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Lecture 1 – Fundamental Concepts in Quantum Physics 

1. Schrödinger Equation 

Time-independent S.E. 

�̂�Ψ = 𝐸Ψ 

• �̂�: Hamiltonian operator 

• Ψ: Wavefunction, Ψ( �⃗�1, 𝑟2, … , 𝑟𝑛) 

• �̂� = 𝐾 + �̂�: Kinetic energy operator and potential energy operator. In many 

situations, �̂� operator is simply a function. 

 

Time-dependent S.E. 

• If potential 𝑉 and thus wavefunction depend on time explicitly, one need to solve 

time-dependent S.E. 

𝑖ℏ
𝜕Ψ(𝒓, 𝑡)

𝜕𝑡
= �̂�(𝑡)Ψ(𝒓, t) 

 

I. One-dimensional system with one particle 

�̂� = −
ℏ2

2𝑚
⋅
d2

d𝑥2
+ 𝑉(𝑥) 

ℎ is Planck constant, whereas ℏ =
ℎ

2𝜋
 is called reduced Planck constant. �̂�(𝑥) 

operator is simply a function. The S.E. reads 

[−
ℏ2

2𝑚
⋅
d2

d𝑥2
+ 𝑉(𝑥)]Ψ(𝑥) = 𝐸Ψ(𝑥) 

 

Wavefunction contains all the information of this system. The simplest one is 

probability density |Ψ(𝑥)|2, which tells that the probability to find the particle 

between 𝑥 and 𝑥 + d𝑥 is |Ψ(𝑥)|2d𝑥. 

 

Since total probability to find the particle between −∞ and +∞ should be 1, we 

require the wavefunction to be normalized: 

∫ |Ψ(𝑥)|2d𝑥
+∞

−∞

= 1 

For an unnormalized wavefunction, it can be normalized as 

Ψ(𝑥) =
Ψ′(𝑥)

√∫ |Ψ′(𝑥)|2d𝑥
+∞

−∞

 

 

Example 1: constant potential 

For 𝑉(𝑥) = const., the S.E. is 

d2Ψ

d𝑥2
= −

2𝑚

ℏ2
(𝐸 − 𝑉)Ψ 
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If 𝐸 > 𝑉, the general solution is Ψ(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥, where 𝐴, 𝐵 ∈ ℂ. 

The wave vector is defined as 𝑘 = √2𝑚(𝐸 − 𝑉)/ℏ. 

• Kinetic energy 𝐾 = 𝐸 − 𝑉 =
ℏ2𝑘2

2𝑚
. 

• Momentum 𝑝 = ℏ𝑘 =
ℎ

𝜆
. 𝜆 is de Broglie wavelength. To see the meaning 

of 𝜆, let Ψ̃ = 𝑒𝑖𝑘𝑥 + 𝑒−𝑖𝑘𝑥 = 2 cos 𝑘𝑥, then the period of Ψ̃ is 
2𝜋

𝑘
=

ℎ

𝑝
= 𝜆. 

 

Example 2: normalization of wavefunction 

Q. Given a wave function 𝜓(𝒓) ∝ 𝑒−𝑟/𝑎0  where 𝑎0 is a given constant, try to 

normalize it. Noted that 𝑟 in the exponent is radial distance but not position 

vector. 

A. ∫(𝑒−𝑟/𝑎0)
2
d𝒓 = 4𝜋 ∫ 𝑟2𝑒−2𝑟/𝑎0d𝑟

∞

0
= 4𝜋𝐼(𝑘), where 𝑘 = 2/𝑎0. 

𝐼(𝑘) = ∫ 𝑟2𝑒−𝑘𝑟d𝑟
∞

0

=
d2

d𝑘2
∫ 𝑒−𝑘𝑟d𝑟
∞

0

=
d2

d𝑘2
(
1

𝑘
) =

2

𝑘3
 

Thus 𝜓(𝒓) = (𝜋𝑎0
3)−1/2𝑒−𝑟/𝑎0. 

 

II. Three-dimensional system with one particle 

i. Cartesian coordinates 

Wavefunction is Ψ(𝑥, 𝑦, 𝑧). The probability to find the particle in 

[𝑥, 𝑥 + d𝑥] ∩ [𝑦, 𝑦 + d𝑦] ∩ [𝑧, 𝑧 + d𝑧] is |Ψ(𝑥, 𝑦, 𝑧)|2d𝑥d𝑦d𝑧. 

 

�̂� = −
ℏ2

2𝑚
∇2 + 𝑉(𝑥, 𝑦, 𝑧), where ∇2=

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 is Laplacian operator. 

S.E. is [−
ℏ2

2𝑚
∇2 + 𝑉(𝑥, 𝑦, 𝑧)]Ψ(𝑥, 𝑦, 𝑧) = 𝐸Ψ(𝑥, 𝑦, 𝑧). Wavefunction and energy 

are unknown variables. 

 

ii. Spherical coordinates 

  
Wavefunction is Ψ(𝑟, 𝜃,𝜙). The probability to find the particle in 

[𝑟, 𝑟 + d𝑟] ∩ [𝜃, 𝜃 + d𝜃] ∩ [𝜙, 𝜙 + d𝜙] is |Ψ(𝑟, 𝜃, 𝜙)|2𝑟2 sin 𝜃 d𝑟d𝜃d𝜙. 

 

Laplacian operator is more complex in spherical coordinates 

∇2=
𝜕2

𝜕𝑟2
+
2

𝑟

𝜕

𝜕𝑟
+
Λ2

𝑟2
 

where Λ2 =
𝜕2

𝜕𝜃2
+ cot 𝜃

𝜕

𝜕𝜃
+ csc2 𝜃

𝜕2

𝜕𝜙2
. 

 

Relationship to Cartesian coordinates 

{
𝑥 = 𝑟 sin 𝜃 cos 𝜙
𝑦 = 𝑟 sin 𝜃 sin 𝜙
𝑧 = 𝑟 cos 𝜃

 

𝑟: radial distance 

𝜃: polar angle 

𝜙: azimuth angle 
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S.E. is [−
ℏ2

2𝑚
∇2 + 𝑉(𝑟, 𝜃,𝜙)]Ψ(𝑟, 𝜃, 𝜙) = 𝐸Ψ(𝑟, 𝜃, 𝜙) 

 

III. Eigenequation, eigenfunction and eigenvalue 

The solution of S.E. �̂�Ψ = 𝐸Ψ is a set of eigenenergy/value 𝐸𝑖 and eigenfunction 

Ψ𝑖, 𝑖 = 1,2,… ,∞. 

 

For any operator Ω̂, if there exist some values satisfy Ω̂𝜓 = Ω𝜓, 𝜓 is then called 

eigen function of operator Ω̂. 

 

For example, since Ω̂𝜓 = −𝛼𝜓,  𝜓 = 𝑒−𝛼𝑥 is an eigenfunction of operator Ω̂ =
d

d𝑥
 

with corresponding eigen value −𝛼. But 𝜓 = 𝑒−𝛼𝑥
2
 is not an eigenfunction of Ω̂. 

