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8 THE QUANTUM THEORY OF MOTION

8B Vibrational motion

Answers to discussion questions

D8B.2

D8B.3

If the quantum number v is large enough, the most probable location shifts to
the outside of the well. The probability density will look just like the classical
probability. The exponential tails into the classically forbidden region decreases
with increasing v, so the quantum oscillator looks more and more like the classical

one.

The physical reason is the uncertainty principle (Section 7C.3). If a particle is at
least partly localized, its position is not completely uncertain, and therefore its
momentum, and hence its kinetic energy, cannot be exactly zero. The potential en-
ergy of the harmonic oscillator at least partially localizes the oscillator in the neigh-
bourhood of the equilibrium position, so zero momentum (and therefore zero
kinetic energy) is precluded. Furthermore, the confinement is not perfect, which
makes the particle’s potential energy also differ from zero.

Solutions to exercises

E8B.1(a)

k 1/2
E=(v+%)ha), wz(;‘) [8B.4]

The zero-point energy corresponds to v=0; hence
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1 2 155Nm™ )"
Eo=—hw—¥h(ﬁ] =(l)x(1.ossx10‘34js)x -
2 2 \m 2 2.33%x10" kg

=[4.30x107]]
E8B.2(a) The difference in adjacent energy levels is
k 1/2
AE=E, —E,=ho [8B.5]= h(—f) (8B.4]
m

Hence
AEY: 482x1027 Y
k.=m|l — | =(1.33%x10kg) x =278kgs> =[278Nm™
‘ m(h) ( g (1.055><10"*]s 88 o

E8B.3(a) The requirement for a transition to occur is that AE(system)=E(photon),

so AE(system)=ho [8B.5]= E(photon)=hv =%

1/2
Therefore, % = g—?: = (%) X (%) [8B.4]

12
A= ZNC(%) =(2m)x(2.998 x10° ms_l)x(

=2.64x10‘6m=

E8B.4(a) The frequency of a harmonic oscillator is [8B.4]

w:(ﬁ)lﬂ
m

'H (H) and *H (D) are isotopes, so we expect that the force constant is the same in
H, and D,. They differin mass. So the frequencies are inversely proportional to the
square root of the mass:

1/2
m
W, =0, 2
mD

But the appropriate mass is not the mass of the molecule but its “effective mass”

1.0078x1.6605x107 kg )
855Nm™

[8B.7]
mm, m
= =—1m =m,=m
m, +m, 2[ ! 2 ]
0078%(1.6605%1077 k
For H,; u=%=1 78x( 662 g)=[8.3673x10‘”kg]

2.0141x(1.6605x107 k
ForDZ:u=§= 41x( ) g)=[1.6722><10'27kg]
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260 8 THE QUANTUM THEORY OF MOTION

E8B.5(a)

E8B.6(a)

E8B.7(a)

1/2
8.3673x 10" kg
w;, =131.9THz x 2| =93.3THz
? (l.6722><10"27kg 3.3 78]

(a) From introductory physics, we have

/2
=0
l

a\1/2
AE=ho [SB.S]:(1.055x10‘“13)x(9'81ms )

1.0m
=[3.3x10*]]

(b) AE=hv=(6.626x10"*JHz™")x(5Hz)=[3.3x10"]]

The zero-point energy is

1/2
E0=lhm[8B.6]=E(£) 8B.4]
2 20

p=34.9688x(1.6605x10" kg)/2=2.9033x10 *’kg

where we have used eqn 8B.7 for two equal masses, as in Exercise 8B.4(a).

1.0546X107 J s 329Nm™ )" ;
o E, = — x| e =(5.61x107"
0 ( 2 2.9033x107 kg I: J

The harmonic oscillator wavefunctions have the form [8B.8]

2 1/4
v,(x)=N,H,(y)exp(~1y*) with y=> and a=( i J
a mk;

The exponential function approaches zero only as x approaches tee, so the nodes
of the wavefunction are the nodes of the Hermite polynomials.

