed in ation of the computational time.
orthonormal basis set, the diagonal elemgnts the electron Recently the linear scaling localized-density-matrix
density at a local orbital, and the off-diagonal elemept; (LDM) method has been developed to evaluate the properties
(i#]) measures the electronic coherence between two oef excited state3®*’ It is based on the TDHF
thogonal local orbitald and j, where the reduced single- approximatioR’ and the above-mentioned truncation of the
electron density matriy is then defined as the expectation density matrix. Through the introduction of the critical
value pijz(¢|a;rai|¢> with ¢ being the wave function and lengthsl,, I, and others which are characteristic of the re-
aiT(aj) the electron creatiofannihilatior) operator at the lo- duced density matrix, the computational time of the LDM
cal orbitali (j). An equation of motiofEOM) for the re- method scales linearly with the system siteThe method
duced density matrix has been solved to calculate linear anidas been tested successfully to evaluate the optical properties
nonlinear electronic responses to external fiéfdsnd thus, of conjugated polymer®=>"In Refs. 36 and 37, the Pariser—
probe the properties of the excited states. This EOM is baseflarr—PopldPPP modef® is adopted to describe the dynam-
on the time-dependent Hartree—Fo¢RDHF) approxi- ics of 7 electrons in polyacetylend@A) oligomers. The PPP
mation?’ and the computational time for solving it in the model is based on orthonormal basis set and the zero differ-
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Coulomb interactior? The usage of the orthonormal basis ~ Hee=>, >, V(ry)), )

ential overlap(ZDO) approximation for electron—electron N
=1 j>i

set and the ZDO approximation limit the applicability of the
LDM method. Ab initio calculations usually use nonor-

thonormal basis se{$or instance, the Slater-type atomic or- N
bitals) and include Coulomb differential overlap integrals. Hex= >, €E(t)-1;, (4)
Most semiempirical calculations like the intermediate ne- i=1

glect of differential overlagINDO),*° the modified neglect , , _ o _

of diatomic overlap(MNDO),*! Austin Model 1 (AM1),%2 wherei andj are, respectlvel_y, the indices (_)f thidn andjth
and MNDO-Parametric Method 8°M3)*® neglect partial eIec’Frons,U(ri) is the potential energy of thigh electron in
differential overlaps. Moreover, it has been pointed out thafh€ field produced by the nuclei and the core anelectrons,
for conjugated polymers the differential overlap integralsV(fij) i the effective Coulomb interaction between flie
should be included explicitly in order to calculate accurately®"d] th electrons witlt;; being the distance between the two
both the bond orders and the optical g&bshus, it is desir-  €1€Ctrons, and(t) is the external field. Thusj is the one-
able to generalize the LDM method so that the nonorthonor€!€ctron part of the Hamiltonian which describes the dynam-
mal basis set may be adopted and the complete Coulom§s of a singlerr electron in the absence of otherelectrons.

differential overlap integrals are included in the calculation.Hee S the two-e[ectron part of'the Hamiltonian which repre-
A natural choice for the nonorthonormal basis set is the>€Nts the effective Coulomb interaction among thelec-
atomic orbital(AO) basis set. An AO depends only on the trons.Hgy, is th_e |r_1teract|on between the electrons and an
atomic type, and is thus transferable for any atom in differenfXt€rnal electric fields(t).
molecules. The one-electron integra); may be expressed as

In this work we employ the AO basis set, and generalize
the LDM method to calculate the excited state properties.
The generalized LDM method is applied to calculate the op-

tical absorption spectra of PA oligomers containing up towhere)(i is the 7 AO of the ith carbon atom, and is the

500 carbon atoms. To simplify the calculation, we ConSiderdisplacement vector of an electron. Here the indegpre-

only the_77 electrons in t_he systems,_since th_e_se electrons A€ants théth carbon atom, and it increases from one end of an
responsible for the optical spectra in the visible range. Th%ligomer to the other end starting from 1. The two-electron

PPP Ham|ltqn|an_ is based on the orthonormal basis Sptfntegral Vi 1 may be calculated via the following expres-
Thus, a Hamiltonian based on the nonorthonormal AO bas'§ion' '

set is to be determined. In Sec. Il an effective Hamiltonian

model based on the AO basis set is proposed to describe the

dynamics ofmr electrons in conjugated polymers. In Sec. Il _ . N

the TDHF method employing the nonorthonormal basis setis ViK™~ | dr1drzx (r)x(r)Vr2 xic (r2) xi(r2).

tij=(xil — 3VZ+U)]x)), (5)

developed, and its EOM is derived. In Sec. IV the LDM (6)
formalism is generalized for implementation in the nonor- . . o
thonormal basis set. In Se¢ a novel algorithm is applied to Since the AOs are localized on individual atoms, we

PA to determine the effective Hamiltonian for the elec- May keep only the diagonal terms of the one-electron inte-
trons in the nonorthonormat orbital basis set. In Sec. VI 9grals (i.e., tj;) and the off-diagonal terms corresponding to
the absorption spectra of PA oligomers containing up to 50@NY pairs of two orbitals that form & bond. In other words,
carbon atoms are obtained. The linear scaling of the compu-

tational time and memory is examined in detail. The roles of  ; _ @)
different critical lengths are investigated. Further develop- '

ment of the LDM is discussed, and the results of this workif j«j and theith andjth atoms are not bonded viaa

are summarized in Sec. VII. bond.
Unlike the PPE® and complete neglect of differential
Il. MODEL overlap (CNDO)* methods where the differential overlap