 

For one-dimensional system with one particle, we can choose two wavefunctions 

with different eigenvalues 𝐸1 and 𝐸2, 

• Ψ1 = 𝑒
𝑖𝑘1𝑥, 𝑘1 =

√2𝑚(𝐸1−𝑉)

ℏ
 

• Ψ2 = 𝑒
𝑖𝑘2𝑥, 𝑘2 =

√2𝑚(𝐸2−𝑉)

ℏ
 

Generally, Ψ′ = 𝐴Ψ1 + 𝐵Ψ2,  (𝐴, 𝐵 ≠ 0) is NOT a solution of S.E. �̂�Ψ = 𝐸Ψ. Only 

when 𝐸1 = 𝐸2 = 𝐸, �̂�Ψ′ = 𝐴𝐸1Ψ1 + 𝐵𝐸2Ψ2 = 𝐸(𝐴Ψ1 + 𝐵Ψ2) = 𝐸Ψ
′. 

 

2. Hermitian operator 

For any two functions, if the following equation holds, then Ω̂ is called Hermitian 

operator. 

∫d𝜏𝜓𝑗
∗Ω̂𝜓𝑖 = (∫d𝜏𝜓𝑖

∗Ω̂𝜓𝑗)
∗

 

 

For example, 
d

d𝑥
 is not a Hermitian operator since 

∫ d𝑥𝜓𝑗
∗ d𝜓𝑖
d𝑥

+∞

−∞

= 𝜓𝑗
∗𝜓𝑖|−∞

+∞
−∫ d𝑥𝜓𝑖

d𝜓𝑗
∗

d𝑥

+∞

−∞

= −(∫ d𝑥𝜓𝑖
∗
d𝜓𝑗
d𝑥

+∞

−∞

)

∗

≠ (∫ d𝑥𝜓𝑖
∗
d𝜓𝑗
d𝑥

+∞

−∞

)

∗

 

But 
1

𝑖

d

d𝑥
 is a Hermitian operator 

∫ d𝑥𝜓𝑗
∗ 1

𝑖

d𝜓𝑖
d𝑥

+∞

−∞

= −
1

𝑖
(∫ d𝑥𝜓𝑖

∗
d𝜓𝑗
d𝑥

+∞

−∞

)

∗

= (∫ d𝑥𝜓𝑖
∗
1

𝑖

d𝜓𝑗
d𝑥

+∞

−∞

)

∗  

 

I. Eigenvalues of Hermitian operator 
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• Theorem: Any eigenvalue of Hermitian operator is a real number. 

• Proof: 

Given a Hermitian operator Ω̂ with eigenvalue 𝜔𝑖 and normalized 

eigenfunction 𝜓𝑖, i.e., Ω̂𝜓𝑖 = 𝜔𝑖𝜓𝑖. Applying the definition of Hermitian 

operator, we have 

𝜔𝑖 = ∫d𝜏𝜓𝑖
∗Ω̂𝜓𝑖

= (∫d𝜏𝜓𝑖
∗Ω̂𝜓𝑖)

∗

= 𝜔𝑖
∗

 

Thus 𝜔𝑖 must be real. 

Q.E.D. 

 

All operators corresponding to physical observables (properties that can be 

measured) are Hermitian operators. 

 

II. Eigenfunctions of Hermitian operator 

• Theorem: Eigenfunctions of Hermitian operator with different eigenvalues are 

orthogonal. 

• Proof: 

Using the definition of Hermitian operator, we have 

∫d𝜏𝜓𝑖
∗Ω̂𝜓𝑗 = (∫d𝜏𝜓𝑗

∗Ω̂𝜓𝑖)
∗

= (𝜔𝑖∫d𝜏𝜓𝑗
∗𝜓𝑖)

∗

= 𝜔𝑖∫d𝜏𝜓𝑗𝜓𝑖
∗

 

Also, 

∫d𝜏𝜓𝑖
∗Ω̂𝜓𝑗 = 𝜔𝑗∫d𝜏𝜓𝑖

∗𝜓𝑗 

 

Subtracting the first equation from the second one gives 

0 = (𝜔𝑗 −𝜔𝑖)∫d𝜏𝜓𝑖
∗𝜓𝑗  

For 𝜔𝑗 ≠ 𝜔𝑖, we have 

∫d𝜏𝜓𝑖
∗𝜓𝑗 = 0 

Q.E.D. 

 

Example1: one-dimensional momentum operator 

For particle in constant potential, take the wavefunction as 𝜓𝑘 = 𝑒
𝑖𝑘𝑥. Define the 

momentum operator as 

�̂�𝑥 =
ℏ

𝑖

d

d𝑥
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which has been proved to be Hermitian. Apply it to above wavefunction, 

�̂�𝑥𝜓𝑘 =
ℏ

𝑖

d

d𝑥
𝜓𝑘 = ℏ𝑘𝜓𝑘 

By definition, 𝑝 = ℏ𝑘, thus  �̂�𝑥𝜓𝑘 = 𝑝𝜓𝑘, and �̂�𝑥 is indeed the momentum operator. 

 

Example2: three-dimensional momentum operator 

Momentum operator �̂� =
ℏ

𝑖
∇=

ℏ

𝑖
(𝑒𝑥

𝜕

𝜕𝑥
+ 𝑒𝑦

𝜕

𝜕𝑦
+ 𝑒𝑧

𝜕

𝜕𝑧
) is Hermitian since all 

components of it are Hermitian. 

 

3. Expectation value 

For a Hamiltonian with normalized wavefunctions �̂�𝜓𝑖 = 𝐸𝑖𝜓𝑖, 𝑖 = 1,2,…, we 

construct a wavefunction 𝜓 = 𝑐1𝜓1 + 𝑐2𝜓2 where |𝑐1|
2 + |𝑐2|

2 = 1. The expectation 

value, or the average value of energy is then 

〈𝐸〉 = ∫d𝜏𝜓∗�̂�𝜓

= ∫d𝜏(𝑐1
∗𝜓1

∗ + 𝑐2
∗𝜓2

∗)(𝑐1𝐸1𝜓1 + 𝑐2𝐸2𝜓2)

= |𝑐1|
2𝐸1∫d𝜏𝜓1

∗𝜓1 + 𝑐1
∗𝑐2𝐸2∫d𝜏𝜓1

∗𝜓2 +

     𝑐2
∗𝑐1𝐸1∫d𝜏𝜓2

∗𝜓1 + |𝑐2|
2𝐸2∫d𝜏𝜓2

∗𝜓2

= |𝑐1|
2𝐸1 + |𝑐2|

2𝐸2

 

Generally, for any operator Ω̂ in a quantum state 𝜓, its expectation value is 

〈Ω̂〉 = ∫d𝜏𝜓∗Ω̂𝜓 

 

4. Heisenberg’s uncertainty principle 

Suppose we have measured an observable 𝜔 𝑁 times (𝑁 ≫ 1), then the 

uncertainty of 𝜔 is defined as 

∆𝜔 = √
∑ (𝜔𝑖 − �̅�)2
𝑁
𝑖=1

𝑁
 

 

