
14 August 1998

Ž .Chemical Physics Letters 292 1998 379–383

Time domain localized-density-matrix method

Satoshi Yokojima, GuanHua Chen
Department of Chemistry, The UniÕersity of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong

Received 26 February 1998; accepted 11 June 1998

Abstract

A recently developed linear scaling localized-density-matrix method is modified, and the equation of motion for reduced
single electron density matrix is solved for the absorption spectra of polyacetylene oligomers in the time-domain. The
modified method requires much less computer memory which enables us to calculate linear optical response of larger
oligomers containing up to 2000 carbon atoms. Different values of critical lengths are employed in the calculations, and their
roles are clarified. q 1998 Elsevier Science B.V. All rights reserved.

Ab initio molecular orbital calculations are usu-
ally limited to small and medium size molecular
systems. The obstacle lies in the rapid increasing of
computational cost as the systems become larger and
more complex. The computational time is propor-
tional to a certain power of the system size, i.e.,
t AN x, where t is the computational time, N iscpu cpu

the number of electronic orbitals, and x is some
number which is usually larger than 1. For instance,
the computational time of ab initio Hartree–Fock

Ž 3.molecular orbital calculation has an O N scaling.
This obstacle has been removed in principle. Several
linear scaling methods have been developed to calcu-

w xlate electronic ground states 1–18 . Recently a local-
ized-density-matrix method has been developed to
calculate the excited state properties of very large

w xelectronic systems 19 , and its computational time
scales linearly with system size. It is based on the

Ž .time-dependent Hartree–Fock TDHF approxima-
tion, and has been applied successfully to evaluate
absorption spectra of polyacetylene oligomers con-
taining up to 500 carbon atoms.

w xIn Ref. 19 the equations of motion for density
matrix in the localized-density-matrix method has
been solved in the frequency domain. We refer it as
the frequency domain localized-density-matrix
method. Although the memory of calculation scales

Ž .linearly with the size N of system, it is still quite
large and is approximately proportional to a 3N,

w xwhere a is a critical length 19 . The required
memory is caused by a reduced Liouville matrix and
becomes a major limiting factor for investigating
larger systems. However, the Liouville matrix is not
required if the equation of motion for the density
matrix is solved in the time domain. This leads to a
great reduction of memory requirement, and may
enable us to solve the excited state properties of
larger systems.

In the present Letter we modify the frequency
domain localized-density-matrix method and follow
the propagation of the reduced single-electron den-
sity matrix in the time domain. The modified method
is referred to as the time domain localized-density-
matrix method, and is applied to calculate the optical
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absorption spectra of polyacetylene oligomers con-
taining up to 2000 carbon atoms.

Ž .When an external electromagnetic field EE t is
applied to a polyacetylene oligomer, its p electrons
response to the field, and optical signals may be
observed. The p electrons in the polyacetylene are

w xwell described by the PPP Hamiltonian 20–22 ,

HsH qH qH . 1Ž .SSH C ext

Ž .H is the Su–Schrieffer–Heeger SSH Hamilto-SSH

nian, which consists of the Huckel Hamiltonian plus¨
electron-phonon coupling. H represents theC

Coulomb interaction among the p electrons. H isext

the interaction between the p electrons and an exter-
Ž .nal electric field EE t . We employ the same parame-

˚w xters as in Ref. 19 , except that xs1.59 A. The
geometry is fixed in the calculation. Here N p-
orbitals of N carbon atoms are employed as the basis
set, and m and n represent p-orbitals at the sites m
and n, respectively. With the TDHF approximation
w x23 , a closed nonlinear self-consistent equation of
motion are yielded for the reduced single-electron

Ž .density matrix r t ,

i" r t s h t q f t ,r t . 2Ž . Ž . Ž . Ž . Ž .˙
Ž . Ž .Here h t is the Fock matrix, and f t describes the

interaction between an electron and the external field
Ž . w xEE t 20 .

