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Abstract 

In the coupled-oscillator representation [ Takahashi and Mukamel, J. Chem. Phys. 100 (1994) 2366 ], the optical properties 
of conjugated polymers are calculated by mapping the system into a collection of coupled normal modes representing 
electron-hole pairs. Optical nonlinearities are induced by anharmonic couplings among oscillators and with the extemal field. 
Tree diagrams are developed which visualize the relevant nonlinearities and dominant oscillators and provide an efficient 
algorithm for computing the hyperpolarizabilities. 

1. Introduction 

The sum-over-state method is commonly used in 
quantum chemical calculations of optical susceptibil- 
ities [1-6].  The optical properties are then related 
to the eigenvalues and dipole matrix elements of the 
global many-electron eigenstates, and physical intu- 
ition is developed through the properties of the ground 
and the excited states. Recently a fundamentally dif- 
ferent approach, the coupled-oscillator picture, has 
been developed to investigate optical properties of 
conjugated polymers [7-11 ]. It relates the electronic 
charges and motions directly to the optical response, 
without introducing the global eigenstates. This 
greatly reduces the computational effort. The elec- 
tronic degrees of freedom are modeled as a collection 
of harmonic oscillators, and the nonlinear response 
arises from anharmonic couplings among oscillators 
and couplings between oscillators and the external 
field. In previous studies [7,9,10], very few dominant 
oscillators, typically 1-10, have been found for the 
optical responses in large conjugated polymers, out of 

the total number of oscillators M = N ( N  + 1)/2, N 
being the number of carbon atoms. In this Letter, we 
illustrate how to identify these dominant oscillators 
and anharmonicities. Basing on this, we will build a 
simple intuitive picture of optical processes in conju- 
gated polyenes, and propose an efficient algorithm to 
calculate hyperpolarizabilities. 

The method we employ is the time-dependent 
Hartree-Fock (TDHF). The TDHF describes quan- 
tum fluctuation around the Hartree-Fock ground state. 
It therefore takes into account some important corre- 
lation effects, and goes beyond the normal Hartree- 
Fock procedure [ 12-14]. We have demonstrated that 
it can reproduce some key nonlinear optical proper- 
ties of conjugated polymers [7,9-11 ]. We first solve 
for the Hartree-Fock ground state with geometry 
optimization, and then calculate the density matrix 
to first, second and third orders in the external field. 
Details of the method were given previously [7,10]. 

We will focus on the off-resonant polarizabilities 
of a relatively small system, octatetraene [ 15]. Our 
starting point is the PPP Hamiltonian which is based 
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on the Su-Schrieffer-Heeger (SSH) tight binding 
Hamiltonian with the addition of Coulomb interaction 
[7,10,16,17]. We follow the dynamics of the single 
electron reduced density matrix pnm(t) = (c+c.), 
where C+m (Cm) is the creation (annihilation) operator 
for a rr electron at site m [7,10,18-21]. A system of 
N atoms is mapped into a collection of M oscillators 
with frequencies 12~. These include N zero frequency 
oscillators. Each oscillator v has a coordinate Qv and 
a momentum P.. By expanding the density matrix in 

~nm ( t~ ~(0) theseoscil latorsweobtainSPnm(t)  - ~ .  ~ J-~' .m = 
~ .  Q.(t)O.~ + P~(t)P~, where p(0) is the reduced 
Hartree-Fock ground state density matrix, and Q. (t) 
and P~(t) are time-dependent coefficients. For the 
static response (setting the optical frequency is zero) 
we have P~ = 0. 

The nth order polarization can be calculated using 
the following expression: 

P( ' )  = ~ dvQ(~ n), (1) 

where Q(n) represent the amplitude of the vth har- 
monic oscillator with frequency/2, to nth order in the 
field and dipole moment d.,  

d.  - ~-~ 2 v ~ e z  - l  = (m) b/,,7~,~, (2) 
m 

where z (m) is the coordinate of mth atom in the chain 
direction and b/m~ . is the mn component of eigenvec- 
tor for an oscillator v. The nth order polarizability ;& 
is given by [ 10] 

Xn= ~-'~ d .Q(~ ) /g  ", (3) 

where X1 = a, X2 =/3, X3 = Y, and g is the external 
field. 