For position and momentum, their uncertainties satisfy the following Heisenberg’s 

uncertainty principle 

∆𝑥 ⋅ ∆𝑝𝑥 ≥
ℏ

2
 

 

Apply �̂�𝑥�̂� to an arbitrary wavefunction 𝜙(𝑥) gives 

�̂�𝑥�̂�𝜙 =
ℏ

𝑖

d

d𝑥
(𝑥𝜙) =

ℏ

𝑖
𝜙 + 𝑥

ℏ

𝑖

d𝜙

d𝑥
=
ℏ

𝑖
𝜙 + �̂��̂�𝑥𝜙 

Thus, (�̂��̂�𝑥 − �̂�𝑥�̂�)𝜙 = 𝑖ℏ𝜙. Since 𝜙(𝑥) is arbitrary, we have 

�̂��̂�𝑥 − �̂�𝑥�̂� = 𝑖ℏ 
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Define commutator of two operators �̂� and �̂� as [�̂�, �̂�] = �̂��̂� − �̂��̂�, the above 

equation can be rewritten as 

[�̂�, �̂�𝑥] = 𝑖ℏ 

If ℏ → 0, quantum mechanics will degenerate to classical mechanics. 

 

• Heisenberg’s uncertainty principle: If the commutator of two operators �̂� and �̂� is 

[�̂�, �̂�] = 𝑖�̂�, then their uncertainties satisfy the following inequality 

∆𝐴 ⋅ ∆𝐵 ≥
1

2
|〈�̂�〉| 

• Proof: 

Given an arbitrary wave function 𝜙, constructing a non-negative integral with 

real variable 𝜉 

𝐼(𝜉) = ∫d𝜏|𝜉�̂�𝜙 + 𝑖�̂�𝜙|
2
 

Noted that for a complex number 𝑐, |𝑐|2 = 𝑐∗𝑐. Expanding above integral, we 

have 

𝐼(𝜉) = 𝜉2∫d𝜏|�̂�𝜙|
2
+∫d𝜏|�̂�𝜙|

2
+ 𝑖𝜉 ∫d𝜏(�̂�𝜙)

∗
(�̂�𝜙) − 𝑖𝜉 ∫d𝜏(�̂�𝜙)

∗
(�̂�𝜙)

= 𝜉2∫𝑑𝜏𝜙∗�̂�2𝜙 +∫𝑑𝜏𝜙∗�̂�2𝜙 + 𝑖𝜉 ∫𝑑𝜏𝜙∗[�̂�, �̂�]𝜙

= 𝜉2∫𝑑𝜏𝜙∗�̂�2𝜙 − 𝜉∫𝑑𝜏𝜙∗�̂�𝜙 + ∫𝑑𝜏𝜙∗�̂�2𝜙

≥ 0

 

To ensure above quadratic function of 𝜉 is non-negative, there must be 

4〈�̂�2〉〈�̂�2〉 − 〈�̂�〉2 ≥ 0 

i.e. 

√〈�̂�2〉〈�̂�2〉 ≥
1

2
|〈�̂�〉| 

 

Define ∆�̂� = �̂� − 〈�̂�〉, ∆�̂� = �̂� − 〈�̂�〉, apparently, 

[∆�̂�, ∆�̂�] = (�̂� − 〈�̂�〉)�̂� − (�̂� − 〈�̂�〉)〈�̂�〉 − �̂�(�̂� − 〈�̂�〉) + 〈�̂�〉(�̂� − 〈�̂�〉)

= �̂��̂� − 〈�̂�〉�̂� − �̂��̂� + �̂�〈�̂�〉

= �̂��̂� − �̂��̂�
= [�̂�, �̂�]

 

Thus 

[∆�̂�, ∆�̂�] = 𝑖�̂� 

Substitute �̂�, �̂� with ∆�̂� and ∆�̂� respectively in √〈�̂�2〉〈�̂�2〉 ≥
1

2
|〈�̂�〉|, 

√〈(∆�̂�)
2
〉 〈(∆�̂�)

2
〉 ≥

1

2
|〈�̂�〉| 

Noted that ∆𝐴 = √〈(∆�̂�)
2
〉 and ∆𝐵 = √〈(∆�̂�)

2
〉, finally we have 

∆𝐴 ⋅ ∆𝐵 ≥
1

2
|〈�̂�〉| 
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Q.E.D. 

 

Examples 

• �̂� = �̂�, �̂� = �̂�𝑥. [�̂�, �̂�𝑥] = 𝑖ℏ, �̂� = ℏ. ∆𝑥 ⋅ ∆𝑝𝑥 ≥ ℏ/2. 

o 𝜓𝑘 = 𝑒
𝑖𝑘𝑥 has definite momentum 𝑝𝑥 = ℏ𝑘, so that ∆𝑝𝑥 = 0. ∆𝑥 must be 

+∞, which means the particle is diffused in the whole 𝑥 space. 

o If ∆𝑥 = 0, we have ∆𝑝𝑥 → +∞, thus 〈�̂�〉 = 〈
�̂�𝑥
2

2𝑚
+ 𝑉〉 =

〈�̂�𝑥
2〉

2𝑚
+ 〈𝑉〉 → +∞. 

This means we need infinite energy to constrain one quantal particle to a 

certain position. 

• If two operators commute, i.e. �̂��̂� = �̂��̂�, �̂� = 0, we have ∆𝐴 ⋅ ∆𝐵 ≥ 0. So �̂� and 

�̂� can be measured precisely at the same time. 

o [�̂�, �̂�𝑦] = 0 

• A particle with mass 𝑚 moves along 𝑥 direction subjected to a potential 𝑉(𝑥). 

�̂� = −
ℏ2

2𝑚

d2

d𝑥2
+ 𝑉(𝑥), �̂�𝑥 =

ℏ

𝑖

d

d𝑥
. [�̂�, �̂�𝑥]𝜓(𝑥) = 𝑖ℏ𝜓(𝑥)

d𝑉(𝑥)

d𝑥
, i.e. [�̂�, �̂�𝑥] =

𝑖ℏ
d𝑉(𝑥)

d𝑥
 

o If and only if 𝑉(𝑥) is equal to some constant will �̂� and �̂�𝑥 commute, thus 

energy and 𝑥 momentum can be measured precisely at the same time. 