Ž .We partition the density matrix r t into two
parts:

r t sr Ž0.qdr t , 3Ž . Ž . Ž .
where r Ž0. is the reduced density matrix representing
the Hartree–Fock ground state in the absence of

Ž .external fields, and dr t is the difference between
Ž . Ž0.r t and r , i.e., the induced density matrix by the

Ž . Ž .external field EE t . Similarly, the Fock operator h t
is decomposed in the form,

h t shŽ0.qd h t , 4Ž . Ž . Ž .
Ž0. Ž .where h is the Fock matrix when EE t s0:

hŽ0. s t qd Õ r Ž0.yÕ r Ž0. , 5Ž .Ýnm nm n ,m nl l l nm nm
l

where t is the hopping matrix element between mnm

and n, and Õ is the Coulomb repulsion betweennm

two electrons at m and n, respectively.
We concentrate on investigating the linear re-

Ž .sponse to EE t . For first-order induced density ma-

Ž1. Ž .trix dr in EE t , its dynamics may be described by
the following equation,

i"dr Ž1.s hŽ0. dr Ž1.ydr Ž1.hŽ0.˙ Ž .Ýi , j i ,k k , j i ,k k , j
k

q2 Õ yÕ r Ž0.dr Ž1.Ž .Ý i ,k j ,k i , j k k
k

y Õ r Ž0.dr Ž1.yÕ r Ž0.dr Ž1.Ž .Ý i ,k j ,k i ,k j ,k i ,k k , j
k

qe z i yz j EE t r Ž0. . 6Ž . Ž . Ž . Ž .Ž . i . j

Ž .Eq. 6 is integrated in the time domain. Most matrix
elements of hŽ0., r Ž0. and dr Ž1. are virtually zero

w xwhen N is large enough. Just as in Ref. 19 , we
employ the following approximations by introducing
three critical lengths a , a and a :0 1 c

Ž0. Ž0. < <1 h s0, r s0 if iy j )a ;Ž . i , j i , j 0

Ž1. < <2 dr s0 if iy j )a ;Ž . i , j 1

Ž .and for the second term on the right hand side RHS
Ž .of Eq. 6 ,

< <3 Õ s0 if iy j )a .Ž . i , j c

Ž .The approximation 3 makes use of the cancella-
Ž .tions among the second term of the RHS of Eq. 6 .

Ž1.Ž . < <The cancellations ensure that dr t f0 for iy j˙i, j
Ž .)a a Ga . Thus1 1 c

< < < <iyk Fa , kyj Fa0 1

Ž1. Ž0. Ž1.i"dr s h dr˙ Ýi , j i ,k k , j
k

< < < <iyk Fa , kyj Fa1 0

Ž1. Ž0.y dr hÝ i ,k k , j
k

k FkFk0 1

Ž0. Ž1.q2 Õ yÕ r drŽ .Ý i ,k j ,k i , j k k
k

< < < <iyk Fa , kyj Fa1 0

Ž0. Ž1.y Õ r drÝ i ,k j ,k i ,k
k

< < < <iyk Fa , kyj Fa0 1

Ž0. Ž1.q Õ r dr qe z iŽ .ŽÝ j ,k i ,k k , j
k

yz j EE t r Ž0. , 7Ž . Ž . Ž .. i , j

where k and k depend on i and j, and are0 1
Ž Ž ..determined as: k smax 1,min iya , jya and0 c c

Ž Ž . .k smin max iqa , jqa , N .1 c c
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Fig. 1. CPU time on an SGI Indigo2 R10000 workstation for 100,
200, 300, 500 and 1000. Each calculation is performed during the
time interval between y0.5 fs and 70 fs with the time step 0.01
fs. The phenomenological dephasing constant G s0.1 eV. a s0

a s a s24.1 c

w xThe fourth-order Runge-Kutta method 24 is used
Ž .to integrate Eq. 7 . The external field employed is

1 2yŽ tr t .EE t s e , 8Ž . Ž .'p t

where ts0.1 fs. The phenomenological dephasing
constant is set to 0.1 eV.

