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Abstract 

A method for constructing effective Hamiltonians using the information contained in the ground state reduced 
single-electron density matrices for many-electron systems is proposed and applied to trans-polyacetylene oligomers 
C2,H2,+ 2 with n = 4--24. The resulting effective Hamiltonians for ~r electrons, expanded in the basis set of natural atomic 
orbitals (NAOs) with nearest neighbor transfer integrals, reproduce accurately the Hartree-Fock ground state density 
matrices. 

Despite the tremendous progress in quantum 
chemistry, ab initio calculations of electronic struc- 
ture are still limited to relatively small sizes. Realis- 
tic modeling of very large systems requires a re- 
duced description using effective Hamiltonians. 
Pseudopotentials and effective core potentials have 
been employed to replace the core electrons [1-4]. 
Pariser, Parr, and Pople have developed a systematic 
procedure for determining effective Hamiltonians of 
conjugated organic molecules [5-8]. This semi-em- 
pirical procedure requires experimental input in the 
parameterization. Using a formalism developed by 
Brandow [9], Freed and co-workers implemented a 
rigorous procedure to determine effective Hamiltoni- 
ans for single- and multi-atom systems [10]. This 
procedure requires the evaluation of complex opera- 
tors, and is thus limited for small systems such as 
butadiene, benzene and hexatriene. 

In this Letter we propose a procedure for con- 

structing an effective Hamiltonian by using the 
ground state reduced single-electron density matrix, 
the form of electron-electron effective Coulomb in- 
teraction, and the optical gap. The reduced density 
matrix is obtained from ab initio quantum chemistry 
calculations. The Coulomb interaction among the 
valence and conduction electrons can be inferred 
from many-body theory. Since the electronic charge 
distributions and bond orders which characterize the 
density matrix are local quantities, the effective 
Hamiltonian should converge rapidly with size, and 
this makes accurate calculations possible for very 
large systems by making use of ab initio calculations 
on smaller systems. In addition, the effective Hamil- 
tonian makes it possible to predict electronic excita- 
tions and corresponding linear and nonlinear optical 
spectra using ground state information, which is 
much more readily available than excited state ener- 
gies and wavefunctions [11]. 
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We assume the following form for the effective 
Hamiltonian of a many-electron system 

H~=He+He~,  
+ 

S e = E t m n a m a n ,  
m n  

+ + 

Hee = E V ~ . a ~ a . a . ,  
mn 

where a+~(a.) is an electron creation (annihilation) 
operator at a localized basis orbital m(n). t~. is the 
transfer integral between orbitals m and n, and V,.. 
is the electron-electron effective Coulomb interac- 
tion. Here we employ the zero differential overlap 
approximation assuming localized basis orbitals [5,6]. 
The Hartree-Fock ground state reduced single-elec- 
tron density matrix p satisfies the equation [h, p] = 
0, with the Fock matrix h,m = t,,, + 26,, ,EtV, tp n 
- V,m p,,,. This equation can be recasted in the form 

f , ,  ~ E p , , t , , , -  Ep,.,tk. +R,..=O, (1) 
k k 

where 

k 

For a basis set of N orbitals, and when V~,, is 
given, Eq. (1) is a set of D t = N ( N -  1)/2 linear 
equations for the same number of unknown t,,~ (note 
that t,,~ = tin,). This may suggest that the effective 
Hamiltonian can be uniquely determined. However, 
the number of independent pieces of information 
contained in p, Dp, is less than D t. This means that 
not all D t linear equations are independent. To 
evaluate Do of a half filled system with N molecular 
orbitals, we need to determine the coefficients of 
N / 2  occupied molecular orbitals. This is equivalent 
to determining N / 2  orthogonal unit vectors in an 
N-dimensional space. N -  1 parameters are needed 
to determine the first molecular orbital, N -  2 pa- 
rameters are needed for the second one, and so on. 
Finally, N / 2  parameters are needed for the last 
orbital. Thus, D o = ( N -  1) + ( N -  2) + • -- + N / 2  
= N ( 3 N - 2 ) / 8  ~<D r {t,,,} can be determined by 
minimizing y-,. ,f2 . In practice, additional con- 
straints should be imposed on the system. For in- 
stance, symmetry usually requires certain relation- 
ships among {t,,,}, and physical arguments may al- 
low us to set certain elements to zero. These con- 

straints which restrict the possible values of {t,..} 
and confine the effective Hamiltonians to physical 
space, can be introduced variationally. We define 

S({/, . ,) ,  {Vm. } , { p,..}) = E f # .  + Y "  (2) 
m/1 

Here .Y- represents variational constraints. Upon 
minimizing S({t,,,}, {V,,,}, {Pro,}) with respect to 
{tij}, we have 

OS O fro" O~ 
- -  = 2 ] ~ f , . .  + - -  = 0 .  ( 3 )  
Olij mn ~tij Otij 

The effective Hamiltonian is determined by solving 
(3) for {/,,.}. 

