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8B Vibrational motion 

Answers to discussion questions 

DSB.21 If the quantum number v is large enough, the most probable location shifts to 
the outside of the well. The probability density will look just like the classical 
probability. The exponential tails into the classically forbidden region decreases 
with increasing v, so the quantum oscillator looks more and more like the classical 
one. 

DSB.3 The physical reason is the uncertainty principle (Section 7C.3). If a particle is at 
least partly localized, its position is not completely uncertain, and therefore its 
momentum, and hence its kinetic energy, cannot be exactly zero. The potential en­
ergy of the harmonic oscillator at least partially localizes the oscillator in the neigh­
bourhood of the equilibrium position, so zero momentum (and therefore zero 
kinetic energy) is precluded. Furthermore, the confinement is not perfect, which 
makes the particle's potential energy also differ from zero. 

Solutions to exercises 

1/2 

E8B.l(a) E=(v+ 1 

k 嵒w, w七） [SB.4]

The zero-point energy corresponds to v=O; hence 
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1/2 112 

I 1 k 1 為＝ －皿＝苷仁 = - x(l .OSSxlO叮s)x ISSNm-1 

2 m〕口 〔 2.33x10-26 kg) 
=14.3ox10-211I 

E8B.2(a) The difference in adjacent energy levels is 

k v2 

邸=E
v+l -互＝岫[8B.5]=仁） [8B.4]

Hence 

Af, 
2 2 

kc=m(—=(l .33xl0一zskg)x 4.82x10- 21」
1i) 〔 l .OSSxlO尹 Js 〕 =278kgs一2

=三三

E8B.3(a) The requirement for a transition to occur is that 邸(system)=E(photon), 
he so凶(system)=firo [SB.SJ= E(photon)=hv =— 

A, 

Therefore, 兕＝誓＝（直）x信）i1
2 

[8B.4] 

A=21tc鬪）1/2 

=(瓦）x( 2.998xl08 ms-1)x( l .OO?S:�·:: 亡0-21kg「
= 2.64x10-6m =匣巫毌

E8B.4(a) The frequency of a harmonic oscillator is [SB.4] 

w=(紅/2

'H (H) and 2H (D) are isotopes, so we expect that the force constant is the same in 
H

2 
and D

2
. They differ in mass. So the frequencies are inversely proportional to the 

square root of the mass: 

叭＝。長）1/2

But the appropriate mass is not the mass of the molecule but its "effective mass" 
[8B.7] 

m
」
m

2
m µ= =-[m =m =m] 2 I 2 m +m I 2 

For H
2
: µ=-= m 1.0078 X (1.6605 x 10-27 kg)

2 2 

m 2.0141 x (1.6605 x 10-27 kg) ForD
2
: µ=-= 

2 2 

寸8.3673X 10-zs kg I

= I 1.6722 x 10一27 kgl 
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邵 = 131.9THzx(
1/2 8.3673Xl0一28 kg

1.6722 X 10-27 kJ =匠墮旦

ESB.S(a) (a) From introductory physics, we have 

OJ= 〔fY'

2 

邸== FlW [8B.5] == (1.055 X 10叮s)x〔
= 13.3x10一34卟

9.8lms一2

I.Om 〕
1/2 

(b)邸=hv = (6.626x 10-34 JHz一1 )x(5Hz) =l3.3x10一33 rl 

E8B.6(a) The zero-point energy is 

瓦＝｝岫[SB.6] =平}'\sB.4]
2µ 

µ = 34.9688 X (1.6605 X 10-27 kg)/ 2 = 2.9033 X 10- 26 kg 

where we have used eqn 8B.7 for two equal masses, as in Exercise 8B.4(a). 

so E。 = (
1.0546: 10-

34 

J s)x(2-9�::=l;:: kg丁＝巨召三
E8B.7(a) The harmonic oscillator wavefunctions have the form [8B.8] 

叭(x) = N几(y)exp曰刃 with y = �and a=(幻
1/4 

The exponential function approaches zero only as x approaches士=, so the nodes 
of the wavefunction are the nodes of the Hermite polynomials. 

H4 (y)=16y4 -48y五12=0 [Table 8B.l] 

Dividing through by 4 and letting z=y2, we have a quadratic equation 

4z2 -12z+3=0 

so z= -b士二 12士」122 -4X4X3 3士✓6
2a 2x4 2 

Evaluating the result numerically yields z= 0.275 or 2. 72, so y=土0.525 or士1.65.
Therefore x = I士0.525aor士l.65al.