A PA oligomer is a planar unsaturated organic m0|ecu|ejntegrals are neglected, we keep all Coulomb differential

and its valence molecular orbita§10s) may be divided into  OVeriap integrals in Eq(6). The effective Coulomb interac-
7 and o MOs 38 The 7 electrons may be treated separatelyi®n V(rij) may be approximated by the Ohno formfa.e.,

from the o electrons, and are responsible for the optical re-

sponse in the optical frequency regime. The Hamiltonian for U
the 7 electrons may be written as follows, V(rij) = —, (8)
\/1+(rij /a0)2
H=Hg+Heet Heys ) . . . . .
whereU is the on-site Coulomb interaction, aag is a char-
N acteristic length which is approximately the bond length. In-
1 . . i .
H.= (_ —V2+U(r-)) ) stead of evaluating Eq6) explicitly, two-electron integrals
e . r i) . . .
i=1 2 may be approximated by the following expressfén:
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an,kl"N’Umn,kISmnSklr , h oy oy % %/l
©) pij(61,61,0=2 oW BCRDICHDT" ok (6) (19
Umnkl =
\/1+

where the overlap integral§; are defined as follows:

U

, with o being the spin state of tHeh molecular spin-orbital
|rmn—rk||>2 W, see the Appendix. Integrating the right-hand-sjde)

of Eq. (13), we obtain the EOM for the reduced single-
electron density matrix:

Qo

i Sy 7S=(h7+1)p?S—Sp?(h?+1), (16
Si={xilx;). (10 " ’ "

. . . where the reduced density matgX for spino is defined as
andr,,is the mean displacement vectorrgfandr,,, i.e.,

Moo= 3 (P Fo). (1D Pi(D=(alp;(0,0",0]0)
lll. TDHF METHOD IN NONORTHONORMAL BASIS ZIZEOCC cii(tleji(H]* 17
SET

h for th ingle-el , _ with | summing over the occupied spatial molecular orbitals,
The EOM for the reduced single-electron density matriXp o is the Fock matrix whose elements are given as

p in an orthonormal basis set has been derived within the

TDHF approximatiorf® Here we derive the EOM fop in a

nonorthonormal basis set. Starting with the definition of re- o ¢ o WL TN, 18
duced single-electron density matiXr,6,,r;6;,t) in the ()= tom ”2(, pij (WVomi ; Pi(Vnim. (18

spin-spatial representation: . . .
andf characterizes the interaction between theslectrons

o and the external fiel@&(t) with its matrix elements being
p(ry6y,r161,t)

=Nf dr,dé,drzdés- - -drydéy fnm(t)mez(r]);ﬂsnmE(t). (19
XD(r161,r267, ... Oyt Here we assume that the external electric fle{t) is polar-
XD* (110,120, ... InOnst), (12) ized_alo_ng th_e chain axis. _The_detailed derivation of Eq.
(16) is given in the Appendix. Since the systems that we are
where ®(r,6,,r,0;,, ... ry0y,t) is the Slater determinant interested in are symmetric with respect to spin up and spin

representing many-body wave function, anénd ¢; are the  down, we neglect the spin index thereafter. We partition the
spatial and spin coordinate for tith electron, respectively. density matrixp(t) into two parts:
We write down the EOM forp(r,6,,r16;,t):

p(t)=p P+ 8p(1), (20

where p(© is the HF ground state reduced single-electron
density matrix in the absence of external fields, @pdt) is

the difference betweep(t) and p?, i.e., the induced den-
sity matrix by the external field(t). Similarly, the Fock
matrix h(t) is decomposed into the form,

izip(ra01,r56],1t)
:Nf drzdezdr3d03' . 'drN dHN

XP*(r101,r56,, ... nONsT)

XH®P(r160,,r,65, ... ry0n,t)

h(t)=h©+ sh(t), (21)
_Nf drod6; drsdfs- - -drydoy whereh(® is the Fock matrix wherE(t)=0:
X[DP*(r101,r205, ... rnON,1)

XH®(FL0],126y, ... FnOn DT (13) h?ﬁ%=tnm+; PP (2Vamii = Vaijm)» (22)

p(r,61,r1601,t) may be expanded in the nonorthonormal AO

basis sefxi}: and the induced Fock matri&h is

p(r16:,7101,0= [xi(ro)pi (61,65, D(x;(rp)], Shan(1)=2 8y (D(2Vnmi = Vi m)- @3
ij

(14 With Egs. (20) and (21), we can rewrite Eq(16) as
where follows:
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ih5b=[8‘1h<°)5p—5ph<°)S‘1] ex.c.ited states. This is achieved vja the int7roduction of five
critical lengths and related approximatiofis.
+[Stehp @ —p@shs 1] First, we setsp{(t) to zero wherr;;>1,. This approxi-

mation is based on the “near-sightedness”&#f%)(t), and
leads to the reduction of the number of unknoﬁp{l) or the
+[S Y op—pfST1] dimension of Eq(26) from N2 to D=(2a;+1)N—a;(a;
+1), wherea; is the number of bonds within the distance

+[S Hp @ —p@fs1]

-1 _ —1
T[S " ohdp=35pshS ). (24) I1. Note D scales linearly wittN.

