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Mathematical background 1 Differentiation and integration

Two of the most important mathematical techniques in the 
physical sciences are differentiation and integration. They 
occur throughout the subject, and it is essential to be aware of 
the procedures involved.

MB1.1 Differentiation: definitions
Differentiation is concerned with the slopes of functions, such 
as the rate of change of a variable with time. The formal defini-
tion of the derivative, df/dx, of a function f(x) is
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Definition  First derivative  (MB1.1)

As shown in Fig. MB1.1, the derivative can be interpreted as the 
slope of the tangent to the graph of f(x). A positive first deriva-
tive indicates that the function slopes upwards (as x increases), 
and a negative first derivative indicates the opposite. It is some-
times convenient to denote the first derivative as f ′(x). The sec-
ond derivative, d2f/dx2, of a function is the derivative of the 
first derivative (here denoted f ′):
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Definition  second derivative  (MB1.2)

It is sometimes convenient to denote the second derivative f ″. 
As shown in Fig. MB1.1, the second derivative of a function can 
be interpreted as an indication of the sharpness of the curva-
ture of the function. A positive second derivative indicates that 
the function is ∪ shaped, and a negative second derivative indi-
cates that it is ∩ shaped.

The derivatives of some common functions are as follows:
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When a function depends on more than one variable, we 
need the concept of a partial derivative, ∂f/∂x. Note the change 
from d to ∂: partial derivatives are dealt with at length in 
Mathematical background 2; all we need know at this stage is 
that they signify that all variables other than the stated variable 
are regarded as constant when evaluating the derivative.

MB1.2 Differentiation: manipulations

It follows from the definition of the derivative that a variety of 
combinations of functions can be differentiated by using the 
following rules:
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Brief illustration MB1.1 Partial derivatives

Suppose we are told that f is a function of two variables, and 
specifically f = 4x2y3. Then, to evaluate the partial derivative of 
f with respect to x, we regard y as a constant (just like the 4), 
and obtain

∂
∂ = ∂

∂ = ∂
∂ =f

x x
x y y

x
x xy( )4 4 82 3 3 2 3

 

Similarly, to evaluate the partial derivative of f with respect to 
y, we regard x as a constant (again, like the 4), and obtain
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Figure MB1.1 (a) The first derivative of a function is equal to the 
slope of the tangent to the graph of the function at that point. 
The small circle indicates the extremum (in this case, maximum) 
of the function, where the slope is zero. (b) The second 
derivative of the same function is the slope of the tangent to a 
graph of the first derivative of the function. It can be interpreted 
as an indication of the curvature of the function at that point.
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MB1.3 Series expansions
One application of differentiation is to the development of 
power series for functions. The Taylor series for a function f(x) 
in the vicinity of x = a is
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 taylor series  (MB1.5)

where the notation (…)a means that the derivative is evaluated 
at x = a and n! denotes a factorial given by

n n n n! ( )( ) , != =- -1 2 1 1… 0   Factorial  (MB1.6)

The Maclaurin series for a function is a special case of the 
Taylor series in which a = 0.

The following Taylor series (specifically, Maclaurin series) 
are used at various stages in the text:
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Taylor series are used to simplify calculations, for when 
x ≪ 1 it is possible, to a good approximation, to terminate the 
series after one or two terms. Thus, provided x ≪ 1 we can write

( )1 11+ ≈x x− −  (MB1.8a)
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ln(1 )+ ≈x x  (MB1.8c)

A series is said to converge if the sum approaches a finite, 
definite value as n approaches infinity. If the sum does not 
approach a finite, definite value, then the series is said to 
diverge. Thus, the series in eqn MB1.7a converges for x < 1 and 
diverges for x ≥ 1.There are a variety of tests for convergence, 
which are explained in mathematics texts.