Comment. Numerical values could also be obtained graphically by plotting H4
(y). 
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ESB.S(a) The most probable displacements are the values of x that maximize面As noted in 
Exercise 8A.8(a), maxima in v/ correspond to maxima and minima in叭tself,so 
one can solve this exercise by finding all points where芸=0. The wavefunction is 
[8B.10] 

tz
2 

肌 = 2N1ye叫五） with y = �and a = (』
蚵dy dlf/1 2Nl 了瓦両-=�{e汛－伊）-y五五）}=o

Dividing through by constants and the exponential functions yields 

1子 = O so y = 士1 and x=巨正］．

E8B.9(a) Example 8B.4 analyses the classical turning points of the harmonic oscillator. In 
terms of the dimensionless variable y, the turning points are y.P =士( 2 v+l) 112 . The
probability of extension beyond the classical turning point is 

= 
P=f忙dx=a団{H,(y)}2訌dy

x,, 「Y.p 

For v= l,H/y) = 2y and N1 =(

P=4aN�r 2 
3'" y e-r'dy 

Use integration by parts: 

Judv = uv-Jvdu 

where u= y, dv= ye-r'dy 

so du = dy, 2 
l -y v =--e 2 

1 
寧1/2 )

and P=- 2aN:(ye-yT,, - f正-/ dy)

= 7t-1/2 (护e-3+D, 訌dy)

1/2 

The remaining integral can be expressed in terms of the error function. 
2。 zerfz=l-』�e-r dy

so t
11
,e-1 dy =

= 2 7tl/2 (1-erf 3112)
2 

Finally, using erf 3112 = 0.986,

p = 7t-1/ 2 (护e-3 + 7t
112(1-

2
erf3112 ))=戸
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Comment. This is the probability of an extension greater than the positive classi­
cal turning point. There is an equal probability of a compression smaller than the 
negative classical turning point, so the total probability of finding the oscillator in 
a classically forbidden region is 匝回 ．

Comment. Note that molecula「parameters such as m and k do not enter into the 
calculation. 

Solutions to problems 

PSB.l k 
1/2 

0七） [8B.4]

27tc 
Also, co= 21tv = 一 —=21tcv

A, 
2 2 -2 邱c守m1m2Therefore kc = coµ= 47t c vµ= m1+m2 

.

We draw up the following table using isotope masses from the Resource section. 

1H35CI 1H81Br 1H127 1 
12c1•0 ,.N'•o

v/m-1 299000 265 000 231 000 217 000 190400 
1027 m1 / kg 1.6735 1 6735 16735 19926 23 253 
1021 m2/ kg 58.066 134 36 21072 26 560 26560 
k/(Nm方 516 412 314 1902 1595 

Therefore, the order of stiffness, is I HI< HBr < HCl <NO< CO I . 
P8B.3 Assuming that one can identify the CO peak in the infrared spectrum of the 

CO-myoglobin complex, taking infrared spectra of each of the isotopic variants of 
CO-myoglobin complexes can show which atom binds to the haem group and de­
termine the C=O force constant. Compare isotopic variants to 12亡0 as the stand­
ard; when an isotope changes but the vibrational frequency does not, then the atom 
whose isotope was varied is the atom that binds to the haem. See table below, which 
includes predictions of the wavenumber of all isotopic variants compared to that of 
ii ( 12C160). (As usual, the better the experimental results agree with the whole set of 
predictions, the more confidence one would have with the conclusion.) 

Wavenumber for lfO binds lfC binds 
isotopic variant 

v{ 12己0)= ii(12凸o)' (16/1siv2v( 12c160) 

v( 13c'6o) = (12; B)112v( 12凸O) ii('2凸o)'

訒ciso)= (7 2 / 13jV2ii( 12C160) (16/18t2ii(12巴O)

'That is, no change compared to the standard. 
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The wavenumber is related to the force constant as follows [8B.4]: 
1