For the first-order induced density matdy®, its dynamics Second,S;; and Sﬂl are set to zero when;>Ig and
may be described by rij>ls,, respectively. The overlap of two AOs decays rap-
L idly with the increasing distance between them. Higeis

1K(0) 5,(D) — -1
ihopM=[S @ spt— 5p'Y ] the critical length that characterizes the exponential decay of
+[S*16h(1)p(°)—p<°)5h s Sij with increasingj; . As it has been pointed out in Ref. 48,
1 (O (Ol the off-diagonal element cﬁ&J diminishes exponentially for
H[S HfpT—p S (25 larger;; as well, and its decay is characterized by a slightly
More specifically, larger critical lengthl ;.
Third, p{{” is set to zero when;;>1,. 1 is usually much
ih5b,J 2 E (Sklhf(?)ap(l) 5Pi(k1)hf<(|))sﬁl) Ionger thanlsl andlg,, i.e., 1g>lg andlg, becauseﬁJ and

S decay rather rapidly with the increasing. According
to Eq. (22), h(® thus has approximately the same critical
+2> E 2 E (St Sp\Vit mnpl lengthlo, i.e., h{?=0 for r;;>1,.
k For a fixed palr of andj the second and third approxi-
mations result in the finite ranges of summations in @6)
=i SptanVid.mnS; ) — 2 E Z E (Sk*  for k, I, mandn except the second term on the rhs of the
equation. These finite ranges are determinedigbi;, |, or

% 5PmnvkmnIP(O)_P|E)5P(1)VkmnIS] ls», and are approximatelyd, 2aq, 2aq Or 2a,, respec-
tively, where ag, ag; and ag, are the numbers of bonds
+2 2 (Si fk|P|J Pi(f)fmsﬂl)- (26) within Iy, Is; andlg,, respectively. However, the total num-

ber of summations in the second term on the rhs of(E§).

We integrate numerically Eq25) in the time domain, and
solve it for the time evolution of the polarization vecte(t).

Within the dipole approximatior?(t) may be expressed as
2; EI % ; (Sik 5Pmnvkl mnP| O)_p(O) o mnVk, mnSIJ

P(t>=§ —e(xilrlx;)pij (D). (27) (31

Since we assume that the external electric field is polarized

. . . 1 . .
along the chain axig, the first-order response{" is given g proportional taN, since the number of summations over

by andn is of O(N). To achieve the linear scaling of the com-
z(i)+ z(]) putational time, the number of summations owverand n
PM(t)~ E ————S;op(1). (28)  must be limited to a fixed value which does not vary with
There are two types of cancellation in E81). (i) The sum
To obtain the optical absorption spectrum, we then perform af S VkI mnPIO) and — pl(k Vi mnSJ cancels much of their

Fourier transformation oP{M(t), values;(ii) smceEmn&p(l)—O i.e., the charge conservation,
w _ the summation ovem and n leads to further cancellation.
Pél)(w)=J dt PM(t)e et (29)  Therefore, we may limim (n) betweenm, (ny) and m;

(ny), where my=ny=maX1,minf—a,—ap—3aq,]—a
—ag— 3ag)] and m;=n;=min[N,max{+a.+agp+ 3 gy,
+act+agpt 3ag)]. ac is the number of bonds within a
a(w)=IM P (w)/E(w)], (300  distancd, andl. is the critical length that limits the suma-
tion ranges ofm and n beyond which cancellation§) and
(ii) render further summation negligible. This is our fourth
approximation.
The first, third and fourth approximations are exactly the
The key of the generalized LDM method is to reduce thesame as those in Refs. 36 and 37. The second approximation
dimension of the reduced single-electron density matrixjs due to the use of the nonorthonormal basis set and the
since the density matrix has a localized character or a “nearconsequent introduction of the overlap mat8xWith these
sightedness” not only for the ground state but also for lowerapproximations, Eq26) becomes

The imaginary partr(w) of the complex linear polarizability
is then determined readily via

whereE(w) is the Fourier transform oE(t).

