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Abstract

A multi-dimensional entropy sampling Monte Carlo method is proposed and implemented to evaluate directly the entropy
Ž .of a 13-atom argon cluster Ar . The Helmholtz free energy of the cluster is obtained and expressed as a function of the13

cluster’s energy E and radius of gyration R at several temperatures. A transition zone where the accessible range of Rgy gy

varies rapidly is found to be the coexistence region of the solid-like and liquid-like structures. q 1997 Elsevier Science B.V.

1. Introduction

Helmholtz Free energy is an important thermody-
namic quantity. It determines the equilibrium proper-
ties of a system, and dictates the relations among its
structure, dynamics and energy. Molecular dynamics
and Monte Carlo methods have been utilized to
calculate Helmholtz free energies of various systems
w x1–5 . The resulting free energies were generally
expressed as functions of a parameter of the systems,
e.g. energy or some conformational parameter. These
one-dimensional functions provide useful but some-
time limited information on structures and dynamics.

Ž .Recently an entropy sampling Monte Carlo ESMC
method was developed to determine Helmholtz free

w xenergy as a function of the energy 6 . It has been
w xapplied to spin glasses and proteins 6–10 . Two- or

multi-dimensional free energy functions contain ob-
viously much more information. It would be highly
desirable to have an efficient algorithm to calculate a
multi-dimensional free energy function of a system.

w xThe Metropolis Monte Carlo method 19 simu-
lates canonical ensembles in which the probability of

occurrence of a conformation x obeys the Boltz-
mann distribution:

p x Aeyb E , 1Ž . Ž .
Ž .where E x is the energy of the conformation x, and

bs1rk T with T being the temperature and kB B

being the Boltzmann constant. The ESMC method
w x6 , however, is based on an artificial distribution
which is determined by the entropy S. Specifically,

Ž .denote S E as the entropy function of the energy E,
the probability of occurrence of a conformation x is

w xas follows 6,8 ,

p x AeyS w EŽ x .xr k B . 2Ž . Ž .
This leads to a one-dimensional random walk for
energy E, i.e. the probability distribution with re-
spect to the energy E is

P E AN E eyS w E xr k B seSŽE .r k B eyS ŽE .r k B s1.Ž . Ž .
3Ž .

Ž .where N E is the spectral density of states, and
Ž . SŽE .r k BN E se . The probabilities of occurrence for

all values of E are the same. The ESMC method
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ensures that the system can overcome any energy
barrier and may help solve the quasi-ergodicity prob-

Ž .lem. S E is unknown before the simulation, and is
determined through iterations. Helmholtz free energy
F at a temperature T may be readily obtained using

Ž . Ž .the thermodynamic relation F E s E y TS E .
Since the resulting entropy and free energy are one-
dimensional functions of the energy, we refer this
method as the one-dimensional entropy sampling

Ž .Monte Carlo 1D-ESMC method. The 1D-ESMC
method may be generalized to calculate multi-dimen-

w xsional entropy and free energy 6 .
Argon clusters have attracted a considerable

w xamount of research effort 11–17 . Melting transi-
tion, Rydberg states of an argon atom, separation of
bulk and surface features, and microscopic origins of
macroscopic properties have been investigated exten-

w xsively 13–16 . To understand growth and nucle-
ation, free energies of clusters with different number

w xof atoms have been calculated 12,17 . A 13-atom
argon cluster Ar is a very stable cluster. The13

w xstructure of its ground state is an icosahedron 18
and thus, naturally, of rigid, solid-like form. It was
found that at a temperature Ts34 K the solid-like

w xstructure melts to a non-rigid, liquid-like form 14 .
In this manuscript we present a multi-dimensional

Ž .entropy sampling Monte Carlo mD-ESMC method
to evaluate multi-dimensional entropy and free en-
ergy functions, and apply this method to an Ar .13

The resulting entropy and free energy are expressed
as two-dimensional functions of the cluster’s energy
E and radius of gyration R . The implications ofgy

the entropy and free energy functions on the equilib-
rium structure and dynamics are discussed.