MB1.4 Integration: definitions
Integration (which formally is the inverse of differentiation) 
is concerned with the areas under curves. The integral of a 

Brief illustration MB1.3 Series expansion

To evaluate the expansion of cos x around x = 0 we note that
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Brief illustration MB1.2 Derivatives

To differentiate the function f = sin2 ax/x2 use eqn MB1.4 to 
write
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The function and this first derivative are plotted in Fig. MB1.2.
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Figure MB1.2 The function considered in Brief illustration 
MB1.2 and its first derivative.
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function f(x), which is denoted ∫f dx (the symbol ∫ is an elon-
gated S denoting a sum), between the two values x = a and x = b 
is defined by imagining the x axis as divided into strips of width 
δx and evaluating the following sum:
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Definition  Integration  (MB1.9)

As can be appreciated from Fig. MB1.3, the integral is the area 
under the curve between the limits a and b. The function to 
be integrated is called the integrand. It is an astonishing math-
ematical fact that the integral of a function is the inverse of the 
differential of that function in the sense that if we differentiate 
f and then integrate the resulting function, then we obtain the 
original function f (to within a constant). The function in eqn 
MB1.9 with the limits specified is called a definite integral. If it 
is written without the limits specified, then we have an indefi-
nite integral. If the result of carrying out an indefinite integra-
tion is g(x) + C, where C is a constant, the following notation is 
used to evaluate the corresponding definite integral:
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 definite integral  (MB1.10)

Note that the constant of integration disappears. The definite 
and indefinite integrals encountered in this text are listed in the 
Resource section.

MB1.5 Integration: manipulations
When an indefinite integral is not in the form of one of those 
listed in the Resource section it is sometimes possible to 

transform it into one of the forms by using integration tech-
niques such as:

Substitution. Introduce a variable u related to the 
independent variable x (for example, an algebraic relation 
such as u = x2 − 1 or a trigonometric relation such as u = sin x ). 
Express the differential dx in terms of du (for these 
substitutions, du = 2x dx and du = cos x dx, respectively). 
Then transform the original integral written in terms of x 
into an integral in terms of u upon which, in some cases, a 
standard form such as one of those listed in the Resource 
section can be used.

Integration by parts. For two functions f(x) and g(x):
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which may be abbreviated as:

f g fg g fd d∫ ∫= −
 

(MB1.11b)

Brief illustration MB1.4 Integration by substitution

To evaluate the indefinite integral ∫cos2 x sin x dx we make the 
substitution u = cos x. It follows that du/dx = –sin x, and there-
fore that sin x dx = –du. The integral is therefore
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To evaluate the corresponding definite integral, we have to 
convert the limits on x into limits on u. Thus, if the limits are 
x = 0 and x = π, the limits become u = cos 0 = 1 and u = cos π = –1:
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Brief illustration MB1.5 Integration by parts

Integrals over xe−ax and their analogues occur commonly in 
the discussion of atomic structure and spectra. They may be 
integrated by parts, as in the following:
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Figure MB1.3 A definite integral is evaluated by forming the 
product of the value of the function at each point and the 
increment δx, with δx → 0, and then summing the products  
f(x)δx for all values of x between the limits a and b. It follows 
that the value of the integral is the area under the curve 
between the two limits.
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MB1.6 Multiple integrals

A function may depend on more than one variable, in which 
case we may need to integrate over both the variables:
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We (but not everyone) adopt the convention that a and b are 
the limits of the variable x and c and d are the limits for y (as 
depicted by the colours in this instance). This procedure is sim-
ple if the function is a product of functions of each variable and 
of the form f(x,y) = X(x)Y(y). In this case, the double integral is 
just a product of each integral:
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Brief illustration MB1.6 A double integral

Double integrals of the form
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occur in the discussion of the translational motion of a par-
ticle in two dimensions, where L1 and L2 are the maximum 
extents of travel along the x- and y-axes, respectively. To eval-
uate I we use eqn MB1.13 and an integral listed in the Resource 
section to write
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Mathematical background 3 Complex numbers

We describe here general properties of complex numbers 
and functions, which are mathematical constructs frequently 
encountered in quantum mechanics.