The oscillator amplitudes ~O (n) are calculated suc- 
cessively, order by order in the field S. According to 
Ref. [ 10], for nonzero frequency modes (/2. :~ 0), 

QO) 1 - g 
= - ~ u E v  , 

1 Z Q~2) = _ 0---7., ' 

1 ~ a ,ra x,r~(1 ) / q ( 1 )  

12. (C~,.,~,, + a;, , . , . , ,)~.,  ~.,,  , 
. / .1I  

1 

. t  

1 ~ a a )O(DO(2) Xp,~, . l*  
12. . t  l.,tt 
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(4) 

For centrosymmetric systems, the zero frequency 
modes (Or. = 0) give, 

011) = Q~3) = 0, 

Q(2) = ~ 1 Db ,O(I)E 

X b , , ,~ f t (1 ) to  (1) 
.,.,, 2/2. ' ~"" ~ ,~v, ~.,,  • 

Here /~  represents linear coupling of an oscillator v to 
the driving field. D.,~, stands for the coupling between 
oscillators v and v' through the external field. C~.,w, 
represents anharmonic couplings among oscillators re- 
suiting from Coulomb interactions whereas X~.,~,, are 
additional anharmonicities related to exchange inter- 
actions. All of these coefficients can be expressed in 
terms of the original parameters of the Hamiltonian, 
and the ground state reduced density matrix p{0) [ 10]. 

2. Oscillator analysis of the optical response 

2.1. Electronic normal modes 

Octatetraene has 28 finite frequency oscillators and 
8 zero frequency oscillators. Since the molecule is 
centrosymmetric, these oscillators are either symmet- 
ric (Ag) or antisymmetric (Bu). Table 1 lists the fre- 
quencies, dipole moments and oscillator strengths for 
all oscillators. We found 20 Ag oscillators and 16 Bu 
oscillators. The Ag oscillators have zero dipole mo- 
ments and zero oscillator strengths, and do not couple 
directly with the external field. They do affect however 
the optical nonlinearities since they are anharmoni- 
cally coupled to the Bu oscillators. The majority of Bu 
oscillator have nonzero dipole moments and couple to 
the external field. 

We shall examine the contribution of each oscillator 
to the density matrix p in different orders. The nth or- 
der density matrix 8p (n) can be expressed as 8p (n) = 
~ .  Q(n)IQ.))-Table 2 lists 1~2~(')1 to first, second and 
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Table 1 
Properties of  the Ag and Bu electronic harmonic oscillators a 

Ag (1) (2) (3) (4) (5) (6) (7) (8) 
D~ 0 0 0 0 0 0 0 0 

Ag (9) (10) (11) (12) (13) (14) (15) (16) 
~v 2.677 2.677 3.555 3.555 5.739 6.064 7.604 7.980 

Ag (17) (18) (19) (20) 
~ ,  9.131 9.964 11.290 12.847 

Bu (1) (2) (3) (4) (5) (6) (7) (8) 
Ov 1.047 1.047 1.630 1.630 1.925 1.925 4.034 4.602 
dv 2.370 2.370 2.725 2.725 2.773 2.773 2.657 0.003 
fv 0 0 0 0 0 0 7.351 0 

Bu (9) (10) (11) (12) (13) (14) (15) (16) 
llv 4.602 6.932 7.301 8.166 9.452 10.745 10.988 13,025 
dv 0.003 0.534 0 0.217 0.110 0 0.055 0.002 
fv 0 0.512 0 0.098 0.031 0 0.008 0.0 

a For Ag oscillator, dv = 0 and fv = 0, s2v is in the units of eV, and dv is in the units of e/~. 

Table 2 
Amplitudes of oscillators IQ~")I in first, second and third order 

Bu (7) (10) (12) (13) (15) (16) 
IQv (l) I 4.70 x 10-1 5.53 x 10 -2  1.88 x 10 -2  8.25 x 10 -3  3.51 x 10 -3  8.78 × 10 -5  

A~ (14) (1) (2) (16) (3) (4) 
IQ(v2) I 1.13 x 10 - l  6.60x 10 -2  6.60 x 10 -2  1.55 x 10 -2  5.15 × 10 -3  5.15 x 10 -3  

Ag ( 11 ) (12) (18) (5) (6) (9) 
[Q(v2) I 3.87x 10 -3  3.87x 10 -3  3.09x 10 -3  6.24x 10 -4  6.24x 10 -4  4.36x 10 -4  