IV. GENERALIZED LDM METHOD
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d li-k<ag, [k—l|<ag.|l-jl<a; li-kl<ay, [k=l|<ag,|l-jl<as
[rgap= 7S a3 S andsy
li-kl<agp, [k=l|<ag [l=j|<ag, mo=<m=my, [m—n|<ag ,aj.ng<n<n;
+2 EK EI % ; S|T<1Vkl,mn5p§nI)1pI(JO)
li-kl<ag, [k=ll<ag,|l-jl<as, mp<m=<mq, |[n-n[<ag a;.ng=<n<ng
-2 Ek EI % ; P|k)VkI mngpmn ]
li-K<asy, [k—m|<ag;, [m—n|<ay, In—l|<ag[I-jl<ag
- ZK % ; EI Slk Vim, nl5pmnp(0)
li-kl<aqg, |k=m|<agy, Im—n|<aq, [n—l|<ag .|l -jl<ag
+ 2 > > > P VimnSpmS; ¢
k m n |
li-kl=<agp, [k—l|<ag .|l-jl<ag li-kl<ag, [k—l|<ag |I-jl<ag
+ Ek: Z S T Ek: §|: P taS; . (32

In Eqg. (32) the summation ovek, I, m, andn are restricted This equation can be recast in the form
to the finite ranges which do not depend on the valu&l of
Since the number oBp{” is proportional toN, the total
number of steps required to integrate E2R) scales linearly dmn=2 tmiPL(i ,n)—E Pr(m,i)ti,+Rmp=0, (35
with N. Therefore, we expect that the computational time is ' !
proportional toN.

We include explicitly the phenomenological dephasing
v in EqQ. (32). In the calculation, we use the fourth-order
Runge—Kutta methdd for solving Eq.(32). We have used

where

the external field, Rmnzz% Vmi,klp(kcl))PL(ivn)_z% PR(myi)Vin,klpE((IJ)
g(t)zit ~wiv?, 33 =2 ViU + 23 PRI Vi n,
T
(36)

wheret=0.1 fs and perform the time integration for the time
duration between- 0.5 and 220 fs with the time step 0.025 fs

to calculate the absorption spectra. The phenomenological O)a
dephasingy is set to 25 meV. ()= E Pik Sk (37
V. EFFECTIVE HAMILTONIAN FOR 7 ELECTRONS
. : Pr(i,j)= @, 38
The PPP model is widely used to describe thelectron R ; SikPiq (38)

system of planar conjugated molecufédhe orthogonalized

AOs are employed in the PPP model. Chen and Muldel As in Ref. 50, a functior§j is constructed:

have developed the constrained density matrix variation

(CDMV)*! approach to determine the effective Hamiltonians

of reduced electronic systems, and applied it to PA to obtain ng dﬁm+ F, (39
the PPP-like Hamiltonian for ther electrons. The natural mn

atomic orbitals(NAOs) were used as the basis set. In this
work the nonorthonormat AOs are used as the basis set. A
new effective Hamiltonian with the nonorthonormal basis se
is thus required. We describe here briefly the CDMV ap-
proach that we use to determine the effective Hamiltonian

whereF represents the variational constrairfts,,, is deter
[mlned by minimizing the value of. Upon minimizing G

with respect ta;; , we have

with the nonorthonormatr AO basis set. dF
When there is no external field, i.&E(t)=0, Eq.(16) _22 dmn—— at Tijzo- (40
becomes

The effective Hamiltonian is determined by solving E40)
h©p05— 550K =, (349  for t;;. With =0, Eq.(40) becomes
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TABLE |. t;; of the effective Hamiltonian forr electrons with 40 carbon atoni& eV). (The system is
symmetric. Thug;; =ty for j=N+1—j andi=N+1-1i).

[ 2 3 4 5 6 7 8 9 10
i, —1986 —1.371 —2.198 —1.496 —2.295 —1567 -2.363 —1.619 —2.419
ti; 0.030 0069 008 0107 0116 0131 0137 0148 0.152
i 11 12 13 14 15 16 17 18 19 20
tii., —1660 —2.466 —1.694 —2508 —1.722 —2.539 —1.740 -2.560 —1.753 —2.573
ti; 0.160 0.163 0170 0172 0176 0177 0181 0181 0183 0.183
_ . grals for the double and single bonds are taken as
2 tiPLKMIPL(G,M)+ > tPR(M,K)Pr(m,i) 0.183,—2.573 and— 1.753 eV, respectively.

The resulting Hamiltonians are used to calculate the optical

spectra of longer oligomers. The details of the calculation

— > tnPr(LKPLGLM = 2ty Py (K, j)Pr(M,i) that determines the effective Hamiltonian will appear in a
mk mk separate publicatioff.

+2 RinPL(j,M) — X RyPr(m,i)=0. (41)
m m VI. RESULTS
We keep only those;; that represent the locar atomic The GAUSSIAN 94 software package is employed to cal-
energies and one-electron integrals across the nearest neighjate the overlap matri% and theab initio HF ground state
bors. Thus, we set reduced single-electron density matpi®). Geometry opti-
mization is performed at the HF level. All the double or
t;=0 single bond lengths are kept the same, and the bond angles

between the double and single bonds are 124.02°.Nror
=40, we find that the double and single bond lengths are
1.324 and 1.478 A, respectivelys; or Sﬁl decreases

for j#i=1 orj#i, and solve Eq(41) for t;; andt; ;. p(¥
is the input, and may be obtained from thie initio calcula-
tions. The effective Coulomb interaction among theelec- . ; ) : .
trons may be approximated by E@). a, is set to 1.29 AU qwclgly to zero with the mggeasmgj X Fornlnstance,

is to be chosen so that the calculated optical gap fits the (1) S1041=0.184 andS,g;;= —0.203. (ii) Syy,17=0.245