Let us imagine a system which can be character-
ized by its energy E and order parameters A, Q, D
and others. The order parameters may be, for in-
stance, the size of a system, the number of hydrogen
bonds, and the portions of a-helices and b sheets.
Its free energy at a temperature T can be expressed
as

F E, A ,Q, D , PPP sEyTS E, A ,Q, D , PPP ,Ž . Ž .
4Ž .

where PPP denotes any other relevant order parame-
Ž . Ž .ters, and F E, A,Q, D, PPP and S E, A,Q, D, PPP

are the free energy and entropy as functions of E, A,

Q, D and PPP , respectively. If the probability of
occurrence of a conformation x is defined as,

p x AeyS w EŽ x . , AŽ x . ,QŽ x . , DŽ x . , PPP xr k B , 5Ž . Ž .
the distribution function with respect to E, A, Q, D
and the other order parameters is then

P E, A ,Q, D , PPP AN E, A ,Q, D , PPPŽ . Ž .
eyS ŽE , A ,Q , D , PPP .r k B s1, 6Ž .

Ž .where N E, A,Q, D, PPP is the density of conforma-
Ž .tion at E, A, Q, D and PPP , and N E, A,Q, D, PPP

seSŽE, A,Q, D , PPP .r k B. In another word, the probabili-
ties of occurrence for all values of E, A, Q, D and

Ž .the other order parameters are equal. Eq. 6 may be
employed as a criteria to decide the convergence of
Ž .S E, A,Q, D, PPP . A Markovian chain with transi-

tion probabilities

Ž X .p x™ x
XŽ .p x ™ x

w X X X X x� 4Ž . Ž . Ž . Ž .exp yS E x , A x ,Q x , D x , PPP rkB
s 7Ž .

w x� 4Ž . Ž . Ž . Ž .exp yS E x , A x ,Q x , D x , PPP rkB

Ž .leads to the distribution described by Eq. 6 . Here x
and xX are a pair of conformations in the Markovian

Ž X. Ž X .chain, and p x™x and p x ™x are the transi-
tion probabilities for x to xX and xX to x, respec-
tively.

Ž .Since S E, A,Q, D, PPP is unknown before the
Ž .simulation, a function J E, A,Q, D, PPP is intro-

duced as an approximation to the entropy function
Ž .S E, A,Q, D, PPP , and the probability of occurrence

of a conformation x is then taken as

p x AeyJ ŽE , A ,Q , D , PPP .r k B . 8Ž . Ž .
An mD-ESMC simulation consists many itera-

tions, and each iteration has many steps. During each
step, a trial conformation is generated, and chosen or
discarded according to the probability of occurrence,

Ž .Eq. 8 . In the beginning of a simulation,
Ž .J E, A,Q, D, PPP is set to zero. During an iteration,

the ranges of E, A, Q, D and PPP are divided into
discrete increments DE, D A, DQ, DD and PPP ,
respectively. A multi-dimensional histogram
Ž .H E, A,Q, D, PPP is recorded for the number of

Ž . Žvisits to conformations within E, EqDE , A, Aq
. Ž . Ž .D A , D, DqDD and PPP . J E, A,Q, D, PPP is

updated at the end of the iteration according to the
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following formula:

J E, A ,Q, D , PPPŽ .new

sJ E, A ,Q, D , PPPŽ .old

q log H E, A ,Q, D , PPP , 9� 4Ž . Ž .
Ž . Ž .where J E, A,Q, D, PPP and J E, A,Q, D, PPPold new

Ž .are the values of the function J E, A,Q, D, PPP at
E, A, Q, D and the other order parameters for
current and next iterations, respectively. In case that
Ž . Ž .H E, A,Q, D, PPP is zero, H E, A,Q, D, PPP is

taken to be one. W hen the histogram
Ž .H E, A,Q, D, PPP at the end of a particular iteration

is flat with respect to E, A, Q, D and PPP ,
Ž .J E, A,Q, D, PPP is then converged, and the relative

Ž .en tropy function S E , A , Q , D , P P P s
Ž .J E, A,Q, D, PPP .

The average values of E, A, Q, and D can be
evaluated directly from the free energy function
Ž .F E, A,Q, D, PPP . For instance, the average value

of A can be calculated using

Aeyb F ŽE , A ,Q , D , PPP .Ý² :A s , 10Ž .yb F ŽE , A ,Q , D , PPP .eÝ
where Ý is a summation over all the values of E, A,
Q, D and PPP .

We apply the mD-ESMC method to an Ar . The13

interaction between two argon atoms are described
by a Lennard-Jones potential,

12 6V r s4e srr y srr , 11Ž . Ž . Ž . Ž .
y21 y10 w xwhere es1.67=10 J, ss3.4=10 m 14 ,

and r is the distance between the two atoms. The 13
atoms are confined in a cube with its edge as6.38s .
The initial positions of 13 atoms are selected ran-
domly.