MB3.1 Definitions
Complex numbers have the general form

z x y= + i   general form of a complex number  (MB3.1)

where i = (−1)1/2. The real numbers x and y are, respectively, the real 
and imaginary parts of z, denoted Re(z) and Im(z). When y = 0, 
z = x is a real number; when x = 0, z = iy is a pure imaginary number. 
Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal when 
x1 = x2 and y1 = y2. Although the general form of the imaginary part 
of a complex number is written iy, a specific numerical value is 
typically written in the reverse order; for instance, as 3i.

The complex conjugate of z, denoted z*, is formed by replac-
ing i by –i:

z x y* i= −   complex conjugate  (MB3.2)

The product of z* and z is denoted |z|2 and is called the square 
modulus of z. From eqns MB3.1 and MB3.2,

| | ( )( )z x y x y x y2 2 2i i= + = +−   square modulus  (MB3.3)

since i2 = −1. The square modulus is a real number. The absolute 
value or modulus is itself denoted |z| and is given by:

| | ( ) ( )/ /z z z x y= = +* 1 2 2 2 1 2

  absolute value or modulus  (MB3.4)

Since zz* = |z|2 it follows that z × (z*/|z|2) = 1, from which we can 
identify the (multiplicative) inverse of z (which exists for all 
nonzero complex numbers):
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 Inverse of a complex number  (MB3.5)

MB3.2 Polar representation

The complex number z = x + iy can be represented as a point 
in a plane, the complex plane, with Re(z) along the x-axis and 
Im(z) along the y-axis (Fig. MB3.1). If, as shown in the figure, 
r and ϕ denote the polar coordinates of the point, then since 
x = r cos ϕ and y = r sin ϕ, we can express the complex number 
in polar form as

z r= +( sin )cos iφ φ   Polar form of a complex number  (MB3.6)

The angle ϕ, called the argument of z, is the angle that z makes 
with the x-axis. Because y/x = tan ϕ, it follows that the polar 
form can be constructed from
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(MB3.7a)

To convert from polar to Cartesian form, use

x r y r z x y= = = +cos and  sin to form iφ  φ  (MB3.7b)

One of the most useful relations involving complex numbers is 
Euler’s formula:

e cos isiniφ φ φ= +   euler’s formula  (MB3.8a)

The simplest proof of this relation is to expand the exponen-
tial function as a power series and to collect real and imaginary 
terms. It follows that

cos e e sin i(e e )i i i iφ φφ φ φ φ= + =1
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1
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The polar form in eqn MB3.6 then becomes

z r= eiφ  (MB3.9)

Brief illustration MB3.1 Inverse

Consider the complex number z = 8 − 3i. Its square modulus is
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The modulus is therefore |z| = 731/2. From eqn MB3.5, the 
inverse of z is
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Figure MB3.1 The representation of a complex number z as a 
point in the complex plane using Cartesian coordinates (x,y) or 
polar coordinates (r,ϕ).
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MB3.3 Operations
The following rules apply for arithmetic operations for the 
complex numbers z1 = x1 + iy1 and z2 = x2 + iy2.

1. Addition: z z x x y y1 2 1 2 1 2i( )+ = + + +( )  (MB3.10a)

2. Subtraction: z z x x y y1 2 1 2 1 2i( )– ( – ) –= +  (MB3.10b)

3. Multiplication: 

z z x y x y

x x y y x y y x
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4. Division: We interpret z1/z2 as z z1 2
1−  and use eqn MB3.5 

for the inverse:
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The polar form of a complex number is commonly used to 
perform arithmetical operations. For instance the product of 
two complex numbers in polar form is

z z r r r r1 2 1 2 1 2
1 2 1 2= = +( )( ) ( )e e ei i iφ φ φ φ

 (MB3.11)

This multiplication can be depicted in the complex plane, as 
shown in Fig. MB3.2.