H,(y)=16y" -48y* +12=0 [Table 8B.1]

Dividing through by 4 and letting z=y*, we have a quadratic equation

4z’ -12z+3=0
o g btV —ac 122122 —4x4x3 346
2 2x4 2

Evaluating the result numerically yields z=0.275 or 2.72, so y=%0.525 or £1.65.
Therefore x =[+0.525a or +1.650].

Comment. Numerical values could also be obtained graphically by plotting H,(»).
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E8B.8(a)

E8B.9(a)

The most probable displacements are the values of x that maximize y’. As noted in
Exercise 8A.8(a), maxima in y’ correspond to maxima and minima in y itself, so
one can solve this exercise by finding all points where S =0. The wavefunction is
(8B.10]

1/4
. x W’
1//1=2N1yexp(—§y2) with y=a and a=(mk,}

d dyd N
%=aydiyl=%{6XP[-%yZJ—yzexp(—%f)}w

Dividing through by constants and the exponential functions yields
1_},2 =0 so y=%1 and x=@].
Example 8B.4 analyses the classical turning points of the harmonic oscillator. In

terms of the dimensionless variable y, the turning points are y,,=+(2v+1)"? . The
probability of extension beyond the classical turning point is

P=] widx=aN[ {H () dy
Xip Yy
1 1/2
Forv=1,H,(y)=2yand N, 2(20m”2 )

_ 2 [T, 2,5
P_4aNl 3uzy € d)/
Use integration by parts:
_[udv =uy —Jvdu
where u=y, dv= ye'y2 dy

_.2
so du=dy, v=—%e”

and P=-20N; (ye"y2

co ™ 2
_ ~Y
312 J. 312 ¢ d)/ )

_ 12 ql/2 -3 < -
=7 (3 e +Lme’dy)

The remaining integral can be expressed in terms of the error function.

2 = _p
erfz= I—FJ.Z e’ dy
- m'?(1-erf3"?)
Y —
o .Luze d)’—- 2
Finally, using erf 3"2=0.986,

1207 12
4 (1—erf 3"%)

P=r1?| 3427
2

] =[0.056
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8 THE QUANTUM THEORY OF MOTION

Comment. This is the probability of an extension greater than the positive classi-
cal turning point. There is an equal probability of a compression smaller than the
negative classical turning point, so the total probability of finding the oscillator in

a classically forbidden region is .

Comment. Note that molecular parameters such as m and k do not enter into the
calculation.

Solutions to problems

P8B.1

P8B.3

= (&) [8B.4]
u

21 -
Also, m=2nv = —/lc =2V

~ 4T cVimm
Therefore k, =@ n=4n’c*vu= (U
rT@H K my+m,

We draw up the following table using isotope masses from the Resource section.

'IHBSCI 'IHSIBI, 1H127| 12C160 14N’|60
v/m’ 299000 265000 231000 217000 190400
107 m, / kg 1.6735 1.6735 1.6735 19.926 23.253
107 m,/ kg 58.066 134.36 210.72 26.560 26.560
k/(Nm™) 516 412 314 1902 1595

Therefore, the order of stiffness, is [HI <HBr <HCI<NO< CO] .

Assuming that one can identify the CO peak in the infrared spectrum of the
CO-myoglobin complex, taking infrared spectra of each of the isotopic variants of
CO-myoglobin complexes can show which atom binds to the haem group and de-
termine the C=0 force constant. Compare isotopic variants to *C'°O as the stand-
ard; when an isotope changes but the vibrational frequency does not, then the atom
whose isotope was varied is the atom that binds to the haem. See table below, which
includes predictions of the wavenumber of all isotopic variants compared to that of
7 (**C"0). (As usual, the better the experimental results agree with the whole set of
predictions, the more confidence one would have with the conclusion.)

