
Solutions to Mid-Term Test 
 

1. (a) Write down the Hamiltonian of a particle of the mass 𝑀 moving in the 𝑥𝑦 plane 

subject to the potential energy 𝑉 = 𝑘(𝑥2 + 𝑦2)/2. 
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(b) Given a wave function 𝜓 = 𝑁𝑒−|𝑥|. Evaluate the normalization coefficient 𝑁. 
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Thus 𝑁 = 1. 

 

2. (a) What is the Hermitian operator? Discuss the properties of a Hermitian operator. 

 

For any two functions, if the following equation holds, then Ω̂ is called Hermitian 

operator. 
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Any eigenvalue of Hermitian operator is a real number. 

Eigenfunctions of Hermitian operator with different eigenvalues are orthogonal. 

 

 (b) Prove that 
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Given any two functions 𝜓𝑖 and 𝜓𝑗, 
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Thus 
d2

d𝑥2
 is a Hermitian operator. 

Q.E.D. 

 

3. What is the Heisenberg’s uncertainty principle for position and momentum? Why is it 

related to the commutator of the two operators? 

 



(a) For position and momentum along its direction, their uncertainties satisfy the 

following Heisenberg’s uncertainty principle 

∆𝑥 ⋅ ∆𝑝𝑥 ≥
ℏ

2
 

For position and momentum along other directions, we have 

∆𝑥 ⋅ ∆𝑝𝑦 ≥ 0 

 

(b) For two observables 𝐴 and 𝐵, the product of their uncertainty is related to the 

expectation value of the commutator of the corresponding operators �̂� and �̂�. 

∆𝐴 ⋅ ∆𝐵 ≥
1

2
|⟨[�̂�, �̂�]⟩| 

 

Specify �̂� = �̂�, �̂� = �̂�𝑥 = −𝑖ℏ
𝜕

𝜕𝑥
, we have [�̂�, �̂�𝑥] = 𝑖ℏ, thus 
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For �̂� = �̂�, �̂� = �̂�𝑦 = −𝑖ℏ
𝜕

𝜕𝑦
, we have [�̂�, �̂�𝑦] = 0, thus 

∆𝑥 ⋅ ∆𝑝𝑦 ≥ 0 

 

4. An electron resides within a potential well of infinite depth and a width 𝐿. 

(a) Write down its Schrödinger equation; 

 

Denote the mass of electron as 𝑚. Suppose it is confined in [0, 𝐿], then 

�̂� = −
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d2

d𝑥2
+ 𝑉(𝑥) 

where the potential is 

𝑉(𝑥) = {
0,  0 < 𝑥 < 𝐿

+∞,  𝑥 ≤ 0 or 𝑥 ≥ 𝐿
 

The Schrödinger equation is 

�̂�𝜓(𝑥) = 𝐸𝜓(𝑥) 
 

(b) Confirm 𝜓 = 𝑁 sin
𝑛𝜋𝑥

𝐿
 where 𝑛 is an integer is the solution of the above 

Schrödinger equation; 

 

This wavefunction is the solution of above Schrödinger equation in [0, 𝐿]. 
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It also satisfies boundary conditions 𝜓(0) = 𝜓(𝐿) = 0, thus 𝜓(𝑥) is indeed the 

solution of above Schrödinger equation. 

 

(c) Calculate the normalization coefficient 𝑁. 
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Thus 

𝑁 = √
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