The radius of gyration R measures the size ofgy

the cluster, and reflects its structure. It is defined as
follows.

N1 2R s R yR , 12Ž . Ž .Ýgy i cm(N is1

where Ns13 is the number of atoms, R is thei

displacement of vector of the i-th atom, and R iscm

the displacement of vector of the center of the
Ž .masses. A two-dimensional ESMC 2D-ESMC

method is employed to evaluate its entropy and free

energy as functions of its energy E and R atgy

different temperatures. We refer the space spanned
by the values of E and R as the phase space. Thegy

free energy function at T can be expressed as

F E, R sEyTS E, R . 13Ž .Ž . Ž .gy gy

A new conformation is generated by moving each
of the 13 argon atoms during a step, and each move
is decided by three random numbers. It is observed
that with such a strategy the system rarely visits its
low energy conformations. A conformation-biased
strategy is used instead. A temperature T is intro-g

duced, and the conformation xXX after an new move
is chosen according to a Boltzmann distribution,

w xXX AeyE Ž xXX .r k BTg . 14Ž . Ž .
The bias is applied so that the low energy conforma-
tions are selected more favorably as trial conforma-
tions. T is set to 1.0e in our simulation. Conse-g

quently, the transition probability between a pair of
conformation x and xX in the Markovian chain must
be corrected. The corrected transition probabilities
satisfy

Ž X .p x™ x
XŽ .p x ™ x

w X X x w X xŽ . Ž . Ž .exp y J E x , R x rk exp E x rk T� 4gy B B g
s .

w x w xŽ . Ž . Ž .exp y J E x , R x rk exp E x rk T� 4gy B B g

15Ž .

During the simulation, a two-dimensional his-
Ž .togram H E, R is recorded for each iteration. Thegy

Ž .ranges of E and R are taken as y50e ,0 andgy
Ž .0,6.38s , respectively. Both ranges are evenly di-
vided into 50 segments, and thus, the phase space is
partitioned into 2500 small squares. The increments
for E and R are DEs1.0e and DR s0.128s ,gy gy

Ž .respectively. Thus, the histogram H E, R be-gy

comes a 50=50 matrix. When the distribution of
this two-dimensional histogram becomes flat, a con-
vergence is achieved, and the simulation ends. After

Ž .the simulation, the final J E, R is taken to be thegy
Ž . Ž . Ž .relative entropy S E, R , i.e. S E, R 'J E, R .gy gy gy

There are 107 steps per iteration, and 50 iterations
per simulation. The relative free energies from Ts

Ž .0.2e to 0.38e are evaluated according to Eq. 13 .
² :Finally, the average energy E and radius of gyra-

² :tion R are calculated for the above temperaturegy
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range. To examine the reliability of our simulation,
we carry out the conventional Metropolis Monte

w xCarlo simulation 19 at Tres0.2, 0.3 and 0.35
with 5=105 steps per simulation. The resulting
average energy and radius of gyration are compared
with those of the 2D-ESMC simulation.

In Fig. 1, we plot the relative entropy S versus
the energy E and the radius of gyration R . There isgy

a flat sheet at the plane Ss0. Any point on the sheet
is out of the phase space. Thus, the sheet does not
have any physical meanings and is for guidance to
one’s eyes only. Generally, as E decreases, the
entropy decreases as well. This is consistent with the
physical intuition: as E lowers its value, the cluster
becomes smaller and the accessible physical space
decreases, i.e. the entropy decreases. It is noted that

Žthe maximum value of the entropy is at Esy1.5e ,
.R s3.13s , which is not at the highest energygy

line. It is because that the cube in the simulation has
its finite size. As the cluster grows bigger, some
atoms eventually hit the walls of the cube and can
not access some conformations which have the same
energy as that of the smaller conformations. The
entropy assumes its maximum values near the lowest
R values when y44-Ere-y30; and whengy

Ere)y30, the entropy increases first and then
decreases as R increases. The entire landscapegy

resembles a high plateau descending towards the
region of low E value. A ridge exists close to the
edge of the landscape when Ere-y30 and then
bends slowly but steadily towards larger R as Egy

increases. The contour illustrates clearly this phe-
nomena. The accessible range of R increases firstgy

as E is lowered from zero, and is virtually un-
changed for y30e-E-y8e . Then the accessible
range shrinks rapidly when E varies from y33e to
y39e . We call the region i.e. y33e to y39e the
transition zone. The rapid change corresponds a
zigzag edge along the up-right edge of the transition
zone. The rough feature of the edge indicates sudden
changes of the cluster’s structure and implies the
appearance of different solid-like structures in the
transition zone. Note that there are some sharp in-
verted peaks along the edges. For small squares
along the edges, some of their areas are beyond the
boundaries of the phase space. This leads smaller
values of entropy at the edges. Sometimes only tiny
portion of a square is accessible, and this leads to a
very small value of S for the square.