/
2 

co= 21tcv = (益） so kr = m(21tcv)2 

Hence kr = (m I mJ(l.66 x 10- 27 kg) [ (27t)(2.998 x 1010 cms-1 )v(12C160)]2 ,

and kf /(kgs-l) = (5.89xl0-5)(m/mu)[v(12C160)/ cm- 1 ]2 

Here m is the mas·s of the atom that is not bound in atomic mass units, i.e. 12mu if 
0 is bound and 16mu ifC is bound. (Of course, one can compute krfrom any of the 

P8B.8

Only when ν'=ν±1 the above integral is non-zero. The final result is obvious.
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PSB.11 As expressed in the problem, the potential energy function assumes that cf> is de­
fined as we would expect; that is, cf>=O corresponds to an eclipsed conformation. 
Thus, cf> =  0 i s  not a stable equilibrium point, and small displacements from this 
point are not harmonic; in fact, q>=O is a position of unstable equilibrium, and 
small displacements from it would grow larger. We must express the potential 
energy in terms of displacements from a stable equilibrium position. One such 
equilibrium position is the staggered conformation directly opposite cf>= O, namely 
q> = 1t. So let the displacement x= q>-1t. So, in terms of x, the potential energy func­
tion is V=-V,。 cos 3x. Conventionally, the potential energy in harmonic motion is
measured with respect to that stable equilibrium position. Note that the potential
energy at the stable equilibrium position is V=-v;。. We can redefine the potential
energy function to measure energy relative to the stable equilibrium by letting

V'=V0 + V=v;。-v;。 cos3x=v;。 (l-cos3x).

Use the first two terms of the Taylor series expansion of cosine: 

V'=v;。 (l-cos3x)aeVo(l-l十 竺｝巴x 2
2 2 

The Schrodinger equation becomes 

t,_2 a2lf/ 9Vo i 

21亟2 2 －－—+ 一x lfl = Elf/ [8C.9b with a non zero potential] 

This has the form of the Schrodinger equation for the harmonic oscillator wave­
function (eqn 8B.3). The difference in adjacent energy levels is: 

EI -E。
= hm [8B.5] where W=門）112 [adapting 8B.4]

If the displacements are sufficiently large, the potential energy does not rise as rap­
idly with the angle as would a harmonic potential (i.e. the cosine potential energy 
is not well approximated by the first few terms of its expansion). Each successive 
energy level would become lower than that of a harmonic oscillator, so the energy 
levels would become progressively closer together. 

27V Question. The next term in the Taylor series for the potential energy is -一—X .8 
Treat this as a perturbation to the harmonic oscillator wavefunction and compute 
the first-order correction to the energy. 

BC Rotational motion 

Answers to discussion questions 

DSC.I In quantum mechanics, particles are said to have wave characteristics. The fact of 
the existence of the particle then requires that the wavelengths of the waves rep­
resenting it be such that the wave does not experience destructive interference in 
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its motion around a closed loop. This means that a whole number of wavelengths 
must fit on the circumference of the ring [ SC.3]: 

nA. = 2面

making the wavelength quantized. This in turn requires the angular momentum 
and energy to be quantized (eqns 8C.4 and 8C.5 respectively). Mathematically, this 
comes out in the cyclic boundary condition discussed in Section 8C.l(b), which 
restricts the constant m

1 
in the wavefunction叭q,)= eim,�to be an integer. That 

way, the wavefunction has the same value at q, and at q, + 21t一as it must since these 
two'different'angles represent the same angular position. The constant m

1 
must be 

an integer because that ensures e2兀im1 = 1. 
DSC.3 A vector can be used to represent angular momentum. The vector's length repre­

sen ts the magnitude of the angular momentum, and its direction is along the axis 
of rotation. In classical mechanics, both the length and direction are well defined 
and continuously variable. In quantum mechanics, however, the length is quan­
tized. The orientation of the vector is both restricted and indefinite in that one 
component of the vector (call it the z component) is quantized, while the other 
two components are indefinite. The result is that the classical mechanical vector is 
replaced by a set of cones that represent vectors allowed by quantum constraints. 
(See Section 8C.2(e).) Each cone is the set of vectors of a given (quantized) length 
and definite z component; the cone is generated by taking one such vector and 
'sweeping'it through all possible directions in the xy plane. (The'sweeping'does 
not correspond to any sort of motion. At this stage, the model describes time­
independent rotational states.) 