• From time-dependent S.E. 𝑖ℏ
𝜕

𝜕𝑡
𝜓 = �̂�𝜓, we define �̂� = 𝑖ℏ

𝜕

𝜕𝑡
. Since [�̂�, 𝑡]𝜙 =

�̂�(𝑡𝜙) − 𝑡(�̂�𝜙) = 𝑖ℏ𝜙, ∆𝐸 ⋅ ∆𝑡 ≥ ℏ/2. 

o If a quantum state has definite energy, i.e. ∆𝐸 = 0, then the lifetime of this 

state will be ∆𝑡 → ∞. 

o In reality, energy level is broadened, and ∆𝑡~ℏ/∆𝐸 is regarded as lifetime 

of the energy level. 
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Lecture 2 – Translational Motion 

1. One-dimensional particle-in-a-box model 

Suppose we have one particle with mass 𝑚 confined in a box [0, 𝐿], then its 

Hamiltonian is 

�̂� = −
ℏ2

2𝑚

d2

d𝑥2
+ 𝑉(𝑥) 

where the potential is 

𝑉(𝑥) = {
0,  0 < 𝑥 < 𝐿

+∞,  𝑥 ≤ 0 or 𝑥 ≥ 𝐿
 

 

I. Wavefunctions and energy levels 

Within (0, 𝐿), this S.E. has solution 

𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 ,  𝑘 = √2𝑚𝐸/ℏ 

Outside (0, 𝐿) 

𝜓 = 0 

Since wavefunction should be continuous, we impose following boundary conditions 

𝜓(0) = 𝜓(𝐿) = 0 

Plug 𝑥 = 0 and 𝑥 = 𝐿 into 𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥, we have 

𝜓(0) = 𝐴 + 𝐵 = 0 ⟹ 𝐴 = −𝐵 

𝜓(𝐿) = −𝐵𝑒𝑖𝑘𝐿 + 𝐵𝑒−𝑖𝑘𝐿 = −2𝑖𝐵 sin 𝑘𝐿 = 0 ⟹ 𝑘𝐿 = 𝑛𝜋,  𝑛 = 1,2,… 

So that after normalization, within (0, 𝐿), 

𝜓𝑛(𝑥) = √
2

𝐿
sin (

𝑛𝜋

𝐿
𝑥) ,  𝑛 = 1,2,… 

 

Energy levels corresponding to each 𝜓𝑛(𝑥) is 

𝐸𝑛 =
ℏ2𝑘2

2𝑚
=

𝑛2𝜋2ℏ2

2𝑚𝐿2
, 𝑛 = 1,2,… 

 
Figure 1 First five normalized wavefunctions 

 

II. Orthogonality of wavefunctions 

For 𝑛 ≠ 𝑚, 
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∫ d𝑥𝜓𝑛
∗𝜓𝑚

𝐿

0

=
2

𝐿
∫ d𝑥 sin

𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿

𝐿

0

= −
1

𝐿
∫ d𝑥 [cos

(𝑛 +𝑚)𝜋𝑥

𝐿
− cos

(𝑛 − 𝑚)𝜋𝑥

𝐿
]

𝐿

0

= −
1

𝐿
[

𝐿

(𝑛 + 𝑚)𝜋
⋅ sin

(𝑛 +𝑚)𝜋𝑥

𝐿
|
0

𝐿

−
𝐿

(𝑛 − 𝑚)𝜋
⋅ sin

(𝑛 −𝑚)𝜋𝑥

𝐿
|
0

𝐿

]

= 0

 

 

III. Uncertainty principle for ground state 

Noted that ∆𝐴 = √〈(∆�̂�)
2
〉 and ∆�̂� = �̂� − 〈�̂�〉, we can rewrite uncertainty as 

∆𝐴 = √⟨�̂�2 − 2�̂�⟨�̂�⟩ + ⟨�̂�⟩
2
⟩ = √⟨�̂�2⟩ − 2⟨�̂�⟩⟨�̂�⟩ + ⟨�̂�⟩

2
= √⟨�̂�2⟩ − ⟨�̂�⟩

2
 

⟨�̂�2⟩ and ⟨�̂�⟩ are needed to calculate ∆𝐴. 

 

⟨�̂�⟩ =
2

𝐿
∫ 𝑥 sin2

𝜋𝑥

𝐿
d𝑥

𝐿

0

=
1

𝐿
∫ 𝑥 (1 − cos

2𝜋𝑥

𝐿
) d𝑥

𝐿

0

=
𝐿

2
−
1

𝐿
∫ 𝑥 cos

2𝜋𝑥

𝐿
d𝑥

𝐿

0

=
𝐿

2

 

⟨�̂�⟩ =
2ℏ

𝑖𝐿
⋅
𝜋

𝐿
∫ sin

𝜋𝑥

𝐿
cos

𝜋𝑥

𝐿

𝐿

0

d𝑥 =
ℏ𝜋

𝑖𝐿2
∫ sin

2𝜋𝑥

𝐿
d𝑥

𝐿

0

=
𝐿

2
 

 

〈�̂�2〉 =
2

𝐿
∫ 𝑥2 sin2

𝜋𝑥

𝐿
d𝑥

𝐿

0

=
1

𝐿
∫ 𝑥2 (1 − cos

2𝜋𝑥

𝐿
) d𝑥

𝐿

0

=
𝐿2

3
−
1

𝐿
∫ 𝑥2 cos

2𝜋𝑥

𝐿
d𝑥

𝐿

0

=
𝐿2

3
−
𝐿2

2𝜋2

 

〈�̂�2〉 =
2ℏ2

𝐿
⋅
𝜋2

𝐿2
∫ sin2

𝜋𝑥

𝐿

𝐿

0

d𝑥 =
𝜋2ℏ2

𝐿3
∫ (1 − cos

2𝜋𝑥

𝐿
)d𝑥

𝐿

0

=
𝜋2ℏ2

𝐿2
 

 

∆𝑥 = √(
𝐿2

3
−
𝐿2

2𝜋2
) − (

𝐿

2
)
2

=
𝐿

2𝜋
√
𝜋2

3
− 2 

∆𝑝 =
𝜋ℏ

𝐿
 

 

Thus 

∆𝑥 ⋅ ∆𝑝 =
ℏ

2
⋅ √
𝜋2

3
− 2 ≈ 1.136 ⋅

ℏ

2
>
ℏ

2
 

 

• Calculation details 

Let 𝛼(𝑘) = ∫ sin 𝑘𝑥 d𝑥
𝐿

0
=

1−cos 𝑘𝐿

𝑘
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d𝛼(𝑘)

d𝑘
= ∫ 𝑥 cos 𝑘𝑥 d𝑥

𝐿

0

=
𝐿 sin 𝑘𝐿

𝑘
+
cos 𝑘𝐿 − 1

𝑘2
 

So 

∫ 𝑥 cos
2𝜋𝑥

𝐿
d𝑥

𝐿

0

=
d𝛼(𝑘)

d𝑘
|
𝑘=2𝜋/𝐿

= 0 

 

Let 𝛽(𝑘) = ∫ cos 𝑘𝑥 d𝑥
𝐿

0
=

sin𝑘𝐿

𝑘
 

d2𝛽(𝑘)

d𝑘2
= −∫ 𝑥2 cos 𝑘𝑥 d𝑥

𝐿

0

= −
𝐿2 sin 𝑘𝐿

𝑘
−
2𝐿 cos 𝑘𝐿

𝑘2
+
2sin 𝑘𝐿

𝑘3
 

So 

∫ 𝑥2 cos
2𝜋𝑥

𝐿
d𝑥

𝐿

0

= −
d2𝛽(𝑘)

d𝑘2
|
𝑘=2𝜋/𝐿

=
𝐿3

2𝜋2
 

 