The nth power and the nth root of a complex number are

z r r z r rn n n n n n n n= = = =( ) ( )i / / / /e e e ei i iφ φ φφ 1 1 1

 (MB3.12)

The depictions in the complex plane are shown in Fig. MB3.3.

Brief illustration MB3.3 Operations with numbers

Consider the complex numbers z1 = 6 + 2i and z2 = –4 – 3i. Then
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Brief illustration MB3.4 Roots

To determine the 5th root of z = 8 − 3i, we note that from Brief 
illustration MB3.2 its polar form is

z = =− −73 8 5441 2 0 359 0 359/ . ..e ei i
 

The 5th root is therefore

z1 5 0 359 1 5 1 5 0 359 5 0 07188 544 8 544 1 536/ . / / . / .( . ) . .= = =− − −e e ei i i
 

It fol lows that x =  1.536 cos(–0.0718) =  1.532 and y =  
1.536 sin(–0.0718) = –0.110 (note that we work in radians), so

( ) . ./8 3i 1 532 11 i1 5− = −0 0  

Brief illustration MB3.2 Polar representation

Consider the complex number z = 8 − 3i. From Brief illustra-
tion MB3.1, r = |z| = 731/2. The argument of z is
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The polar form of the number is therefore

z = −731 2 0 359/ .e i
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Figure MB3.2 The multiplication of two complex numbers 
depicted in the complex plane.
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Figure MB3.3 The nth powers (n = 1, 2, 3, 4, 5) and the nth roots 
(n = 1, 2, 3, 4) of a complex number depicted in the complex 
plane.
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Mathematical background 4 Differential equations

A differential equation is a relation between a function and its 
derivatives, as in
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(MB4.1)

where f is a function of the variable x and the factors a, b, c may 
be either constants or functions of x. If the unknown function 
depends on only one variable, as in this example, the equation 
is called an ordinary differential equation; if it depends on 
more than one variable, as in
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(MB4.2)

it is called a partial differential equation. Here, f is a function 
of x and y, and the factors a, b, c may be either constants or 
functions of both variables. Note the change in symbol from 
d to ∂ to signify a partial derivative (see Mathematical back-
ground 2).

MB4.1 The structure of differential equations
The order of the differential equation is the order of the highest 
derivative that occurs in it: both examples above are second-
order equations. Only rarely in science is a differential equation 
of order higher than two encountered.

A linear differential equation is one for which if f is a solu-
tion then so is constant × f. Both examples above are linear. 
If the 0 on the right were replaced by a different number or a 
function other than f, then they would cease to be linear.

Solving a differential equation means something differ-
ent from solving an algebraic equation. In the latter case, the 
solution is a value of the variable x (as in the solution x = 2 of 
the quadratic equation x2 − 4 = 0). The solution of a differential 
equation is the entire function that satisfies the equation, as in

d
d

2

2 0
f

x
f f x A x B x+ = = +, ( ) sin cos
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with A and B constants. The process of finding a solution of 
a differential equation is called integrating the equation. The 
solution in eqn MB4.3 is an example of a general solution of a 
differential equation; that is, it is the most general solution of 
the equation and is expressed in terms of a number of constants 
(A and B in this case). When the constants are chosen to accord 
with certain specified initial conditions (if one variable is the 
time) or certain boundary conditions (to fulfil certain spatial 
restrictions on the solutions), we obtain the particular solution 
of the equation. The particular solution of a first-order differen-
tial equation requires one such condition; a second-order dif-
ferential equation requires two.