To verify that the computational time scales lin-
Ž .early with the system size N, we propagate Eq. 7

w xbetween a time interval y0.5 fs,70 fs with a time
step 0.01 fs for Ns100, 200, 300, 500 and 1000,
and record the total CPU time for each N. The
computational time spent in obtaining the Hartree–
Fock ground state is subtracted from the total CPU
time. The resulting computational time versus N is
plotted in Fig. 1. Clearly, the CPU time is propor-

Ž1.Ž .tional to the system size N. The resulting dr t
may be used to obtain the absorption spectrum for
each N by Fourier transform.

The values of a , a and a are important for0 1 c

accurate determination of absorption spectrum and
w xcomputational time. It has been observed in 19 that

a sa sa s20 leads to satisfactory absorption0 1 c

spectrum between 1.5 and 3.6 eV for Ns40. Fig. 2a
and 2b show the absorption spectrum for Ns80
with different a , a and a . The same spectrum is0 1 c

plotted against different energy ranges in the two
figures. The scale for the absorption intensity in Fig.
2a is 33 times of that in Fig. 2b. The solid line is for
Ž . Ž .a a sa sa s20, the dashed line for b a s0 1 c 0

Ž .a s20 and a s30, and the dotted line for cc 1

a sa sa s40. The results of the full TDHF0 1 c

calculation for Ns80 are given by diamonds. For
vs1.8 to 3.4 eV, the spectra for three sets of a a0 1

a critical lengths give almost exact result. It meansc

that it is sufficient to use the critical lengths a sa0 1

sa s20 to calculate the absorption spectrum inc

Fig. 2. Absorption spectra for Ns80. The solid line: a sa sa s20. The dashed line: a sa s20, and a s30. The dotted line:0 1 c 0 c 1

a sa sa s40. The results of the full TDHF calculation for Ns80 are given by diamonds. The phenomenological dephasing constant0 1 c
Ž . Ž .Gs0.1 eV. The vertical scale of a is 33 times of the scale of b .
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this energy range. Starting from 3.4 eV the result of
Ž .calculation a deviates from the exact values.

Ž .Whereas the calculation b reproduces accurately
Ž .exact result up to 3.8 eV, and calculation c yields

accurate result up to 4.1 eV. Larger values of critical
lengths a , a and a lead to better spectrum in0 1 c

higher energy range. We calculate the absorption
spectrum for Ns80 by employing a sa sa s0 1 c

30, and the resulted spectrum is almost the same as
Ž .that of b . Thus, we conclude that the calculated

properties of higher excited states are more sensitive
to a . This is consistent with the fact that the higher1

excited states have larger critical lengths than the
lower excited states. To determine optical spectrum
of higher energy range, larger value of a is re-1

quired.
In Fig. 3, we plot the absorption spectra for

Ns100, 200, 500 and 2000. For comparison, all
data are multiplied a factor 2000rN. As N increases,
the absorption peak red shifts toward the bulk value
and the absorption spectrum become smoother. In
the inset the amplitude of absorption peak is plotted
versus N. It is observed that the amplitude scales
linearly with N to the zero order in 1rN. This is
consistent with the work of Mukamel and coworkers
w x25 .

Ž .Eq. 7 has been solved in the frequency domain,

Fig. 3. Absorption spectra for Ns100, 200, 500 and 2000.
a s a s a s24. The phenomenological dephasing constant0 1 c

G s0.1 eV. For comparison, all data are multiplied by 2000rN.
The solid, long dashed, short dashed and dotted lines are for
Ns100, 200, 500 and 2000, respectively. The inset shows the
linear scaling of the amplitude of first absorption peak.

w xsee Ref. 19 . In the frequency domain, the matrix
involved is a sparse matrix, and moreover, is band
diagonal. Therefore, a Gaussian elimination proce-
dure with backsubstitution was used, and the linear
scaling of the computational time was achieved.
However, for two or three dimensional systems, the
sparse matrix is no longer band diagonal. Different
linear scaling procedures are required. For instance,
iterative conjugated gradient method may be used
w x24 .

To summarize, the equation of motion for the
truncated reduced single electron density matrix have
been solved in the time domain, and the calculation
time scales linearly with the system size. Compared
with the frequency domain localized-density-matrix

w xmethod in Ref. 19 , the current method requires
much less computer memory, and thus, the excited
state properties of larger systems may be calculated.
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