To estimate the statistical errors in the simulated

Fig. 1. Two-dimensional entropy surface: S versus E and R . The units of S, E and R are k , e and 0.128s , respectively. The flatgy gy B

sheet at Ss0 does not have any physical meanings.
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entropy, we follow Hao and Scheraga by measuring
the variances of the entropy in the last eight itera-

Ž .tions. The standard deviation, SD E, R , of thegy
Ž .entropy S E, R is estimated as follows:gy

2 2² : ² :SD E, R s DS E, R y DS E, R(Ž . Ž . Ž .gy gy gy

16Ž .

Ž .where DS E, R is the increment of the entropygy
Ž .S E, R of one iteration with respect to that ofgy

² :previous one, and PPP represents the average over
Ž .all the eight iterations. Fig. 2 shows SD E, R as agy

function of E and R . Obviously the deviationsgy

along the edges are quite large, which is about 3.0 to
6.0; while the deviations in the rest of the phase
space are between 0.1 and 0.3.

In Fig. 3, we plot the relative free energy F
versus the energy E and the radius of gyration Rgy

for the temperatures Tres0.2, 0.3 and 0.4. The
Ž .large variation of S E, R along the edges leads togy

Ž .substantial fluctuations of F E, R in the area.gy

Compared to that of the edges, the free energy
landscape is rather flat in the rest of the phase space.
The free energy in some areas along the edges is
very large and contributes little to the thermody-
namic properties of the cluster. The free energy
surface in these areas is, therefore, not included in
the figure, and is replaced by smooth sheets on the

boundary, see Fig. 3. These sheets also cover the
same unphysical space as those in Fig. 1. The corre-
sponding contour is plotted as well. The three free
energy surfaces resemble three basins. At Es0, the
widths of the basins along the R axis are quitegy

large, and the accessible values of R are betweengy

2.30s and 4.72s . The widths decrease dramatically
in the transition zone. At Esy43.5e , the accessi-
ble values of R are only between 1.02s andgy

1.15s . Generally, the free energy surfaces are higher
at large R , particularly when E is not very large.gy

This is because that large R corresponds to elon-gy

gated conformations which has less flexibility. A
valley exists at the lower-right corner of each of the
basins. As E increases, the valleys merge into the
bottoms of the basins and disappear. The valleys
correspond to the conformations of a tightly packed

Ž .cluster. At Ts0, F E, R sE, i.e. the free energygy

surface is a plane. Among the three surfaces, the free
energy landscape at Ts0.2e is quite flat and its
basin is shallow. This is because that T is small, the
energy dominates the characteristics of the surface.
As T increases, the effect of the entropy becomes
important, the basin appears deeper, and its curvature
increases. At Ts0, the minimum point of the free

Ž .energy function Esy43.5e , and R s1.08sgy

corresponds to the minimum energy icosahedral
structure. At Tres0.2, 0.3 and 0.4, the minimum

Ž . Žpoint is at Esy40.5e , R s1.08s , Esgy

Fig. 2. Estimated standard deviations of relative entropy. SD, E and R are in units of k , e and 0.128s , respectively.gy B
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Fig. 3. Free energy landscape: F versus E and R . The units of F, E and R are e , e and 0.128s , respectively. Smooth sheets on thegy gy

boundary do not have any physical meanings.
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Ž .Fig. 3 continued .

. Žy32.5e , R s1.21s and Esy26.5e , R sgy gy
.1.34s , respectively. As T™`, the entropy domi-

Žnates, and the minimum is at Esy1.5e , R sgy
.3.13s . The location of the free energy minimum

moves to the regions of higher E and larger R asgy

the temperature rises, and the trajectory is along the
ridge of the entropy plateau, see Fig. 1. The move-
ment of the free energy minimum reflects the fact
that as the temperature increases the system acquires
more energy and its size becomes larger. The move-
ment along the R axis is rather slow when E-gy

y30e . Overall the free energy surfaces are smooth,
which implies that there is no barrier for the cluster
to find its thermodynamic equilibrium conforma-
tions.