Ag (10) (20) (7) (8) 
IQ~ z) I 4.36 x 10 -4  4.33 x 10 -4  7.65 x 10 -5  7.65 x 10 -5  

Bu (12) (5) (6) (7) (13) (15) 
IQ(v 3) I 3.22 x 10 -2  2.22 x 10 -2  2.22 x 10 -2  1.86 x 10 -2  5.63 × 10 -3  2.80 x 10 -3  

Bu (3) (4) (8) (9) (1) (2) 
IQv (3) I 2.47 x 10 -3  2.47 × 10 -3  1.47 x 10 -3  1.47 x 10 -3  3.43 x 10 -4  3.43 x 10 -4  

Bu (10) (16) 
IQ~ 3) [ 2.84 × 10 -4  8.43 x 10 -5  
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Fig. 1. The density matrices of Bu oscillators for octatetraene. The density matrix is an 8 × 8 matrix. The top is a continuous surface 
representing Bu oscillator, and the bottom is a contour representation. 

third order (n = 1, 2, 3). In the calculation, the mag- 
nitude of  electric field is assumed to be 1 V//k. Selec- 
tion rules imply that the first and third order solutions 
contain only Bu oscillators and in second order, there 
are only Ag oscillators [ 7 ]. 

2.2. Dominant  oscillators 

As is evident from Table 2, only few oscillators 
dominate in each order. In first order, there is one 
dominant oscillator Bu (7) ,  which will be denoted the 
absorption mode (AM).  In Fig. 1 we plot the density 
matrix representing the eigenvector Q~ of  this mode. 
The diagonal elements Pnn represent the charge at site 
n. Since electrons move across the rr bond, we find that 
the elements parallel to the anti-diagonal line polarize 
in the same way. Thus, the density matrix elements 
form alternating arrays of hills and valleys parallel 
to the anti-diagonal direction (n - m is varied with 
n + m held fixed). The three dominant oscillators in 
second order are displayed in Fig. 2. These include two 

zero frequency modes (ZFM), Ag(1)  and Ag(2) .  In 
third order, there are three dominant oscillators Bu (5) ,  
Bu(6) and Bu(12) in addition to AM. Their density 
matrices are shown in Fig. 1 as well. Oscillators Bu (5)  
and Bu (6) form alternating hills and valleys along the 
anti-diagonal direction similar to AM. The diagonal 
elements of  Bu (12) also form a similar pattern. 

To further explore the nature of  these dominant os- 
cillators, we shall study their composition. In Ref. 
[ 10], in addition to the real space site representation, 
we introduced the Hartree-Fock oscillator (HFO) rep- 
resentation. In this representation, each HFO [ ql, q2 ] 
is connected to the transition among two Hartree- 
Fock molecular orbitals ql and q2. Projecting oscil- 
lators onto HFO space connects electronic harmonic 
oscillators with the molecular orbitals. In Fig. 3, we 
plot the HFO components of  the dominant oscillators. 
Based on these observations, the dominant oscillators 
can be constructed by a simple algorithm, which will 
be discussed below. 
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Fig. 2. The same as Fig. 1 but for the A 
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Fig. 3. Projections of dominant oscillators onto the Hartree-Fock oscillator (HFO) representation. (a) Bu oscillators: Bu(7) (AM) is 
made primarily of [plh4], Bu(5) [Bu(6)] made of [PlP2] and [plh4] ([h3h4] and [plh4]), and Bu(12) is made of mainly [p2h3]. 
(b) Ag oscillators: Ag(1) lag(2) ]  (ZFM) are made mainly of [PlPl ] and [plh4l ([hah4] and [pjh4] ), and Ag(14) is made of [p]h31 
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Table 3 
Percentages of dominant nonlinear coupling parameters D, C and X 

301 

4 6 8 10 12 14 16 

Dry 20.0 12.2 8.33 5.85 5.08 4.02 3.35 
Cv. ", ,,, 15.3 7.23 3.84 2.23 1.52 0.97 0.59 
X~,v, v" 11.9 4.82 2.08 0.97 0.50 0.32 0.14 

2.3. Dominant nonlinearities 101 H 
,n the coup,  osci,,a,orpicture, h.monic osci,,a loOtl H H 

tors interact with the the field and with each other 
through the coupling parameters D, C and X. Thus, 10-'/L'L ' ' ' 