Wavenumber for If O binds If C binds

isotopic variant

7(2C"0) = y(rcoy (16 /18)"29(2C'*0)
7(*C0) = (12/13)*3(*C"0) v(2Co)
¥(C*0)= (12/13)"9(2C0) (16/18)"¢%2C*0)

‘That is, no change compared to the standard.
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The wavenumber is related to the force constant as follows [8B.4]:
kf 1/2
=2mcV = (ﬁ) so k,=m(2ncv)’

Hence k, = (m/m,)(1.66 X10 *kg)[(27)(2.998 10" cms™ V("> C"*O)J*,

and k, / (kgs™)=(5.89%x107)(m/m_)[v(*C*O)/cm™' ]

Here m is the mass of the atom that is not bound in atomic mass units, i.e. 12m, if
O isbound and 16m, if C is bound. (Of course, one can compute k; from any of the

+o0 +oo
P8B.8 Yz, dr = o’ N2 H,yH,exp (—yQ)dy
an2 [T 1 2
= a2N? Hy (vH, 1+ SHyp ) exp (—y?)dy
—0Q

, 1
= 71/29"" 102 N? <V5u',u—1 + 25u’,v+1)

Only when v'=v+1 the above integral is non-zero. The final result is obvious.
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As expressed in the problem, the potential energy function assumes that ¢ is de-
fined as we would expect; that is, =0 corresponds to an eclipsed conformation.
Thus, ¢=0 is not a stable equilibrium point, and small displacements from this
point are not harmonic; in fact, ¢=0 is a position of unstable equilibrium, and
small displacements from it would grow larger. We must express the potential
energy in terms of displacements from a stable equilibrium position. One such
equilibrium position is the staggered conformation directly opposite =0, namely
¢=nm. So let the displacement x=¢—1. So, in terms of x, the potential energy func-
tion is V=V, cos 3x. Conventionally, the potential energy in harmonic motion is
measured with respect to that stable equilibrium position. Note that the potential
energy at the stable equilibrium position is V=- V. We can redefine the potential
energy function to measure energy relative to the stable equilibrium by letting

V' =V, +V =V, -V, cos3x=V,(1—cos3x).

Use the first two terms of the Taylor series expansion of cosine:
V’=V,(1—cos3x) =~ Vv, 1_1+@ =%x2
2 2
The Schrodinger equation becomes
w Iy 9V,

= + 270 2y = ‘ . .
21 9x2 | 2 x“y = Ey [8C.9b with a non zero potential]

This has the form of the Schrédinger equation for the harmonic oscillator wave-
function (eqn 8B.3). The difference in adjacent energy levels is:

9V, 1/2
E, —E,=he [8B.5] where = (T") [adapting 8B.4]

If the displacements are sufficiently large, the potential energy does not rise as rap-
idly with the angle as would a harmonic potential (i.e. the cosine potential energy
is not well approximated by the first few terms of its expansion ). Each successive
energy level would become lower than that of a harmonic oscillator, so the energy
levels would become progressively closer together.

27V,
Question. The next term in the Taylor series for the potential energy is — X .

8
Treat this as a perturbation to the harmonic oscillator wavefunction and compute
the first-order correction to the energy.

8C Rotational motion

Answers to discussion questions

D8C.1

In quantum mechanics, particles are said to have wave characteristics. The fact of
the existence of the particle then requires that the wavelengths of the waves rep-
resenting it be such that the wave does not experience destructive interference in
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8 THE QUANTUM THEORY OF MOTION

D8C.3

its motion around a closed loop. This means that a whole number of wavelengths
must fit on the circumference of the ring [8C.3]:

nAd=2mr

making the wavelength quantized. This in turn requires the angular momentum
and energy tobe quantized (eqns 8C.4 and 8C.5 respectively). Mathematically, this
comes out in the cyclic boundary condition discussed in Section 8C.1(b), which
restricts the constant m, in the wavefunction y(¢)=e™? to be an integer. That
way, the wavefunction has the same value at ¢ and at ¢+ 2n—as it must since these
two ‘different’ angles represent the same angular position. The constant m, must be
an integer because that ensures e*™" =1.