² :The average energy E and radius of gyration
² :R versus temperature T are plotted in Fig. 4.gy
² : ² : Ž .E and R are obtained according to Eq. 10gy

by substituting the relative free energy functions at
the corresponding temperatures. In Fig. 4a, there is a
change of the slope at Tref0.28. Since the specific

² :heat C is simply the derivative of E with respectÕ

² :to temperature T , i.e. C sd E rdT , there shouldÕ

be a peak for C at Tf0.28es34 K. This specificÕ

heat peak corresponds to a transition between a rigid,
solid-like structure and a non-rigid, liquid-like struc-

w xture 14,20 . To check the validity of our results, we
² : ² :compare E and R with the results of agy

Metropolis Monte Carlo simulation, see Fig. 4. The
Metropolis Monte Carlo simulation is carried at Tre

s0.2, 0.3 and 0.35. The comparison is satisfactory.
w xBerry and coworkers 14 found that the magni-

tude of the root-mean-square bond length fluctuation
changes four times at the melting temperature 34 K.
During the melting, solid-like and liquid-like forms
coexist, which leads to so-called coexistence region.
The total energy of coexistence region varies from
y4.4=10y14 to y3.7=10y14 ergratom. The
lower and upper energy boundaries of the transition
zone is y39e and y33e , respectively. These two
energy boundaries correspond to the total energies of
y4.41=10y14 and 3.65=10y14 ergratom, respec-
tively. Therefore, we conclude that the solid-like and
liquid-like structures coexist in the transition zone.

Ž .Below the transition zone E-y39e , the cluster is
Žsolid-like. And above the transition zone E)

.y33e , the system is liquid-like. At the melting
Žtemperature, the free energy minimum is at Es
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Ž . ² : Ž .Fig. 4. a Average energy E versus temperature T. b Average
² :radius of gyration R versus temperature T. The solid lines aregy

the results of the 2D-ESMC simulations, and the open circles are
Ž .the results of the Metropolis Monte Carlo MMC simulations.

² : ² :The units of E , R and T are e , 0.128s and e , respec-gy

tively. MMC stands for Metropolis Monte Carlo.

.y33e , R s1.2s , and locates at the upper bound-gy

ary of the transition zone.
In the space spanned by the order parameters,

there are some regions where S is large and other
regions where S is small. In the regions where the
entropy is large, the values of S can be determined
with a reasonable amount of computer resource, and
while much more resource is required to evaluate the
entropy for the same amount of area in the regions
where the entropy is very small. If the entropies of
the two kinds of regions are to be calculated simulta-
neously, much computer time will be wasted in the
regions of large S. The efficiency can be improved
by dividing the space into two or more different
regions where simulations are carried out separately.
Adjacent regions should overlap with each other so

that the relative entropy among them may be deter-
mined. The regions should be divided such that the
overall computational time is minimum. In our simu-
lation we found that large amount of computer time
is required to determine the relative entropy per
square in the region where E-y39e . We thus
carried a separate simulation by restricting the en-
ergy of Ar below y38e . The simulation consists13

of 50 iterations and each iteration has 5=106 steps.
In Hao and Scheraga’s work T was chosen by theg

Ž .formula b sdS E rd E where b s1rk T . Weg g B g

find that T s1.0e leads to a good result and ang

adequate amount of computation time. The com-
pution time of an mD-ESMC simulation is propor-
tional to the volume of its parameters’ space. If the
same number N of increments is employed for all
parameters, the computation time scales as N d, where
d is the number of parameters. Compared with other

w xMonte Carlo methods 12,21–23 , the mD-ESMC
method is convenient in implementation and capable
to yield the multi-dimensional entropy and free en-
ergy surfaces during one simulation. Two- or multi-
dimensional free energy landscape provides much
richer information than that of one-dimensional free
energy curve. Ar is relatively small. The mD-13

ESMC method may be applied to much more com-
plex systems, for instance, protein. The free energy
landscapes of proteins are expected to possess many

w xspecial features 24 . These features may help reveal
the secrets of protein folding: how do proteins man-
age to find their native conformations in such a short
time? Energy, helicity, radius of gyration and num-
ber of native contacts may be proper variables to
characterize protein free energy landscape.

In summary, a mD-ESMC method is proposed
and implemented to calculate multi-dimensional en-
tropy and free energy. A two-dimensional entropy
Ž . Ž .S E, R and free energy F E, R of an argongy gy

cluster Ar is obtained. The resulting free energy13

landscapes provide important information about the
structure and dynamics of the cluster. This method is
of wide applicability, and may be applied to a variety
of complex and interesting systems.
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