0 1 2 
it is important to examine these parameters. The to- lo3] H lEvi 

tal number of D~.~,, C~,~,~,, and X~.~,~,, coefficients is 1°2 ~[~-L 
M 2, M 3 and M 3, respectively. In Fig. 4, we plot the 1°1 l l l l l l t ~  
histograms for the absolute magnitudes o f / ~ ,  D~,~,, 
C,,~,~,, and X~,~,~,,. Most of them are very small and 10o ,,,,,,,. . . . . .  ,,, rl-n r ~ ,  

o 1 2 can be neglected. Only a tiny fraction of D~.~,, C~.~,~,, 10~1 It L ~.1 
and X~.~,~,, contribute to optical response, and they can 10 4 ; ~ 

be determined by introducing some cut-off. In Table 3, 103 Jl 
1 oGIII  I I  I I  m l - n - , ~  

we list the percentages of dominant D~,~,, C~,~,~,, and 1 0 ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~  
X,,~,~,, with absolute magnitudes greater than 0.7 (in ~00 ~,,,,,,.,,,,,,,,,,,.,,,,,,,,,,,.,,,,,,, n 
units of e A h-  1 ) for different molecular sizes, N = 4, o 1 2 3 

10 51  I C v ,~,,,,,I 
6, 8, 10 and 12. For N = 8, the percentages for D, C lo4.~[L 
and X are 6.48, 2.17 and 0.55, respectively. Other D, ~o3tll[trm_.._ 
C and X are much smaller. This illustrates why there ~°211111111111~ 

lo't l l l l l l l l l l l l l l l l l l l [Ihfl~ are only few dominant oscillators. Basing on this ob- 10 ° ~," ' ' ' ~  ' ".' ' ' ' ',' ' ' ' '? ' ' ~,' ' ' 
servation, we developed the following procedure to 0 1 2 3 
calculate hyperpolarizabilities. We first determine the Ix ...I 
dominant oscillators {u} in first order using the crite- 
ria I/~[ > 0.7. We next calculate Du, ~, Cu,,~,v2 and 
Xu, ~ 2, where ul, v2 C {v}, keep only those with 
absolute value larger than a certain cut-off (chosen 
to be 0.7). This should identify the dominant oscilla- 
tors {/z} in second order. Finally we calculate Da,,~,,, 
Ca,,,,~, and X~,,~,~, where v' E {u} a n d / 2  E {/z}, 
again keeping only those greater than our chosen cut- 
off, and obtain the third order dominant oscillators. 

We used this procedure to calculate the off-resonant 
polarizabilities a (0 ) ,  f l(0) and y(0)  of octatetraene. 
The resulting values of ce(0) and y(0)  are 1.77 
e.~2 V-1 and 0.267 e/~3 V-2, respectively. Compared 
with the values obtained by retaining all 36 oscillators 
a (0 )  = 1.81 e/~2V -1 and y(0)  = 0.255 e/k3V -2, 
the relative errors are 2.7% and 4.9%, respectively. 

(a) 

I I I 

3 4 5 

(b) 

n r f ]  . . . .  J-ln n 
I I I 
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I I 
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(d) 

I"1 
! ! 
4 fi 

Fig. 4. Histograms for the absolute magnitudes of harmonic and 
anharmonic couplings. (a) Harmonic coupling Ev; (b) anhar- 
monic coupling Dvv, (c) Cvyv,,;  (d) Xv, v,v,,. 

2.4. Tree diagrams for dominant oscillators 

In Section 2.3, we outlined a procedure to identify 
the dominant oscillators and calculate a (0 ) ,  f l (0)  and 
7(0) by introducing a cut-off for D, C and X asso- 
ciated with the dominant oscillators in lower orders. 
This procedure shows how the oscillators couple suc- 
cessively. In first order, the external field couples with 
the first order dominant oscillators; in second order, 
the first order dominant oscillators couple with the ex- 
ternal field and among themselves to produce the sec- 
ond order oscillators; and in third order, the second or- 
der oscillators couple with the external field and with 
the first order oscillators to produce third order oscil- 
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(b) 