• Example 8A.2 (pp. 321) 

o Problem: β-Carotene is a linear polyene in which 10 single and 11 

double bonds alternate along a chain of 22 carbon atoms. If we take 

each C-C bond length to be about 140 pm, then the length L of the 

molecular box in β-carotene is L = 2.94 nm. Estimate the wavelength 

of the light absorbed by this molecule from its ground state to the next 

higher excited state. 

o Answer: 

∆𝐸 = 𝐸12 − 𝐸11 = 1.60 ×  10−19 J 

𝜆 =
ℎ

∆𝐸
= 1.24 𝜇m 

 

2. Two-dimensional model 

 

Hamiltonian operator 

�̂� = −
ℏ2

2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
) + 𝑉(𝑥, 𝑦) 

𝑉(𝑥, 𝑦) = {
0,  0 < 𝑥 < 𝐿1 and 0 < 𝑦 < 𝐿2

+∞,  otherwise
 

 

S.E. is �̂�𝜓(𝑥, 𝑦) = 𝐸𝜓(𝑥, 𝑦). 

 

 

Within 0 < 𝑥 < 𝐿1 and 0 < 𝑦 < 𝐿2, S.E. is 

−
ℏ2

2𝑚
[
𝜕2𝜓(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝜓(𝑥, 𝑦)

𝜕𝑦2
] = 𝐸𝜓(𝑥, 𝑦) 

Boundary conditions are 

𝜓(0, 𝑦) = 𝜓(𝐿1, 𝑦) = 𝜓(𝑥, 0) = 𝜓(𝑥, 𝐿2) = 0 

 

m 

y=L
2
 

y=0 
x=0 x=L

1
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To solve this multivariable equation, we perform separation of variables. Let 

𝜓(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) and plug this equation into S.E., we get 

−
ℏ2

2𝑚
(
d2𝑋

d𝑥2
𝑌 + 𝑋

d2𝑌

d𝑦2
) = 𝐸𝑋𝑌 

Divide both sides by 𝑋𝑌 

−
ℏ2

2𝑚
(
1

𝑋

d2𝑋

d𝑥2
+
1

𝑌

d2𝑌

d𝑦2
) = 𝐸 

To ensure −
ℏ2

2𝑚
(
1

𝑋

d2𝑋

d𝑥2
+

1

𝑌

d2𝑌

d𝑦2
) = 𝐸, each term in the LHS should be some constant, viz. 

−
ℏ2

2𝑚

1

𝑋

d2𝑋

d𝑥2
= 𝐸1, −

ℏ2

2𝑚

1

𝑌

d2𝑌

d𝑦2
= 𝐸2 

with 𝐸1 + 𝐸2 = 𝐸. 

 

Now the 2D S.E. of 𝜓(𝑥, 𝑦) has been decomposed into two 1D S.E., thus its solution 

is just the product of two separated equations, 

𝜓𝑛1,𝑛2 = {

2

√𝐿1𝐿2
sin

𝑛1𝜋𝑥

𝐿1
sin

𝑛2𝜋𝑦

𝐿2
,  within 2D box

0,  outside box

 

Its energy levels are 

𝐸𝑛1 ,𝑛2 =
𝑛1
2𝜋2ℏ2

2𝑚𝐿1
2 +

𝑛2
2𝜋2ℏ2

2𝑚𝐿2
2  

where 𝑛1,  𝑛2 = 1,2,3,…. 

 

3. Three-dimensional model 

Hamiltonian: 

�̂� = −
ℏ2

2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉(𝑥, 𝑦, 𝑧) 

𝑉(𝑥, 𝑦, 𝑧) = {
0,  0 < 𝑥 < 𝐿1 and 0 < 𝑦 < 𝐿2 and 0 < 𝑧 < 𝐿3

+∞,  otherwise
 

 

S.E.: �̂�𝜓(𝑥, 𝑦, 𝑧) = 𝐸𝜓(𝑥, 𝑦, 𝑧), within 0 < 𝑥 < 𝐿1, 0 < 𝑦 < 𝐿2, and 0 < 𝑧 < 𝐿3 

−
ℏ2

2𝑚
[
𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
] = 𝐸𝜓 

Boundary conditions 

𝜓(0, 𝑦, 𝑧) = 𝜓(𝐿1, 𝑦, 𝑧) = 0 

𝜓(𝑥, 0, 𝑧) = 𝜓(𝑥, 𝐿2, 𝑧) = 0 

𝜓(𝑥, 𝑦, 0) = 𝜓(𝑥, 𝑦, 𝐿3) = 0 

 

Now we perform similar procedures as 2D model. Let 𝜓(𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧) 

and plug this equation into S.E., we get 

−
ℏ2

2𝑚
(
d2𝑋

d𝑥2
𝑌𝑍 +

d2𝑌

d𝑦2
𝑋𝑍 +

d2𝑍

d𝑍2
𝑋𝑌) = 𝐸𝑋𝑌𝑍 

Divide above equation by 𝑋𝑌𝑍 
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−
ℏ2

2𝑚
(
1

𝑋

d2𝑋

d𝑥2
+
1

𝑌

d2𝑌

d𝑦2
+
1

𝑍

d2𝑍

d𝑧2
) = 𝐸 

Each term in the LHS should be some constant, viz. 

−
ℏ2

2𝑚

1

𝑋

d2𝑋

d𝑥2
= 𝐸1, −

ℏ2

2𝑚

1

𝑌

d2𝑌

d𝑦2
= 𝐸2, −

ℏ2

2𝑚

1

𝑍

d2𝑍

d𝑧2
= 𝐸3 

where 𝐸1 + 𝐸2 + 𝐸3 = 𝐸. So, the solution is 

𝜓𝑛1,𝑛2,𝑛3 = {
√

8

𝐿1𝐿2𝐿3
sin

𝑛1𝜋𝑥

𝐿1
sin

𝑛2𝜋𝑦

𝐿2
sin

𝑛3𝜋𝑧

𝐿3
,  within 3D box

0,  outside box

  

with energy levels 

𝐸𝑛1,𝑛2,𝑛3 =
𝑛1
2𝜋2ℏ2

2𝑚𝐿1
2 +

𝑛2
2𝜋2ℏ2

2𝑚𝐿2
2 +

𝑛3
2𝜋2ℏ2

2𝑚𝐿3
2  

where 𝑛1,  𝑛2, 𝑛3 = 1,2,3,…. 

 

4. Tunnelling 

In this quantum tunnelling model, potential is set to 

be zero in 𝑥 < 0 or 𝑥 > 𝐿 and be constant 𝑉 in 0 ≤

𝑥 ≤ 𝐿. The energy of incident wavefunction is 𝐸 and 

𝐸 < 𝑉. Denote the amplitude of incident and exit wave 

functions as 𝐴 and 𝐴′ respectively and define 

transmission coefficient as 𝑇 = |
𝐴′

𝐴
|. 