A vector can be used to represent angular momentum. The vector’s length repre-
sents the magnitude of the angular momentum, and its direction is along the axis
of rotation. In classical mechanics, both the length and direction are well defined
and continuously variable. In quantum mechanics, however, the length is quan-
tized. The orientation of the vector is both restricted and indefinite in that one
component of the vector (call it the z component) is quantized, while the other
two components are indefinite. The result is that the classical mechanical vector is
replaced by a set of cones that represent vectors allowed by quantum constraints.
(See Section 8C.2(e).) Each cone is the set of vectors of a given (quantized) length
and definite z component; the cone is generated by taking one such vector and
‘sweeping’ it through all possible directions in the xy plane. (The ‘sweeping’ does
not correspond to any sort of motion. At this stage, the model describes time-
independent rotational states.)

Solutions to exercises

E8C.1(a)

ES8C.2(a)

The magnitude of angular momentum is [8C.21a]

(lz>1/z ={I+1)2h=(1x 2)2h=
Possible projections on to an arbitrary axis are [8C.21b]
(I.)=mh

where m,=0 or £1. So possible projections include |0, ihl

Normalization requires [7B.4a]
j w*y/ dz=1
That is, using the unnormalized wavefunction [8C.11]

.[OZnNze_im,¢einx,¢ d¢= N I:nd¢ - 27tN2 - 1

) 1 1 1/2
Thus N ZE N = (Tn)
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E8C.3(a) The energy levels of a particle on a ring are given by [8C.6b]

2322 242

h h
L LA

21 2mr

The minimum excitation energy is the energy difference between the ground state
(m =0) and the first excited level (m =+1). So the minimum excitation energy is

(12-0*)1* (1.0546x107**J 5)?

=|3.32x1072]|.
2mr? 2%(1 6726x107 ka)x (100x107? m)? [ J

E8C.4(a) The energylevels are [8C.20]

0+1)n*
E=(+)

, 1=0,1,2,...
21

The minimum energy to start it rotating is the minimum excitation energy, the
energy to take it from the motionless /=0 to the rotating /=1 state:

_ 1x2x(1.0546x107]s)*

AE=E = =[2.11x10 *
2%(5.27x107 kgm®) [ J

1

E8C.5(a) The energy levelsare [8C.20]

2
E= W+ 1A » 1=0,1,2,...
21

So the excitation energy is

(2%3-1x2)x (10546x 107 J5)’ »
AE=E,-E = =[4.22x10
2 2x(5.27 %107 kgm?) [ II

E8C.6(a) Theenergylevelsare [8C.20]

_II+1)R?
21

E 1=0,1,2,...

So the minimum energy allowed for this system is zero—but that corresponds to
rest, not rotation. So the minimum energy of rotation occurs for the state that has
I=1. The angular momentum in that state is [8C.21a]

10+ DY r=[2"1]= 2" x (L0546 x 10 J5)=[1.49x 10 |

Comment. Note that the moment of inertia does not enter into the result. Thus the
minimum angular momentum is the same for a molecule of CH, as for a molecule
of C, as for a football.

E8C.7(a) The diagrams are drawn by forming a vector of length {I(I+1)}'* and with
a projection m; on the z-axis. (See Fig. 8C.1). Each vector represents the edge
of a cone around the z-axis (that for m;=0 represents the side view of a disc
perpendicular to z).
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270 8 THE QUANTUM THEORY OF MOTION

(@) (®)
1.00
>
AP
Qe
2449
0 >
Figure 8C.1
E8C.8(a) The rotational energy depends only on the quantum number I [8C.20], but there
are distinct states for every allowed value of m,, which can range from —I to [ in
integer steps. For I=3, possible values of m;=-3, -2, -1, 0, 1, 2, 3. There are 7 such
values, so the degeneracy is |7].
Solutions to problems
P8C.1 The angular momentum states are defined by the quantum number m=0, £1, £2,

etc. The energy of state m;, is [8C.6b]

E mi i’
! 21
and the angular momentum is [8C.4]
], =mph

(a) If there are 22 electrons, two in each of the lowest 11 states, then the highest
occupied states are m,=%5, so,

J, =15h=45%(1.0546x107*]s)=+5.275x10"*]s.
25k
21 -
The moment of inertia of an electron on a ring of radius 440 pm is

and E, =

I=mr’ =(9.11x107"kg)x (440x10™"* m)* =1.76 X 10~ kgm?.