Solutions to exercises 

ESC.l(a) The magnitude of angular momentum is [8C.2la] 

〈P严={1(1 + 1)}1'2 n = (Ix 2)1'2 n =匡围

Possible projections on to an arbitrary axis are [8C.2lb] 

叫=m,n

where m
1
=0 or士1. So possible projections include 匝刃

E8C.2(a) Normalization requires [7B.4a] 

f lfl*lf/d'r=l 

That is, using the unnormalized wavefunction [SC.11] 

f" 2lt 

o N2e一im,¢e1... ,¢ def>= N Io 磡=2國=l

Thus N2 =辶 N=旦尸
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E8C.3(a) The energy levels of a particle on a ring are given by [8C.6b] 

E= m12杞 m困
—=�, m1 =0, 士1,士2,...2I 2mr 

The minimum excitation energy is the energy difference between the ground state 
(m =0) and the first excited level (m =+l) So th e mm1mum exc1tat10n energy is 

一34(12 -0宙 (l.0546Xl0 Js)2 

2mr2 ?'><'r1 f;7?f;'><'1 n-27 k-o)'><'r1 nn'><'1 n-12 祠

E8C.4(a) The energy levels are [SC.20) 

l(l + l)ti2 

E= 21 , l=0,1,2, . . .

= 13.32 X 10-22卟．

The minimum energy to start it rotating is the minimum excitation energy, the 
energy to take it from the motionless l=O to the rotating l= 1 state: 

凶= B
i

=

lx2x(l.0546xl0一34 JS)2 

2x(S.27xl0-47 kgm勺 =12.llxl0- 22卟

ESC.S(a) The energy levels are [SC.20) 

E= 
l(l + l)ti2 

, l=0,1,2, ...21 
So th e exc1tation energy is 

M=E
2
-E

1 = (2x 3-1 x 2)x (l.0546x 10一34 JS)2 

2x(S.27xl0-47 kgm勺

E8C.6(a) The energy levels are [SC.20) 

E= 

l(l + I)ti2 

21 
l = 0,1,2, . ..

=14.22xl0一22卟

So the minimum energy allowed for this system is zero-but that corresponds to 
rest, not rotation. So the minimum energy of rotation occurs for the state that has 
l= 1. The angular momentum in that state is [8C.2la) 

{1(1 + 1)}11王巴日=i12 X (1.0546 X 10一34 J s) = 11.49 X 10一34 J s 1· 

Comment. Note that the moment of inertia does not enter into the result. Thus the 
minimum angular momentum is the same for a molecule of CH4 as for a molecule 
of C60 as for a football. 

E8C.7(a) The diagrams are drawn by forming a vector of length {1(1+ 1)} 112 and with 
a projection m

i 
on the z-axis. (See Fig. SC.l). Each vector represents the edge 

of a cone around the z-axis (that for m;=O represents the side view of a disc 
perpendicular to z). 
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Figure 8C.1 

ESC.S(a) The rotational energy depends only on the quantum number l [SC.20], but there 
are distinct states for every allowed value of m" which can range from -l to l in 
integer steps. For l = 3, possible values of m

1 
=一3, -2, -1, 0, 1, 2, 3. There are 7 such 

values, so the degeneracy is回．

Solutions to problems 

PSC.1 The angular momentum states are defined by the quantum number m1 
= 0, 土1, 土2,

etc. The energy of state m
1 
is [8C.6b] 

2 2 

E 
m漬

1111 21 
and the angular momentum is [8C.4) 

!, =m力

(a) If there are 22 electrons, two in each of the lowest 11  states, then the highest
occupied states are m

1 
=士5, so,

l, =士Sfi=士5X (l.0546X 10一34 J s) =士5.275xl0一34 J s. 

25fi2 

and E
±5 

=— .21 
The moment of inertia of an electron on a ring of radius 440 pm is 

I= mr2 = (9.11 xl0-31 kg)x(440xl0一12 m)2 = l.76x 10-49 kgm2 . 

25 X (1.055 X 10一34 Js)2 

Hence E
士
s =

2x (l.76x 10-49 kgm勺
=17.89xl0一19卟 ．

(b) The lowest unoccupied energy level is m
1 
=士6, which has energy

E 36 X (1.055 X 10一34 Js)2 

士6
= =l.14Xl0一18 J. 

2 x (l.76x 10-49 kgm勺
Radiation that would induce a transition between these levels must have a fre­
quency such that 

邸(ll.4-7.89)xl0一19hv=till so v=-= 」

h 6.626Xl0一34 J 
=15.2xl014 Hzl.