 

In zero-potential region, S.E. and wavefunction are 

−
ℏ2

2𝑚
⋅
d2𝜓

d𝑥2
= 𝐸𝜓,  𝜓 = 𝑒±𝑖𝑘𝑥,  𝑘 = √2𝑚𝐸/ℏ 

For incident region 𝑥 < 0, we choose 𝜓1(𝑥) = 𝐴𝑒
𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥, where two terms stand 

for incident and reflection wavefunctions respectively. For 𝑥 > 𝐿, 𝜓3(𝑥) = 𝐴
′𝑒𝑖𝑘𝑥 stands 

for tunnelling wavefunction. 

 

In potential barrier region, −
ℏ2

2𝑚
⋅
d2𝜓

d𝑥2
+ 𝑉𝜓 = 𝐸𝜓. The general solution is 

𝜓2(𝑥) = 𝐶𝑒
𝜅𝑥 + 𝐷𝑒−𝜅𝑥 

where 𝜅 = √2𝑚(𝑉 − 𝐸)/ℏ. 

 

At the two interfaces, wavefunction shall be smooth, i.e. 

𝜓1(0) = 𝜓2(0),  𝜓2(𝐿) = 𝜓3(𝐿),𝜓1
′ (0) = 𝜓2

′ (0),  𝜓2
′ (𝐿) = 𝜓3

′ (𝐿) 

thus we can obtain four equations 

𝐴 + 𝐵 = 𝐶 + 𝐷(1) 

𝑖𝑘𝐴 − 𝑖𝑘𝐵 = 𝜅𝐶 − 𝜅𝐷(2) 

𝐶𝑒𝜅𝐿 + 𝐷𝑒−𝜅𝐿 = 𝐴′𝑒𝑖𝑘𝐿(3) 

𝜅𝐶𝑒𝜅𝐿 − 𝜅𝐷𝑒−𝜅𝐿 = 𝑖𝑘𝐴′𝑒𝑖𝑘𝐿(4) 

𝐶, 𝐷 and 𝐴 can all be expressed in 𝐴′ as 

V

A
A

A 

A’ 
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𝜅(3) + (4): 𝐶 =
𝜅+𝑖𝑘

2𝜅
𝑒(𝑖𝑘−𝜅)𝐿𝐴′, 𝜅(3) − (4): 𝐷 =

𝜅−𝑖𝑘

2𝜅
𝑒(𝑖𝑘+𝜅)𝐿𝐴′ 

𝑖𝑘(1) + (2): 𝐴 =
(𝑖𝑘+𝜅)𝐶+(𝑖𝑘−𝜅)𝐷

2𝑖𝑘
=

𝐴′

4𝑖𝜅𝑘
[(𝜅 + 𝑖𝑘)2𝑒(𝑖𝑘−𝜅)𝐿 − (𝜅 − 𝑖𝑘)2𝑒(𝑖𝑘+𝜅)𝐿] 

Then we try to solve transmission coefficient. 

𝐴

𝐴′𝑒𝑖𝑘𝐿
=

1

4𝑖𝜅𝑘
[(𝜅 + 𝑖𝑘)2𝑒−𝜅𝐿 − (𝜅 − 𝑖𝑘)2𝑒𝜅𝐿]

=
1

4𝑖𝜅𝑘
[(𝜅2 − 𝑘2)(𝑒−𝜅𝐿 − 𝑒𝜅𝐿) + 2𝑖𝜅𝑘(𝑒−𝜅𝐿 + 𝑒𝜅𝐿)]

=
1

2
(𝑒−𝜅𝐿 + 𝑒𝜅𝐿) − 𝑖

𝑉 − 2𝐸

4√𝐸(𝑉 − 𝐸)
⋅ (𝑒−𝜅𝐿 − 𝑒𝜅𝐿)

 

denote 𝜖 =
𝐸

𝑉
, 

|
𝐴

𝐴′
|
2

=
1

4
(𝑒−𝜅𝐿 + 𝑒𝜅𝐿)2 +

1

16

1 − 4𝜖(1 − 𝜖)

𝜖(1 − 𝜖)
(𝑒−𝜅𝐿 − 𝑒𝜅𝐿)2

=
1

4
(𝑒−𝜅𝐿 + 𝑒𝜅𝐿)2 −

1

4
(𝑒−𝜅𝐿 − 𝑒𝜅𝐿)2 +

(𝑒−𝜅𝐿 − 𝑒𝜅𝐿)2

16𝜖(1 − 𝜖)

= 1 +
(𝑒−𝜅𝐿 − 𝑒𝜅𝐿)2

16𝜖(1 − 𝜖)

 

Finally, 

𝑇 = |
𝐴′

𝐴
| = [1 +

(𝑒−𝜅𝐿 − 𝑒𝜅𝐿)2

16𝜖(1 − 𝜖)
]

−1/2

 

• If 𝜖 ≪ 1, i.e. 𝐸 ≪ 𝑉: 𝑇 ≈
4√𝜖(1−𝜖)

𝑒𝜅𝐿−𝑒−𝜅𝐿
≈ 0. 

• If 𝜅𝐿 ≫ 1, i.e. high, wide barrier: 𝑇 ≈ 4√𝜖(1 − 𝜖)𝑒−𝜅𝐿. 

• The heavier the mass, the smaller the 𝑇. 

 

5. Particle in a finite square-well potential 

Potential is constant 𝑉 in 𝑥 < 0 or 𝑥 > 𝐿 and zero in 

0 ≤ 𝑥 ≤ 𝐿. The energy of particle is 𝐸 and 𝐸 < 𝑉. Denote 

𝑘 = √2𝑚𝐸/ℏ and 𝜅 = √2𝑚(𝑉 − 𝐸)/ℏ. 

 

Similar to above tunnelling model, we use following 

wavefunctions 

       𝑥 < 0: 𝜓1(𝑥) = 𝐶𝑒
𝜅𝑥 + 𝐶′𝑒−𝜅𝑥 

0 < 𝑥 < 𝐿: 𝜓2(𝑥) = 𝐴𝑒
𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 

                      𝑥 > 𝐿: 𝜓3(𝑥) = 𝐷𝑒
−𝜅(𝑥−𝐿) + 𝐷′𝑒𝜅(𝑥−𝐿) 

At infinity, wavefunction should vanish, thus 𝐶′ = 𝐷′ = 0. At 𝑥 = 0, applying boundary 

conditions 𝜓1(0) = 𝜓2(0) and 𝜓1
′ (0) = 𝜓2

′ (0), we get 𝐶 = 𝐴 + 𝐵 and 𝜅𝐶 = 𝑖𝑘(𝐴 − 𝐵), 

i.e. 

𝐴 =
𝑖𝑘+𝜅

2𝑖𝑘
𝐶, 𝐵 =

𝑖𝑘−𝜅

2𝑖𝑘
𝐶 

Similarly, at 𝑥 = 𝐿 we have 𝐴𝑒𝑖𝑘𝐿 + 𝐵𝑒−𝑖𝑘𝐿 = 𝐷 and 𝑖𝑘(𝐴𝑒𝑖𝑘𝐿 − 𝐵𝑒−𝑖𝑘𝐿) = −𝜅𝐷, i.e. 