MB4.2 The solution of ordinary differential 
equations

The first-order linear differential equation

d
d

f
x

af+ = 0
 

(MB4.4a)

with a a function of x or a constant can be solved by direct 
integration. To proceed, we use the fact that the quantities df 
and dx (called differentials) can be treated algebraically like any 
quantity and rearrange the equation into

d
d

f
f

a x= −
 

(MB4.4b)

and integrate both sides. For the left-hand side, we use the 
familiar result ∫dy/y = ln y + constant. After pooling all the con-
stants into a single constant C, we obtain:

ln ( )f x a x C= − +∫ d
 

(MB4.4c)

Brief illustration MB4.1 Particular solutions

If we are informed that f(0) = 0, then because from eqn MB4.3 
it follows that f(0) = B, we can conclude that B = 0. That still 
leaves A undetermined. If we are also told that df/dx = 2 at 
x = 0 (that is, f ′(0) = 2, where the prime denotes a first deriva-
tive), then because the general solution (but with B = 0) implies 
that f ′(x) = A cos x, we know that f ′(0) = A, and therefore A = 2. 
The particular solution is therefore f(x) = 2 sin x. Figure MB4.1 
shows a series of particular solutions corresponding to differ-
ent boundary conditions.
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Figure MB4.1 The solution of the differential equation 
in Brief illustration MB4.1 with three different boundary 
conditions (as indicated by the resulting values of the 
constants A and B).
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Even the solutions of first-order differential equations quickly 
become more complicated. A nonlinear first-order equation of 
the form

d
d

f
x

af b+ =
 

(MB4.5a)

with a and b functions of x (or constants) has a solution of the 
form

f x b x Ca x a x( )e e dd d∫ ∫= +∫  
(MB4.5b)

as may be verified by differentiation. Mathematical software 
packages can often perform the required integrations.

Second-order differential equations are in general much 
more difficult to solve than first-order equations. One powerful 
approach commonly used to lay siege to second-order differen-
tial equations is to express the solution as a power series:

f x c xn
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∞

∑
0  

(MB4.6)

and then to use the differential equation to find a relation 
between the coefficients. This approach results, for instance, in 
the Hermite polynomials that form part of the solution of the 
Schrödinger equation for the harmonic oscillator (Topic 8B). 
Many of the second-order differential equations that occur in 
this text are tabulated in compilations of solutions or can be 
solved with mathematical software, and the specialized tech-
niques that are needed to establish the form of the solutions 
may be found in mathematical texts.

MB4.3 The solution of partial differential 
equations

The only partial differential equations that we need to solve 
are those that can be separated into two or more ordinary 
differential equations by the technique known as separation 
of variables. To discover if the differential equation in eqn 
MB4.2 can be solved by this method we suppose that the full 
solution can be factored into functions that depend only on 
x or only on y, and write f(x,y) = X(x)Y(y). At this stage there 
is no guarantee that the solution can be written in this way. 
Substituting this trial solution into the equation and recog-
nizing that
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We are using d instead of ∂ at this stage to denote differentials 
because each of the functions X and Y depends on one variable, 
x and y, respectively. Division through by XY turns this equa-
tion into
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Now suppose that a is a function only of x, b a function of y, and 
c a constant. (There are various other possibilities that permit 
the argument to continue.) Then the first term depends only on 
x and the second only on y. If x is varied, only the first term can 
change. But as the other two terms do not change and the sum 
of the three terms is a constant (0), even that first term must 
be a constant. The same is true of the second term. Therefore 
because each term is equal to a constant, we can write
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We now have two ordinary differential equations to solve by 
the techniques described in Section MB4.2. An example of this 
procedure is given in Topic 8A, for a particle in a two-dimen-
sional region.

Brief illustration MB4.2 The solution of a first-order 
equation

Suppose that in eqn MB4.4a the factor a = 2x; then the general 
solution, eqn MB4.4c, is

ln ( )f x x x C x C= − + = − +∫2 2d
 

(We have absorbed the constant of integration into the con-
stant C.) Therefore

f N Nx x C( ) ,= =−e e
2

 
If we are told that f(0) = 1, then we can infer that N = 1 and 
therefore that f x e x( ) .= − 2
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