This corresponds to a wavelength of about 570 nm, a wave of visible light. 

Ziyang Hu
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PSC.3 In each case, if the function is an eigenfunction of the operator, the eigenvalue is 
also the expectation value; if it is not an eigenfunction we form [7C. l l] 

(n) = J 1/f. 佤dr

(a)記=��ei¢ [8C.13b]=尺hence I. 回

(b) z.e-2璘鬪严=-2ne一2庄hence I. 閂

(c)〈L〉 oc f" cost/)(村矗cost/))正 -�f" costf>sintf>dtf> =回

(d)似=N2 f" (cos xei旦sinxe丑 ）·(禱）x(cosxei¢+sinxe一i¢ )dt/>

= ft:.N2 r• (cosxe辶sin妒）x(icosx包-isinxe一i¢ )dt/>
I o 

= nN2 J
2
" (cos2 x-sin2 x+cosxsinx[e主严])dtf>
。

= tzN2(cos2 x -sin2 x)x(21t)= 2祜N2 cos2X

We must evaluate the normalization constant: 

可 2"(cosxeiq, +sinxe-i吖(cosxei4' + sinxe-i¢ )d</J = 1 
。

2兀 ．

l=N2 f (cos2 x+sin2 x+cosxsmx[e卐e-2;叮）d</J 
。

= 27tN2(cos2 x+sin2 x)= 21tN2 so N2 1 

27t
Therefore 

叫＝匠至司[x is a parameter] 
•2 

A J 杞dzForthekinetic energywe use Ek =.....!.[8C.l]=--—[SC.lb]21 21 d<f>2 

(a)瓦ei¢ =-房面e勺＝羞e汽hence〈幻＝回

(b)瓦e-zi¢ =-伊坷e一2;¢ =1fi-e主hence〈幻＝囝

(c)瓦 cos<{>=-房(-cos<{>)=羞cos<{>; hence〈E立＝囯

tz 2
一i¢ n 2

(d)瓦(cosxei¢+sinxe-i勺＝－—(-cosx护-sinxe )= —(cosxei¢+sinxe-•)21 21 

and hence〈Ek 〉『
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PSC.5 

Comment. All of these functions are eigenfunctions of the kinetic energy operator, 
which is also the total energy or hamiltonian operator, since the potential energy 
is zero for this system. 

l(l + l)n2 l(l + l)n2 

E= [8C.20]= [I=µR勺21 2µR2 

=(
l(l+l)X(l.055Xl0叮s)2

(2)x (1.6605 x 10-27 kg)x (160x 10一12 m)2 )x(這菡）
Therefore,

E = l(l + l}x (1.31 x 10-22 J) 

The energies may be expressed in terms of equivalent frequencies with 

E 
V =-= (l.509Xl033 r1 s-1 )E. 

h 

Hence, the energies and equivalent frequencies are 

。 2
 

3
 

1022 f/」 回 臣可 巴回匡互l

v/GHz O 396 1 188 2 376 

PSC.7 Call the integral J: 

I= fo" fo
2

"Y3�Y3,3 sin0d0d<fJ=(嘉）斗門）fo" sin屯sin0d0f" d</J [Table 8C.l]

Integration over d</J yields a factor of 27t. Noting that sin 8 d0= d cos 0, and that 
sin20= 1 - cos滇the integral becomes 

」品）斗差）x(瓦）fi (l-cos2 0)3 dcos0

Letting x= cos 0 and expanding the integrand, we have 

I=贊L(l-3x2 +3x辶 武）dx=簪(x-x勺亡屆）［遣潽＝目

i j k

P8C.9 l=r吐= x Y z [ see any book treating the vector product of vectors] 

扒 Pr Pz 

=i(兑－紈）十 j(紈－紈）十 k(x瓦－兑）
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Therefore, 

i X = (j, 户紈）=I的蓋-z矗）
i y =(祚x - 杭)=l�(z 嘉-x 羞）
L=<x瓦-y九）= ii(x¾- y¾) 