𝐴 =
𝑖𝑘−𝜅

2𝑖𝑘
𝑒−𝑖𝑘𝐿𝐷, 𝐵 =

𝑖𝑘+𝜅

2𝑖𝑘
𝑒𝑖𝑘𝐿𝐷 
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Then 𝐶 can be expressed in terms of D as 𝐶 =
𝑖𝑘−𝜅

𝑖𝑘+𝜅
𝑒−𝑖𝑘𝐿𝐷 or 𝐶 =

𝑖𝑘+𝜅

𝑖𝑘−𝜅
𝑒𝑖𝑘𝐿𝐷. Use the 

first expression, we have 

𝜓(𝑥) = 𝐷 ⋅

{
 
 

 
 
𝑖𝑘 − 𝜅

𝑖𝑘 + 𝜅
𝑒−𝑖𝑘𝐿𝑒𝜅𝑥 , 𝑥 ≤ 0

𝑖𝑘 − 𝜅

2𝑖𝑘
𝑒−𝑖𝑘𝐿𝑒𝑖𝑘𝑥 +

𝑖𝑘 + 𝜅

2𝑖𝑘
𝑒𝑖𝑘𝐿𝑒−𝑖𝑘𝑥        , 0 < 𝑥 < 𝐿

𝑒−𝜅(𝑥−𝐿) ,  𝑥 ≥ 𝐿

 

At 𝑥 = 0, 𝜓(𝑥) should be continuous 

𝑖𝑘 − 𝜅

𝑖𝑘 + 𝜅
𝑒−𝑖𝑘𝐿 =

𝑖𝑘 − 𝜅

2𝑖𝑘
𝑒−𝑖𝑘𝐿 +

𝑖𝑘 + 𝜅

2𝑖𝑘
𝑒𝑖𝑘𝐿 

i.e. 

(𝜅2 − 𝑘2 − 2𝑖𝜅𝑘)(cos 𝑘𝐿 − 𝑖 sin 𝑘𝐿) =  (𝜅2 − 𝑘2 + 2𝑖𝜅𝑘)(cos 𝑘𝐿 + 𝑖 sin 𝑘𝐿) 

Real parts of LHS and RHS are identical, and the imaginary parts should be equal 

−[2𝜅𝑘 cos 𝑘𝐿 + (𝜅2 − 𝑘2) sin 𝑘𝐿] = 2𝜅𝑘 cos 𝑘𝐿 + (𝜅2 − 𝑘2) sin 𝑘𝐿 

i.e. 

4𝜅𝑘 cos 𝑘𝐿 = 2(𝑘2 − 𝜅2) sin 𝑘𝐿 

• When cos 𝑘𝐿 ≠ 0 , we have tan 𝑘𝐿 =
2𝜅𝑘

𝑘2−𝜅2
, i.e. tan

√2𝑚𝐸𝐿

ℏ
=

2√𝐸(𝑉−𝐸)

2𝐸−𝑉
. 

• When cos 𝑘𝐿 = 0 and 𝑘2 = 𝜅2, we have 𝐸 =
𝑉

2
 and 𝐸 =

(𝑛+
1

2
)
2
𝜋2ℏ2

2𝑚𝐿2
 where 𝑛 =

0,1,2,…. For a given 𝑉, if there is no such 𝐸 satisfy these two equations, then this 

state is quantum forbidden. 
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Lecture 3 – Vibrational Motion 

1. One-dimensional harmonic oscillator 

The force of spring is 𝐹 = −𝑘𝑓𝑥, thus its potential can be 

calculated as 𝑉(𝑥) = −∫ 𝐹d𝑥′
𝑥

0
=

1

2
𝑘𝑓𝑥. The Hamiltonian is then  

�̂� = −
ℏ2

2𝑚

d2

d𝑥2
+
1

2
𝑘𝑓𝑥

2, and its corresponding S.E. is 

−
ℏ2

2𝑚

d2𝜓(𝑥)

d𝑥2
+
1

2
𝑘𝑓𝑥

2𝜓(𝑥) = 𝐸𝜓(𝑥) 

We first change variable from 𝑥 to 𝑦 = 𝑥/𝛼 where 𝛼 = (
ℏ2

𝑚𝑘𝑓
)

1

4
. Under this operation, 

𝜓(𝑥) changes to 𝜙(𝑦). After some algebra, we have 

d2𝜙(𝑦)

d𝑦2
+ (𝜆 − 𝑦2)𝜙(𝑦) = 0 

where 𝜆 =
2𝐸

ℏ𝜔
 and 𝜔 = √𝑘𝑓/𝑚. 

 

Now we take a look at asymptotic behaviour of above equation. When 𝑦 → ±∞, 

d2𝜙

d𝑦2
− 𝑦2𝜙 = 0 

thus 𝜙 → 𝑒−
𝑦2

2 . Rewrite 𝜙(𝑦) = 𝑁 ⋅ 𝐻(𝑦)𝑒−
𝑦2

2 , we have following Hermite equation 

d2𝐻

d𝑦2
− 2𝑦

d𝐻

d𝑦
+ (𝜆 − 1)𝐻 = 0 

Expand 𝐻(𝑦) as 𝐻(𝑦) = ∑ 𝑐𝑛𝑦
𝑛∞

𝑛=0  and plug this expansion into Hermite equation, 

∑𝑦𝑛[𝑐𝑛+2(𝑛 + 2)(𝑛 + 1) − (2𝑛 − 𝜆 + 1)𝑐𝑛]

∞

𝑛=0

= 0 

𝑐𝑛+2 =
2𝑛 + 1 − 𝜆

(𝑛 + 2)(𝑛 + 1)
𝑐𝑛 

But when 𝑦 → ±∞, ∑ 𝑐𝑛𝑦
𝑛∞

𝑛=0 → ∞ as fast as 𝑒𝑦
2
, causing 𝜙~𝑒−

𝑦2

2 ∑ 𝑐𝑛𝑦
𝑛∞

𝑛=0 → ∞ as 

fast as 𝑒
𝑦2

2 . To ensure 𝜙(±∞) = 0 the expansion of 𝐻(𝑦) must be truncated, i.e. 

𝑐𝜈 ≠ 0,  𝑐𝜈+2 = 0 

Thus we get quantized energy as 

2𝜈 + 1 = 𝜆 =
2𝐸

ℏ𝜔
 

𝐸𝜈 = ℏ𝜔 (𝜈 +
1

2
) ,  𝜈 = 0,1,2,… 

It is worthwhile noting that the ground state energy, also called zero-point energy, 𝐸0 =
1

2
ℏ𝜔 is non-zero. 

 

I. Wavefunction 

Solutions of Hermite equation are called Hermite polynomials. They satisfy 

following recursive and orthonormal relations 
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𝐻𝜈+1 − 2𝑦𝐻𝜈 + 2𝜈𝐻𝜈−1 = 0 

∫ d𝑦𝐻𝜈′𝐻𝜈𝑒
−𝑦2

+∞

−∞

= {
0            , if 𝜈′ ≠ 𝜈

√𝜋2𝜈𝜈!  ,  if 𝜈′ = 𝜈
 

First three Hermite polynomials are listed below. 