We have applied this procedure to polyacetylene 
chains C2.H2.+2 with N = 2 n = 8 ,  10 . . . . .  48. In 
these systems the carbon 2p'n electrons are the 
valence electrons. Each localized 'rr orbital is charac- 
terized by a site index i running from 1 to N. 
Polyacetylene has inversion symmetry. Thus, t u = t~y 
where i = N + l - i  and j = N + I - j .  Since tij= 
tji, we consider only i>~j. With 5 r =  0, Eq. (3) 
becomes, 

E P k m  Pjmti* + E P k m  P)mtik + E P k m  Pimtjk 
mk mk mk 

+ E o,. tj, 
mk 

-- E ( Pi, Pj .  + Pjk Pim -I- pTk p) .  -t- pj, pbn)t,m 
mk 

+ E ( R i ~ p ~ m + R = , . p j ~ + R j .  p i ~ , + R j . p ; . )  
m 

= 0. (4) 

Employing GAUSSIAN 94 with minimal basis 
set, we obtained Hartree-Fock ground states for 
N = 2n = 8 ~ 48, Under the constraint that the 
lengths of different single or double bonds are equal, 
geometry optimization was employed for each 
molecule. Using these calculations we constructed 
the corresponding reduced single-electron density 
matrices in the basis set of the natural atomic orbitals 
(NAOs) [12]. The NAOs are the orthonormal atomic 
orbitals of maximal occupancy for a given wavefunc- 
tion [13]. They diagonalize the atomic reduced sin- 
gle-electron density matrix, and thus provide an ex- 
tremely compact representation of electron proper- 
ties. 
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Table 1 

Parameters of the effective PPP-l ike Hamiltonian for N = 14 (in eV) a 
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i = 2  i = 3  i = 4  i = 5  i = 6  i = 7  i = 8  

ti.~- 1 - 2 . 5 1 3  - 1.801 - 2 . 5 1 5  - 1.791 - 2 . 4 9 2  - 1.781 - 2 . 4 8 1  

tii - -  3.072 - 5.269 - 6.393 - 7.238 - 7.665 - 7.903 - 7.903 

t,~ b 0.069 0.075 0.081 0.082 0.085 0.085 0.085 

ti.i I - -2 .514 -- 1.800 --2.513 -- 1.790 --2.490 -- 1.780 --2.478 
ti ~ b 0.0 0.0 0.003 0.003 0.004 0.004 0.004 

ti.i_ 2 - -0 .117 --0.120 --0.122 --0.123 --0.125 --0.124 

a Optimized single bond length R s = 1.48 ~k and double bond length R a = 1.33 ,~; the upper panel assumes only the nearest neighbor 

transfer integrals, and lower panel includes also the next nearest neighbor transfer integrals. 
b t~'~ is set to zero. 

The Coulomb interaction is assumed to have the 
Ohno form [14,15], 

U 
Vm, = (5) 

1 + ( r m J a  0 

where rm~ is the distance between sites m and n, 
a o = e 2 / U e  describes the characteristic length of the 
effective Coulomb interaction, e is the dielectric 
constant. U is the on-site Coulomb interaction. We 
may solve Eq. (4) for the scaled hopping elements 
7ij =- t i / / U  by assuming a 0 = 1.0 A. 

The transfer integrals between two atoms vary 
exponentially with internuclear distance. A reason- 
able approximation is to retain only the on-site and 
the nearest neighbor terms. Setting t'~t = 0, Eq. (4) 

becomes a set of  D,, = N - 1 linear equations. First 
we solved 7ij for tetradecaheptaene (N = 14). Then 
the experimental optical gap is utilized to determine 
U. Sondheimer and co-workers measured absorption 
spectra of  a series conjugated polyacetylenes in 
isooctane [16]. The optical gap of  tetradecaheptaene 
is 3.18 eV. We have calculated the gap by employ- 
ing the coupled-electronic-oscillator (CEO) tech- 
nique [17,18]. This leads to U = 6.64 eV. In Table 1 
we list the resulting tq. Note that the hopping terms 
along either double or single bonds are very close. 
The average transfer integrals for double (t d) and 
single bonds (t  s) are - 2 . 5 0  and - 1.79 eV, respec- 
tively. 