Fig. 5. (a) Tree diagram for the anharmonic coupling Dr, v,. Circles, Mangles and squares represent the first, second and third order 
dominant oscillators, respectively. The lines stand for the Dr.., couplings. (b) Tree diagrams for the anharmonic coupling C.y~,, and 
X...,v,,. Circles, triangles and squares represent the first, second and third order dominant oscillators, respectively. The solid lines stand 
for the Cv, v,v" and X..v,v,, couplings and the dashed line stands for Cv,~,,p,, only. ~ means the product of two oscillators. 

lators. To illustrate this mechanism, we introduce tree 
diagrams in which circles, squares and triangles rep- 
resent dominant oscillators in first, second and third 
orders respectively, and lines represent nonlinear cou- 
plings. In Fig. 5a, we show a tree diagram representing 
the couplings D between the dominant oscillators and 
the external field, and Fig. 5b gives the tree diagrams 
for the couplings C and X. The dotted line indicates C 
couplings only while solid lines represent both C and 
X couplings. Since these represent anharmonic cou- 
plings among oscillators, two oscillators are required 
to produce each third order oscillator. Thus, the tree 
diagrams in Fig. 5b are different from Fig. 5a. In each 
order (second and third), it starts with products of two 
dominant oscillators and produces oscillators of next 
order (Fig. 5b). The tree diagrams provide a clear 
view of nonlinear optical properties. Instead of tran- 
sitions among eigenstates, nonlinear optical processes 
are related to a hierarchy of successively coupled os- 
cillators. Figs. 5a and 5b illustrate that starting with 
the AM, these couplings produce three second order 
oscillators and subsequently four third order oscilla- 
tors. There are only three D couplings, three C and 
three X couplings involved in the second order pro- 
cess. In addition, there are eight D, eight C and seven 

X involved in the third order process. Compared with 
the total number of possible different couplings (362 
for D, 363 for C and X), this is a great simplification 
of the anharmonic coupling picture. 

3. Discussion 

We have identified seven dominant oscillators. AM 
is the only oscillator in first order, and is excited by 
the external field interacting with the ground state. All 
other oscillators in second and third orders are linked 
to AM. Therefore, it is important to explore the na- 
ture of the AM. Although we only investigated oc- 
tatetraene, we expect the following features of AM to 
hold for larger polyenes as well, ( 1 ) ~r electrons po- 
larize at double bond sites and electrons move across 
double bonds; (2) the AM density matrix forms ar- 
rays of hills and valleys alternating along the diago- 
nal direction; (3) for an even numbered conjugated 
polymer, [QAM] nm= 0 when n + m  is odd. AM is pri- 
marily made of the HOMO/LUMO transition. Thus, 
AM is readily constructed. As shown in Section 2.2, 
other dominant oscillators are all made of the first 
two HOMO and LUMO. This implies that we only 
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need a few molecular orbitals near the Fermi level to 
construct the dominant oscillators. As the system size 
increases, intervals between adjacent levels decrease 
and the number of molecular orbitals near the Fermi 
surface increase. 

The primary goal of this Letter is to develop an in- 
tuitive and systematic picture of dominant oscillators. 
Tree diagrams represent the dynamics of dominant 
oscillators and provide an alternative to the essential 
states picture [22]. For centrosymmetric systems, a 
selection rule which is based on the symmetry of os- 
cillators states that in the first and third orders only Bu 
oscillators appear while in the second order only Ag 
oscillators contribute. However, Bu ( 11 ) and Bu (14), 
and Ag(13), Ag(15), Ag(17) and Ag(19) do not ap- 
pear in any order. Upon inspection of these oscillators, 
we found that (1) for B u ( l l )  and Bu(14), ffnm = 0 
when n ÷ m is even while for others Bu oscillators 
Pnm = 0 when n + m is odd; (2) for Ag(13), Ag(15), 
Ag(17) and Ag(19), Pnm = 0 when n + m  is odd while 
Pnm = 0 when n + m is even for other Ag oscillators. 

In summary, the anharmonic coupling parameters of 
octatetraene show that only a very small faction con- 
tributes to the polarizabilities. Based on this observa- 
tion, we introduced tree diagrams to represent the an- 
harmonic couplings, illustrate the emergence of domi- 
nant oscillators and thus explain the origins of nonlin- 
earities. The tree diagrams provide an intuitive picture 
of nonlinear electronic dynamics in the system. 
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