-1 _ -1 _
experimental value. In the calculatioy, is set to zero since _?_Ed Sllv1|2_t. ?'21? : E["') Sao,llz— 0;01203 Aand Slog2 0‘035,{'
only the relative energies are of physical interest. us, relatively shorts; andls, ( ) may be used to

We determine first the effective Hamiltonian with the tr}J ncate theSands ™, res-pectively. In_ Table 1, we ."St the .
AOs as the basis set. A PA oligomer with 40 carbon atoms iéﬂagonal a(lg)d near(eo)st-nelghbor off-diagonal dens.|ty matrix
chosen. It is found thdt) = 1.81 eV results in an optical gap elementSp“O andp; iy, for N=40. Note that the diagonal
of 2.23 eV for N=40 and leads to~2.0 eV for PA (N elementSpi(i ) are equal to 0.5, and are approximately 0.398
— ). Resulting values of;; are listed in Table It is the wheni is not at or near either end of the oligomer. The

bare AO energy of® which may be written as follows: electron densityni_ at the ith orbital may be calculated
through the following formula:

=t i+ Vi ki—V . 42
=t Ek)( i kk— V11x) (42 ni:; pi(j())sji. 43)

The resulting Ha_mlltonlan is used to_calculat_e the_HF ground]_he resulting values afi’s are 0.5 except that=1, and are
state reduced single-electron density matrix which is then.

compared with theb initio HF ground state reduced single- fisted in Table .

. X ; . 4 The HF method is a self-consistent-figl8§CH method
electron density matrixsee Table . Since the oligomer is : . A ) _
. . . whose solution requires an initial guess of the density matrix.
centro-symmetric, we list only data for=1 to 20. We cal-

. o . To construct the initial ground state density matrix fér
culate the effective Hamiltonian with even numby N >40, the following procedure is employed. First, we calcu-
=2n=8—48, and find that;; converged atN~32. The ! 9p ployed. '

. - late the reduced single electron density matrix of a PA oli-
effective Hamiltonians for a larger systemd ¥ 40) may thus . .
be determined from that of the=40. To construct the ef- 20! with 40 carbon atoms using BBUSSIAN 94program.

) oo : It is shown via a two-dimensional contour plot in Fig 1. Note
fective Hamiltonians for longer oligomers, we follow the ! o . ; .
. that the density matrix is band diagonal, and outside the di-
strategy below:

agonal band the matrix elements are almost zero. This is the
() the values of the first 2@; ;.; andt from each end so-called “near-sightedness” of®), and the width of the

of the oligomer are given in Table I; band is~2ay. We note further that the middle part of the
(i)  the rest of the bare orbital energy, one-electron intediagonal band is quite homogeneous with a period of 4, see
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TABLE II. The diagonal and the nearest neighbor off-diagonal elements of the ground state reduced single-electron densﬁtSf)n?amibd the charge
densityn; .°

i 1 2 3 4 5 6 7 8 9 10

pl® 0.416 0.389 0.399 0.397 0.398 0.397 0.398 0.398 0.398 0.398
(—0.005 (0.003 (—0.003 (0.009 (—0.001 (0.003 (—0.001 (0.002 (—0.000 (0.002

ol 0.385 0.072 0.368 0.078 0.366 0.080 0.366 0.079 0.366 0.080
(0.009 (—0.01) (0.008 (—0.015 (0.010 (—0.0197 (0.01) (—0.019 (0.012 (—0.020

n; 0.505 0.496 0.500 0.499 0.500 0.500 0.500 0.500 0.500 0.500
(—0.009 (0.002 (—0.003 (0.003 (—0.002 (0.002 (—0.009) (0.002 (—0.009) (0.009)
i 11 12 13 14 15 16 17 18 19 20

pl® 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398
(0.000 (0.002 (0.000 (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

o), 0.365 0.080 0.366 0.080 0.366 0.080 0.366 0.080 0.366 0.080
(0.012 (—0.020 (0.013 (—0.02) (0.013 (—0.02)) (0.013 (—0.02)) (0.013 (—0.021

n; 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
(—0.00) (0.009) (—0.000 (0.00)) (—0.000 (0.000 (—0.000 (0.000 (0.000 (0.000

%(() is the reduced density matrix elements givenalyinitio calculation usingsAussian 94
Pn; is the charge on each sita;=2jpi(j°)$j . Data in the parentheses below each value is the difference betwea théio result and its counterpart
calculated from the effective Hamiltonian.