_ 25%(1.055x10™Js)?

Hence E,, = =(7.89x107"]J|.
® 2x(1.76x10™ kgm?) [ II

(b) The lowest unoccupied energy level is #,=16, which has energy

_36%(1.055x107*Js)*

= =1.14x107"®].
*2x(1.76x10™* kgm?) J

Radiation that would induce a transition between these levels must have a fre-
quency such that

_ -19
Ww=AE so V=A_E.=(ll.4 7.89)i<3410 ]
h 6.626x107" ]

This corresponds to a wavelength of about 570 nm, a wave of visible light.

=[5.2x10" Ha]


Ziyang Hu


P8C.3

STUDENT SOLUTIONS MANUAL TO ACCOMPANY ATKINS' PHYSICAL CHEMISTRY

In each case, if the function is an eigenfunction of the operator, the eigenvalue is
also the expectation value; if it is not an eigenfunction we form [7C.11]

= I w‘f)y/dr
(a) I.e* =%£—¢ew [8C.13b]=%€e”; hence I, =

(b) l.e? = %d%)e'z“p =—2he™; hence I, =
() (1, ) oc _[: cos¢( a0 cos¢)d¢ oc ——I cosgsingdeg = @
@ (1,)=N I (cos e +sin ye )" ( ¢)x (cos ye* +sin ye™)do

= % N? j:n (cos ye ™ +sin ye' )x (icos ye* —isin ye **)d¢
=psN? J':n (cos® x —sin? x +cos  sin y[e™’ —e?*])d¢
=/iN?(cos® ¥ —sin’ y) X (21) = 2AN’ cos2
We must evaluate the normalization constant:
N? J.:"(cos xe* +sin ye ™) (cos ye' +sin ye ™ )dg=1

1= N? .[:n (cos® x+sin” y +cos ysin y[e?’ +e7*])d¢

=271N?(cos® y +sin® )= 21N? so N> 2111:
Therefore
M[ x is a parameter]
] __hnd
For the kinetic energy we use Ek = [8C 1]= L 5[8C.1b]
21 d¢
(a) Ee®=-— (1 e"’)— e‘° hence <E )= L/
k 21’ k 21
-2i h -2i¢ _ih_ 219, _|2n®
(b) Ee?=-1 (2 )e TR hence (E,) T
a hZ
(c) E, cosp= ——(—cos¢) = cos¢ hence (Ek ) =57
A . . 2 .
(d) E, (cosye” +sinye™)= ——( cos ye' —sin ye™)= Z—I(cos xe* +sin ye

2

and hence <Ek ) = %
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272 8 THE QUANTUM THEORY OF MOTION

Comment. All of these functions are eigenfunctions of the kinetic energy operator,
which is also the total energy or hamiltonian operator, since the potential energy
is zero for this system.

I+’ _la+n
P8C.5 E="77" 18C20]= 2R [I=pR?]
_ I(1+1)x (1.055% 107 Js)? X( 1L, 1 )
(2)x(1.6605x10 7 kg)x (160%10™* m)* J* 11.008 * 126.90
Therefore,

E=I(I+1)x(1.31x10 *J)

The energies may be expressed in terms of equivalent frequencies with
_E_ 33 1-1 -1
V—F—(1.509><10 JsT)E.

Hence, the energies and equivalent frequencies are

0 2 3
wzey [
vGHz 0 396 1188 2376

P8C.7 Call the integral I

noe2n . L . m
I=J.0 J.o Y3‘3Y3,3sm9d9d¢=(6l4)x(%)fo smsﬂsmedﬂ-‘-o d¢ [Table 8C.1]

Integration over d¢ yields a factor of 27. Noting that sin ® d6=d cos 6, and that
sin’0=1 - cos’6, the integral becomes

I= (_614_) X (%is_) x (21&:)!_11 (1-cos*8)’ dcos@

Letting x=cos 8and expanding the integrand, we have

=35 [ (1o 43t — ) =32 x—x P4 35— Ly 7 =35, 32
1—32_[_[(1 3x°+3x" —x )d.x—32(x x'+ix’—5x ]_1-32><35—
i j k
P8C.9 I=rxp= X ¥ 2 [seeanybook treating the vector product of vectors]
p. p, P,