, h iJ We have used p =-—, etc. The commutator of lx and l y is (l山-lylx ).We note
X j亟

that the operations always imply operation on a function. We form 

尪f=-1i2
(帚-z 訂(z 蓋-x 羞）」

=-1i2 yz a蝨
x

+ y志-yx戸-z a戒X
+ zxO泣y)（叮 叮 叮 2叮 叮

and尪f =-卟矗嵒）园畸）f

=-n 2
(zy叮- 2叮 叮 叮 虹畸Z瓣y-xy沉 +xzd祠y +x 』

Since multiplication and differentiation are each commutative, the results of the op­
＾^ 叮 叮

y eration lxly and l1lx differ onlyinone term.For lylxf,x — replaces -. Hence,ay 亟

the commutator of the operations, (ix l r -肽） is - n 心玉－母） or曰月
Similarly缸 －尪）=-�ix and缸－尪）＝ －互．

2,Z.]=[12 2 We are to show that [l x 凸嶋Z,]=[私1,] +[l: ,l.]+[l; ,l.]=0 
The three commutators are: 

[ i} ,i,1 =机－的= i;- i; =0 

[i; ,i,1= =i;i,-i); = i; i , -U.ix +U,(-U; 
= /x(lxlz -l,lx )+(lxl,-l,lx )lx =lx[lrJ]+[lrJ]lr 

＾＾ ＾＾ ＾^  
=lx(-inly ) +(-i叭）Ix= -访Oxly+lylx ) [8C.27] 

[�, i,1= i:i.-U: = i:i.- i)Jy + i)Jy-U: 
＾＾＾ ＾＾ ＾＾ ＾＾＾ ＾＾＾ ＾＾＾

= l y(l y l, -l, ly ) + (ly I, -l, l y )l y = l y[l y ,l, ]+[I, ,I. ]17 
A A A A 

= ly 血lx )+(访lx )ly=访(lylx+lxly ) [8C.27] 
�A ＾＾＾＾ ＾^ ＾ ＾  

Therefore, [I ,l,]=-ili(lxl,+l,lx )+ili(lxl, +l,lx )+O=O 
� A

� A 

We may also conclude that [12 ,lx]=O and [/2 ,1,]=0 because Ix , 11 , and I, occur 
symmetrically in I2 . 

273 
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18.5 (a) Expectation values for〈x〉, 〈尋僞 and 〈p吖were evaluated in Exercises
8A.5 and 8A.6.

L 〈x〉=- for all n 
2 

〈x吖=L
2且－三』

心十G-2)1t2 )-¾「己
〈p〉 =Ofor alln

2 2 

仞＝ 凸
412 

�p=(霏）1/2 =『

�p心＝严（言－三）1/2 =計－面戸）12 >�
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(b)〈x〉= 0 for all v [8B.12a, or by symmetry]

and (x吖＝曰）長）"
2 

[SB.12]=曰）土 [8B.4]

1 1i
1/2 

so丛=I{曰）
；；；；｝

(p〉= 0 [by symmetry, or by noting that the integrand is an odd function of x]

and〈p吖= 2m伍〉=2m仁v訌dx

瓦＝
杞d 2

-—— [?C.5] =- 杞 d 2 tiw d2 n 
2m缸 2ma2研= -2职, [ x=ay, a2 =mm

]

which implies that 

紐＝－竺（翌）
We then use l/f = NHe子12 , and obtain

盱d 2 2,2 212 
—= N—(H亡） =N{H"- 2yH'-H + y2H}e-1dy2 dy2 

From Table 8B.l 
H仁2yH:=-2vHv

y2Hv= y(钅Hv+I+vHV一1)= ½{½ Hv+2+{v+ l)Hv)+v{½Hv +{v-l)Hv一2)
丑Hv+2+v(v-l)Hv_2 +(v丹）Hv 

Hence, 翌=N[¼Hv+2 +v(v-l)Hv_2 一曰）Hv ]e-r' 12

Therefore, 

偶〉 a N
\三）仁H,H肛+v(v-l)H-, 一曰）卟I dx[dx a ady]

= aN; -己{o+o 一曰）1t112 2v v!} [Hermite polynomials orthogonal]

1 1
= 2(v+于 [N; = 函I�2vv!, Example 8B.2]

and 倨〉＝曰）請o

Lip = 1{(丑尸r
2

�p�= 〔二）己
2 2 

Comment. Both results show a consistency with the uncertainty principle in the 
t, form ApAq�- as given in eqn 7C.13. 
2 

－