Fig. 2. The period of 4 reflects the fact that PA has thedifferent sets ofxg and e with a4, a5 andag, being fixed
repeating double and single bond structure. We thus elongat 40, 4, and 8, respectively. The resulting absorption spectra
the diagonal band by repeatedly inserting the period until thare shown in Fig. 4. The solid line is fagg=30 and a,
density matrix reaches the desired size, see Fig. 2. The re=24, the diamonds fory= a.= 24, and the crosses far,
sulting density matrix is used as the initial guess for the=24 anda.=30. Obviously, the three sets of data for the
ground state density matrix of the large systdi=(40). absorption spectrum are virtually the same. This implies
The inset of Fig. 3 shows the time evolution of polariza- strongly thatay=a.=24 is sufficient to yield an accurate
tion P{Y(t) for N=120 for a;=40, ay=a,=24, ag=4, absorption spectrum. Moreover, it verifies that our fourth
and as,=8. P{N(t) oscillates with time and its oscillation approximation in Sec. IV is very reliable.
amplitude decays as™”'. From the Fourier transform of To demonstrate that the computational time of the gen-
P((t), we obtain the absorption spectrusee Eqs(29)  eralized LDM method scales linearly with the system size
and (30)]. Figure 3 shows the absorption spectrum For we calculate the linear response to the external #ld for
=120 with two sets ofag, @i, a¢,as, and ag,. ag=a,  N=40, 80, 120, 160, 200, 300, 380 and 50Q=a.=a;
=24, ag=4 andag,=8 are employed. The diamonds are =20, ay =2 andas,=4 are employed. The CPU time for
for a, =30, and the triangles are far, = 40. Clearly, the two each calculation is measured, and the results are plotted with
sets of data agree well with each other. Thus, the criticaf dashed line in Fig. 5. The CPU time spent in the HF ground
length1, of 8pX) covers about 30 double or single bonds, state has been subtracted from the total CPU time. So the
i.e., a; =30 results in an accurate absorption spectrum up téesulting CPU time in Fig. 5 is for the excited states or the
a frequency of 2.3 eV. The absorption peak in Fig. 3 corre-optical response only. Clearly, the linear scaling of the com-
sponds to the excited stat®]. For higher frequency range, putational time versus the system size is achieved for the
we find that largera is required to produce an accurate
absorption spectrum. This implies that the density matrices

of the higher excited states have longer T N~ -
To investigate the roles af, and a. on the accuracy of Rl ~
the calculation, we compare the absorption spectra for three
T, (b)
40 , (b)
' 4 /
008 ' [ —_—
B P a
e \\ (a)
20 ¢ a -
«
"
e (a)
i
<"
& s
20 40 FIG. 2. Constructing density matrix for a larger system from the density

matrix for N=40. During the constructiofa) and (b) are kept unchanged;
FIG. 1. The reduced ground state density matrixMor 40. (c) is repeated until the density matrix reaches the desirable size.
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FIG. 5. CPU time of LDM on an SGI Indigo2 R10000 workstation for
=40, 80, 120, 160, 200, 300, 380 and 5@e dashed line ay=a.=a;
=20,a5 =2 anda52=4. The full TDHF calculation is shown by the dotted
line. Each calculation is performed during the time interval betweéns
and 0.25 fs with the time step 0.025 fg=25 meV.

 (eVv)

FIG. 3. Absorption spectra foN=120 with differenta;. ag=a.=24,
a5 =4 andas,=8. The diamonds are far; =30 and the triangles are for

a,=40. The inset shows the time evolution of poIarizatiBﬁ) for a;
=40. The phenomenological dephasing constaa25 meV.

. . . ._are the resulting CPU times. The dashed lines are the least
excited state propemes. For the comparison th_e CPU UME:s to the data assuming that the CPU time depends linearly
for the full TDHF is shown by the dotted line which has an N a;, @, and a. The computational time scales linearly
O(N% scaling. We can clearly see the drastic reduction OKNith a’l a%da with the ranges of values studied. Fay, the
the CPU time for the LDM method as compared to the fullo(ao) scalingc of the CPU time holds approximatel);.

TDHF method. Note that the LDM method is also faster
even for the small systems. This is always true for ON€y I DISCUSSION

dimensional systems where the indices of atomic orbitals
may be assigned in a simple increasing order along the sys- The fourth approximation in Sec. IV may not seem to be

tem axis. However, for two- or three- dimensional systemsstraightforward or intuitive. In fact, it is an excellent approxi-
this does not usually hold which may lead to additional com-mation. The justification of the approximation comes mainly
putational cost for the LDM method, and a CPU time cross-from the cancellatiorii) which is caused by the charge con-
over between the LDM method and the full TDHF may oc- servatiodi.e.,Enépﬁﬂ)=O). The different values ok result
cur. in virtually the same absorption spectra for= 120, see Fig.
The computational time dependence on the valuegpf 4. For the frequency from 1.5 to 10 eV, the results &gr
aq and g, is studied as well. In Figs. 6, 7, and 8 we plot the =24 and 30 differ from each other by less than 0.1%. This
CPU time versusy,, a. and g, respectively. The diamonds fact illustrates convincingly the validity of our fourth ap-
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>
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2 2500 ’f 1
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g O 400 | ) 1
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FIG. 6. CPU time on an SGI Origin 200 workstation for different. N
=120. y=25 meV. ap= =24, a5, =4 anda;,=8. Each calculation is
performed during the time interval betweer0.5 and 0.25 fs with time step
0.025 fs.