=i(yp,—2p ) +j(zp,—%p )+ k(Xp,~3p,)
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Therefore,

A

=Ub,~2p)=|

f an aa h(_ 9
i e o8

We have used f)x = ?a% ,etc. The commutator of I; and 1, is (I:1, —1,1) .Wenote
that the operations always imply operation on a function. We form

aa 0 d d 0
tht =‘hz(ya—‘z$)(zm-x$)f

_ 32 f L Of P f ,0f o f
=-h (”azax”ax P37 ayax P azdy

13 2 a a a
and [, f=—h (za—xa)(yg—z%)f

Ff_Lof __Of, Of, df
(yaxaz axdy V327 T 9z0y  * Ty

Sincemultiplication and differentiation are each commutative, the results of the op-

, . . ) af af
eration I, 1, and [, 1, differ onlyin oneterm. For [, /. f X35 replaces ¥, -Hence,

the commutator of the operations, (f ll\ i 1. ) is =A% i—xi or —ﬁz.
yax dy i

~

Similarly (1,1, ~1.1,)=-"1, and (L1 -L1)=-"1,.

PSC.11  Weare toshow that [I*,L.] =[i2+12 +12,1 ] =21 1+[12, L, } (12,1, =0

The three commutators are:

N)N
!—-\

=1,00,, L1 +0,.1.1],
i ) [8C.27]

Therefore, [I , L] ==in(1, +1,%) +in(kl, +1,1) +0=0

We may also conclude that [l’E 1]1=0 and [lli [,]=0 because I., I,, and I, occur

symmetrically in I*.
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18.5

8A.5and 8A.6.

(x) =§ for all n

(p)=0foralln

(P >— 412

3 nzhz 1/2_ nh
AP—(W) =2

nh( 1

1
Aprz"—th(—— 12 )
2L 12 2n*n’

T230 24w’

[ 1 1 172
)
12 21'n

STUDENT SOLUTIONS MANUAL TO ACCOMPANY ATKINS' PHYSICAL CHEMISTRY

(a) Expectation values for (x), <x2>, (p),and ( p2> were evaluated in Exercises
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276 8 THE QUANTUM THEORY OF MOTION

(b) (x)=0 for all v [8B.12a, or by symmetry]

, l hz 1/2 ~ l h
and (x?)= (V+2) [mkf) [8B.12]—(v+2)x—wm [8B.4]
50 sz[{(v+l)i}
2/om

( p)=0 [by symmetry, or by noting that the integrand is an odd function of x]

and (p*)=2m(E, )= ZmJ: v'E wdx

s 7”& e d

_ - & __rwed [ 2B
E =- 2mdx? [7C.5)= T2mordy’ T 2 dy> [x-ay,a -ma)]

which implies that

~ ho( dy
Ey=-22
V= (dyz}

We then use ¥ = NHe "2, and obtain

C(liy‘” N3 2(H e’"?)=N{H”-2yH’~H + y*H}e """

From Table 8B.1
H:’— ZyH: =—2vH

y'H,=y(3H,,,+vH,,)=3(3H,.,+ (v+DH,)+v( H,+(v-1)H, _,)
=1H,,+v(v-1H,_, +(v+1)H,

v+2

2

Hence, dy =N
dy?

1 2
iH ,+v(v-1)H,_, _(V+E)H”Je_y 12

Therefore,
22 i e
=aN? (_Ehw){0+ 0—(v+ %)1:“2 2 v!} [Hermite polynomials orthogonal]
1( 1 " 1
= —(v+—)ha) [NV = - ,Example SB.Z]
2 2 om 2" V!

1/22 Y
and <p2>=(v +%)mh0)

Ap= |{(v+-;-)ha)m}

Apr:(H.l);,;E

2 2

Comment. Both results show a consistency with the uncertainty principle in the
form ApAq 2% as givenin eqn 7C.13.