To check the validity of  our effective Hamilto- 
nian, we have used it to compute the ground state 

Table 2 
Some elements of reduced single-electron density matrix pq  ( i =  I ~ 7  and j =  1 ~ 7 )  a 

i j = l  j = 2  j = 3  j = 4  j = 5  j = 6  j = 7  

1 0.505 0.478 - 0.001 - O.133 0.000 0.055 0.000 
( - 4.76) ( - 4.16) ( - 2.04) ( - 0.38) (2.26) ( - 0.32) ( - 1.00) 

2 0 . 4 %  0.146 0.002 - 0.018 - 0.001 0.005 
( -  3.21) ( -  3.17) ( - 3.41) ( -  0.60) ( -  2.03) ( - 1.81) 

3 0.501 0.457 0.000 - 0.128 0.000 
( - 4.62) ( - 5.68) ( - 1.26) (2.09) (0.87) 

4 0.499 0.152 0.001 - 0.020 

( - 5.45) (0.20) (4.00) (2.59) 

5 0.500 0.455 0.000 

(1.64) ( - 0.95) ( - 1.45) 

6 0.499 0.153 

( - 4.10) ( - 0.88) 
7 0.500 

(2.50) 

a The numbers in parentheses are the difference between the input density matrix elements from GAUSSIAN 94 calculation and those 
predicted by the effective Hamiltonian.  They should be multiplied by 10 -5.  
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Fig. I. t matrix elements versus N. Triangles (zx) and crosses 
(X) are for a o = 1.0 and 1.29 ,~, respectively, t d and t s are the 
average transfer integrals for double and single bonds, respec- 
tively. (ti~) and (ti.i_ 2) are the average values of ti~ and ti.i_ 2, 
respectively. 

density matrix and compared with the original 
Har t r ee -Fock  (GAUSSIAN)  calculation used to con- 
struct the effective Hamiltonian. The comparison 
given in Table 2 shows that the two density matrices 
are very similar with a standard deviation of  2.7 × 
10 -5" 

tii varies with i primarily because the nuclear 
charge on each site is not zero which results in 
different Coulomb interactions between 'rr electrons 

and nuclei. Subtracting the Coulomb interaction aris- 
ing from nuclei, we define, 

ti~ ~- lii -1- E (Wij -- Vi i )"  
J 

ti~ listed in Table 1 are very similar at all sites. 
Using the same procedure, and keeping U = 6.64 

eV, we determined effective Hamiltonians for even 
N between 8 and 48. In Fig. 1 we display t a and t~ 

versus N. They are approximately - 2 . 5  and - 1 . 8  
eV, respectively, and converge at N--~ 14. The re- 
sulting tij is transferable among different systems, 
reflecting the fact that the chemical bonding struc- 
tures are similar when the polyenes are sufficiently 
large. This suggests the applicabil i ty of  the effective 
Hamiltonian to larger systems. 

Using these effective Hamiltonians,  we have cal- 
culated the optical gaps for N = 8, 10, 12, 14, 16, 
and 20. The theoretical and experimental gaps of 
tetradecaheptaene are identical by the choice of  U. 
In Table 3 we compare the calculated gaps with 
experiment [16]. The difference ranges from 0.01 to 
0.2 eV. Given that the calculated geometries were 
not fitted to experiment and a minimal basis was 
employed,  the consistency between theory and exper- 
iment is satisfactory. 

To examine the validity of  our neglect of  long 
range transfer integrals (beyond nearest neighbor), 
we repeated the solution of  Eq. (3) by including also 
next nearest neighbor hopping terms ti,~± 2. In this 
case we found it necessary to introduce the following 
constraint in our variational calculation 

N - I  

9 - =  W ~,, ( t i ;  - t i + l . i + l )  2, (6)  
i = 1  

where W = 0.02 is a weighting constant. This con- 
straint reflects our observation that the on-site ener- 

Table 3 
Comparison of theoretical and experimental optical gaps (in eV) 

N=8  N= 10 N=12 N=14 N= 16 N=20 

Athe ° a 4.07 3.57 
Athe ° b 4.04 3.55 
Aexp c 4.08 3.71 

a Calculations using a 0 = 1.0/~. 
b Using a o = 1.29 ,~. 
c Experimental results taken from Ref. [16]. 

3.19 3.18 3.12 2.98 
3.18 3.18 3.13 3.00 
3.41 3.18 3.02 2.77 
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Table 4 
D,n and D s for different sizes. 