FIG. 4. Absorption spectra fdl=120 with differenta, and a. .«,=40,
as =4 anda52=8. The diamonds are fat,= .= 24. The crosses are for
ag=24, a.=30. The solid line is fory=30, a=24. The phenomenologi-
cal dephasing constant=25 meV.
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FIG. 7. CPU time on an SGI Origin 200 workstation for different.N FIG. 8. CPU time on an SGI Origin 200 workstation for different. N
=120. y=25 meV. =24, a;=30, a5 =4 anda52=8. Each calculation  =120.y=25 meV.a.=24, a;=30, as =4 anda52=8. Each calculation
is performed during the time interval betweerD.5 and 0.25 fs with time  is performed during the time interval betweer0.5 and 0.25 fs with time
step 0.025 fs. step 0.025 fs.

proximation or the introduction of the critical length. density matrix may be calculated via the iterative usage of
When the cancellation is stronfy,~I,; when the cancella- Eq. (34) starting with a reasonable guess for the reduced
tion is weak,l >, is expected. The fast multiple method density matrix2> Combining our method for the excited
(FMM) has been used to calculate the summation of Coustates with the linear scaling algorithms for the ground
lomb interactiont®>*%*and its computational time scales lin- stat€>'~2*would lead to a linear scaling of the total compu-
early with the system sizi.2®%*1t may be one of the alter- tational time. In our calculation, we observed that for the
native ways to calculate E¢31). The values of the critical frequency below 3.0 eV the first-order induced density ma-
lengthsl, andl, (or, ap anda;) are determined empirically. trix is localized within a critical length of 2 A . For higher

For instance, we set; =30 and 40 and calculate the absorp-frequency modes, the induced density matrices have larger
tion spectra, respectively. We find that the two resulting ab<ritical lengths®® and thus, more computational time is re-
sorption spectra differ little, and thus, conclude that=40  quired. For extremely high energy modes, the induced den-
is a good critical length for the first-order induced densitysity matrices may spread over the entire molectland
matrix, which is employed in the subsequent calculationstherefore, the full TDHF calculation is required.

Although the band diagonal form is utilized to achieve the = The overlap matrixS is introduced because the nonor-
O(N) scaling in Ref. 36, it is not necessary when E2f) is  thonormal basis set is employed. This leads to an increase of
solved in the time domain. Since the critical lengths arethe computational time. However, the increase is limited.
roughly independent of the dimensionality of the system, theSince the overlap matrix elemes; diminishes rapidly as
product of truncated matrices requires only the multiplicationthe distance between and j increases, only the overlaps
of the matrix elements within the critical lengths. This would among few nearby atoms are considered. The inclusion of
lead to theO(N) scaling of computation time even for two- the differential overlap integrals together with the usage of
and three-dimensional systems, although a larger overhedde nonorthonormal basis set makes it possible to implement
of computational effort may be required. Therefore, thethe LDM at theab initio and semiempirical calculation lev-
method may be extended to two- and three-dimensional sy®ls. Since the linear scaling calculation nature of the LDM is
tems, and a variety of physical, chemical, or biological sysnot altered by the usage of the nonorthonormal basis set and
tems may be investigated with this method. To probe morehe inclusion of complete differential overlap integrals, it is
excited states, we may generalize our current method to capractical to achieve the linear scaling calculation for the ex-
culate the higher order responses. For the first order recited state properties at tlab initio and semiempirical lev-
sponse, only the first term on the rhs of E24) contributes.  els. No further approximation is made for the Hamiltonian.
For the higher order responses, the second and third terms dilne approximations are based solely on the feature of the
the rhs contribute as well. With the truncation of densityreduced density matrix. This fact ensures the wide applica-
matrix and Fock matrix, the computational time spent inbility of the new method.

evaluating the second and third terms is proportionaNto The one-electron integrals of the effective Hamiltonian
The computation for the higher order responses is thus afbtained in this work are similar to that of Ref. 50 while the
O(N) scaling as well. In our calculation, the HF ground statetwo-electron integrals are much smaller. This is caused by
is obtained first. This part of the calculation scale©5l®).  the inclusion of the overlap matri$ and the differential
However, compared with the total time, its computationaloverlap integrals. To improve the accuracy of the effective
time is trivial for N=40 to 500. The HF ground state reduced Hamiltonians, the one-electron integrals other than those of
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the nearest neighbors should be includ®and moreover the APPENDIX: DERIVATION OF THE TDHF EQUATION
CDMYV approach should be extended beyond the HF level tdN NONORTHONORMAL BASIS
include the electron—electron correlation.

To summarize, we have generalized the LDM method to . I_n this Appendix, we out!ine the derivation of.the EOM
adopt the nonorthonormal basis set and to include all th(‘:‘v'thm the_TDHF e_xpproxmaﬂon for the reduced _smgle elec-
Coulomb differential overlap integrals. The generalizedtr?n densr[y T“.a‘”x in the nonorthonormal basis. W.e start
LDM method retains its linear scaling calculation nature forW.'th the def|n|t|.on of the reduced smgle electron density ma-
the excited state properties, which has been confirmed by {HEx p I the spin-spatial representation,
calculation of the absorption spectra of PA oligomers. With
the employment of the nonorthonormal basis set and the ine(r161,r16;,t)
clusion of the complete differential overlap integrals, the
generalized LDM method may be implemented readily atthe = Nf dr,dé,drzdés- - -drydéy
ab initio and semiempirical levels.
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Pa(ri01,t)  ho(ri01,t) - d(ri0q,1)

1) ha(ra02,)  do(rabp,t) - id(raf;,1)

<I>(r101,l’202, ...,rNeN,t):(N!)_E ’ (AZ)

Pr(rNONLY)  da(rnOn,) - (Ot

wherey; is theith occupied time-dependent molecular spin—whereé® is an arbitrary variation ofb. Sinced/dt behaves
orbital and satisfie$¢i|¢j>= g;j - Integrating the rhs of Eq. like a one-electron operator, we have
(A1) results in

N <5‘D|"D>:2_ (Sl )+ 2 (59’/i|l/fi><¢fj|';0j>>-
P(rlalarieiat):gl|¢k(r101:t)><‘/’k(r1011t)|- (A3) ! 1)

(A7)
The time derivative of Eq(A3) may be expressed as According to the Brillouin theorer, the first term of Eq.
(A6) may be written as
N
p(r101,7101,0= 2, Th|d(r16,0)(d(r161,0)
(80 [H| @)= (30| Flys). (A8)

N
+ 2, i g(r101,0)(Pilr163,1)]. o , ,
k=1 Here F is the Fock operator corresponding to the Hamil-
(A4)  tonianH,

The time evolution of the wave functioh is determined by

the Schrdinger equation F(t)y=ht)+f(1), (A9)
g where
HI®) =i -] ®). (A5)
N
With the Frenkel principl€/ Eq. (A5) converts to h(t)=— %Vf+U(r)+2 [J()—K;(t)], (A10)
0
<5®|H|q)>—<5q)|lﬁﬁ|q)>=0, (AB) ?(t)=eE(t)-r, (A11)
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Ji() n(rot) iip(ra6y,r760],1)
1 N
=f dr’dﬂ’[l/fi*(r’0’,t)r—nwi(r’ﬁ’,t)}wk(rﬂ,t), =k21 Fl(r100,0) )11 6],0)]
(A12)

N
) —kél |4 (r161,0)) el (1167, V)]
Ki(D) ¢ (r6,) '

N
1 _ 1ot C
=f dr’dﬁ’[lﬁi*(r'0’,t)r_lzlﬂk(l"ﬁ’,t)}lpi(ra,t). 2 1d(ra62,0)und(r103,0|F

N
(A13) )
+ E_ |n(r161,0)) € (r161,1)]
Assuming the electric field polarized along the chain axis k=1
f(t) =E(t)ez with the dipole approximation. Substitution of =F(t)p(ri01,5560},t)—p(ri6,,r;05 F(1). (A22)

Egs.(A7) and(A8) in Eq. (A6) then gives ) ) ) )
The occupied spin—spatial MO can be expanded in the

spin—AQ basis set,
Ei: [<5¢i|('§—iﬁ%)|l/li>_iﬁj;) <5l//i|l//i><¢j|‘;//j>}:0-

(A14) Bdr 0,0= 2 ci(O xm(r) ol 0), (A23)
Using the orthonormality constraint of the MOs, we have

wherecg]kI is the coefficient which measures the amplitude of
an electron at the AQy,, for the kth molecular spin—orbital

(Sl i)+ (il 6¢) =0, (A15)  y, . k=(l,o) with | representing the spatial component of
the kth molecular spin-orbital, and= « or 8 for its spin
(50 )=0, (i#]) (A16) componenta(8) stands for spin uglown). Then the density
il¥j ) .

matrix operator can be expressed in this basis set
We multiply Egs.(A16) by an arbitrary constants; , sum it

overi andj, and then subtract the resulting expression from o . .
Eq. (A14), and obtain p(ro,r'e ,t)=; Ixi(r)pij(6,6",0)(x;(r")],  (A24)

see Eq(16). After taking the time derivative and multiplying

I . .
|:_|ﬁ__,ﬁ_2 (il ) |‘/’i>_2 | ;b5 =0. (xmo| from the left and| x,,o0) from the right to Eq.(A24)
g ] and using Eq(10), we have

(A17)
aﬂu!tiplying (| from the left and integrating EqA17) for iﬁ()(m0|b(f9,r'6”,t)|)(n0)= =iﬁ2 Smbﬁ(t)sjn-
#i, we find i
(A25)
(W ) — 1B i) =Dy (A18) The matrix element of rhs of EgA22) can be expressed as
Similarly with (|, we obtain 0 [Ep(ror 6 81 x00)
N
<¢i|'A:|lﬂi)_iﬁ('ﬂiWi)_ihj(;) (Gile=Dy.  (A19) =(Xmo| 'Eagl [ga(r 6,0)(hi(r" 6", 0)] || xn0)
On definin ~
e = 3 OmolFl i)
& =(y|Flyn)—inyly) (@, i), (A20)

_ - £ ]
Eq. (A17) becomes |§CC<X o) (h|F|xno)

. 8 =|_2 2 [l Folxadei e * (xilxny
P |lod=2 lve, (A21) “oee
o _ = xmlxp e (e * (xiIF 7 xn)]
which is the TDHF equation fofy;}. It may be shown that
e} is a Hermitian matrix. According to EqA21), Eq. _ o oo _ oo
EAZ}) is rewritten as ° Az, B _; (Fmifij Sin = SmipijFin)- (A26)
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