N= 2 N= 4 N = 6 N= 8 N= 16 N= 24 N= 48 

D,, 1 3 5 7 15 23 47 
D s 0 2 5 10 44 102 420 

gies ti~ are very similar. Without this constraint, the 
right side of  Eq. (3) could not be inverted. The 
resulting transfer integrals for tetradecaheptaene are 
listed in Table 1. We note that the next nearest 
neighbor elements are an order of magnitude smaller 
than the nearest neighbor ones, and are approxi- 
mately independent on i. This is to be expected from 
physical arguments. The resulting ti,i+ 1 are un- 
changed to the third decimal point compared with 
the previous calculations with t~.i_+ 2 = 0, as indi- 
cated in Table 1. In Fig. 1, we show the average next 
nearest hopping terms (ti.i_ 2) for N = 8 to 48. We 
conclude that it is sufficient to include only the 
on-site and the nearest neighbor hopping matrix ele- 
ments in the effective Hamiltonians of polyacetylene 
oligomers. 

The average hopping terms /d' ts and (ti, i_ 2 ) for 
octatetraene are - 2 . 9 0 ,  - 1 . 9 6  and - 0 . 1 5  eV, re- 
spectively. Pariser and Parr used a semi-empirical 
method and determined that (t  0, t s) = ( - 2 . 9 2 ,  

- 1.68) eV for butadiene [5]. Gavin and Rice deter- 
mined (t 0, t~)= ( - 2 . 6 8 ,  - 2 . 0 2 )  eV for hexatriene 
by fitting PPP-SCI calculation to their experiment 
[19]. These values depend on the value of  optical 
gap. For octatetraene, Sondheimer et al. found a gap 
of 4.08 eV for measurement in a solvent (isooctane) 
[16], whereas Heimbrook et al. reported a gap of 
4.41 eV in the gas phase [20]. Freed and co-workers 
used a multireference configuration ab initio effec- 
tive valence shell Hamiltonian calculation, and deter- 
mined the hopping matrix elements (to, ts, (ti, i_ 2 ) )  
of trans-butadiene and hexatriene are ( - 3.34, - 2.57, 
0.24) and ( - 3 . 2 2 , - 2 . 5 3 ,  0.27) eV, respectively 
[10]. Their basis set is a double-s r plus polarization 
(ccPVDZ) augmented with two carbon p Rydberg 
primitives [10,21]. The difference may reflect the 
different basis sets and different levels of  ab initio 
calculations. Many workers employed U = 11.13 eV 
in the PPP model calculations [19]. However, Fuku- 
tome argued that owing to tr electrons a dielectric 

constant • of 1.5 to 2.0 is required to reproduce 
experimental results for polyacetylene of medium to 
large size [15]. • = 1.5 leads to U = 7.42 eV in Ref. 
[11]. 

To test the sensitivity of  our results to a 0, we 
have repeated our calculations using a 0 = 1.29 ,~ 
[11]. The resulting ( t i ~ ) ,  ts, t o and ( t i . i _ 2 )  are 

shown in Fig. 1. Note that (ti~), ( t i ,  i_ 2 ) and t s are 
almost the same. t d differs by 0.1 eV ( =  4%). 

The systems studied here have inversion symme- 
try. The Hartree-Fock molecular orbitals can be 
classified into Ag (symmetric) and B u (anti-symmet- 
ric) types. Thus, the number of  independent parame- 
ters needed to specify the Hartree-Fock ground state, 
D~, is less than Dp. For N = 2, there are one Ag and 
one B u orbitals which are uniquely determined by 
symmetry, and D s -- 0. For N - -  4, there are two A g 
and two Bu states; the Hartree-Fock ground state is 
made of four electrons occupying one A g and one 
Bu; and therefore, Ds = 2 using a previous argument 
for determining Dp. In Table 4 we list D~ for several 
sizes. These numbers represent the upper limits of  
the number of  independent linear equations that Eq. 
(3) contains for centrosymmetric systems. Since for 
N = 2 and 4, D~ < D m, there are no unique solutions 
of  Eq. (4). N = 6 is a borderline case with D~ = D m 
and we found no unique solution in this case either. 
For N >/8, D~ > Din; thus, it is possible to solve Eq. 
(4). We obtained a unique solution for every N/> 8. 

In conclusion, we demonstrated how the ground 
state reduced single-electron density matrix can be 
used to obtain the effective Hamiltonian, and that 
suitable constraints are needed to yield a unique 
solution. This work provides a direct link between ab 
initio calculations and theoretical formalisms based 
on effective Hamiltonians. The present method re- 
quires the information on ground state charge and 
bond orders distribution, solves a set of linear equa- 
tions, and is computationally feasible for very large 
systems. 
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