𝜈 0 1 2 

𝐻𝜈 1 2𝑦 4𝑦2 − 2 

 

Now we need to normalize wavefunction 𝜙(𝑦) = 𝑁 ⋅ 𝐻(𝑦)𝑒−
𝑦2

2 . 

∫ d𝑥𝜓𝜈
∗(𝑥)𝜓𝜈(𝑥)

+∞

−∞

= 𝑁𝜈
2𝛼∫ d𝑦𝐻𝜈

2𝑒−𝑦
2

+∞

−∞

= 𝑁𝜈
2𝛼√𝜋2𝜈𝜈! 

Thus 𝑁𝜈 = (𝛼√𝜋2
𝜈𝜈!)

−
1

2 and the normalized result is 

𝜓𝜈(𝑥) = (𝛼√𝜋2
𝜈𝜈!)

−
1
2𝐻𝜈 (

𝑥

𝛼
) 𝑒

−
𝑥2

2𝛼2 

 

II. Uncertainty of position 

⟨�̂�⟩ = ∫ 𝑑𝑥𝜓𝜈
∗(𝑥)𝑥𝜓𝜈(𝑥)

+∞

−∞

= 𝑁𝜈
2𝛼2∫ 𝑑𝑦𝐻𝜈(𝑦)𝑦𝐻𝜈(𝑦)𝑒

−𝑦2
+∞

−∞

= 𝑁𝜈
2𝛼2∫ 𝑑𝑦𝐻𝜈

𝐻𝜈+1 + 2𝜈𝐻𝜈−1
2

𝑒−𝑦
2

+∞

−∞

= 0

 

⟨�̂�2⟩ = ∫ 𝑑𝑥𝜓𝜈
∗(𝑥)𝑥2𝜓𝜈(𝑥)

+∞

−∞

= 𝑁𝜈
2𝛼3∫ 𝑑𝑦[𝑦𝐻𝜈(𝑦)][𝑦𝐻𝜈(𝑦)]𝑒

−𝑦2
+∞

−∞

= 𝑁𝜈
2𝛼3∫ 𝑑𝑦 (

𝐻𝜈+1 + 2𝜈𝐻𝜈−1
2

)
2

𝑒−𝑦
2

+∞

−∞

=
1

4
𝑁𝜈
2𝛼3∫ 𝑑𝑦(𝐻𝜈+1

2 + 4𝜈𝐻𝜈+1𝐻𝜈−1 + 4𝜈
2𝐻𝜈−1)𝑒

−𝑦2
+∞

−∞

=
𝛼2

√𝜋2𝜈+2𝜈!
[√𝜋2𝜈+1 (𝜈 + 1)! + 𝜈√𝜋2𝜈+1 𝜈!]

= 𝛼2 (𝜈 +
1

2
)

 

Thus ∆𝑥 = 𝛼√𝜈 +
1

2
. 

 

III. Potential energy 

⟨�̂�⟩ = ⟨
1

2
𝑘𝑓�̂�

2⟩ =
1

2
𝑘𝑓𝛼

2 (𝜈 +
1

2
) =

1

2
ℏ𝜔 (𝜈 +

1

2
) =

1

2
𝐸𝜈 
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IV. Tunnelling – classically forbidden region 

Classically forbidden region is where 𝑉(𝑥) > 𝐸𝜈. Quantal oscillator can reach 

classically forbidden region with some tunnelling probability. 

 

For ground state, 𝜓0 = 𝑁0𝑒
−
𝑥2

2𝛼2, 𝐸0 =
1

2
ℏ𝜔. Denote 𝑥𝐿 and 𝑥𝑅 as the negative and 

positive solutions of 𝑉(𝑥) = 𝐸0 respectively. The tunnelling probability is then 

𝑃(𝑥 < 𝑥𝐿) + 𝑃(𝑥 > 𝑥𝑅) = 2∫ d𝑥𝜓0
2(𝑥)

+∞

𝑥𝑅

≈ 15.7% 

 

2. The vibration of a diatomic molecule 

Consider a diatomic molecule moving along 𝑥 axis. The 

coordinates of two atoms with mass 𝑚1 and 𝑚2 are 𝑥1 and 

𝑥2 respectively. The force constant is 𝑘𝑓 . 

�̂� = −
ℏ2

2𝑚1

𝜕2

𝜕𝑥1
2 −

ℏ2

2𝑚2

𝜕2

𝜕𝑥2
2 +

1

2
𝑘𝑓(𝑥1 − 𝑥2)

2 

 

Classically, the kinetic energy of this system is 

𝐾 =
1

2
𝑚1�̇�1

2 +
1

2
𝑚2�̇�2

2 

where �̇�𝑖 = d𝑥𝑖/d𝑡. Define the coordinate of centre-of-mass as 

𝑥c =
𝑚1𝑥1 +𝑚2𝑥2
𝑚1 +𝑚2

 

and the distance between two atoms as 

𝑥 = 𝑥1 − 𝑥2 

It is easy to find the inverse transformations as 

{

𝑥1 = 𝑥c +
𝑚2

𝑚1 +𝑚2
𝑥

𝑥2 = 𝑥c −
𝑚1

𝑚1 +𝑚2
𝑥

 

Thus the kinetic energy can be expressed in {𝑥, 𝑥c} as 

𝐾 =
1

2
𝑚1 (�̇�c +

𝑚2

𝑚1 +𝑚2
�̇�)

2

+
1

2
𝑚2 (�̇�c −

𝑚1

𝑚1 +𝑚2
�̇�)

2

=
1

2
𝑀�̇�c

2 +
1

2
𝜇�̇�2 

Here 𝑀 = 𝑚1 +𝑚2 is the total mass and 𝜇 = 𝑚1𝑚2/𝑀 is the reduced mass. 

 

Define the momentum of centre-of-mass and vibration as 

𝑃c = 𝑀�̇�c, 𝑝 = 𝜇�̇� 

The kinetic energy is then 

𝐾 =
𝑃c
2

2𝑀
+
𝑝2

2𝜇
 

Its corresponding quantum Hamiltonian is 

�̂� = −
ℏ2

2𝑀

𝜕2

𝜕𝑥c2
−
ℏ2

2𝜇

𝜕2

𝜕𝑥2
+
1

2
𝑘𝑓𝑥

2 

𝑚1 
𝑘𝑓  

𝑥1 𝑥2 

𝑚2 
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The Schrödinger equation �̂�𝜓(𝑥1, 𝑥2) = 𝐸𝜓(𝑥1, 𝑥2) is now separable. Assuming that 

𝜓(𝑥1, 𝑥2) = Φ(𝑥c)𝜑(𝑥) 

we have 

−
ℏ2

2𝑀

d2Φ(𝑥c)

d𝑥c2
⋅ 𝜑(𝑥) + [−

ℏ2

2𝜇

d2𝜑(𝑥)

d𝑥2
+
1

2
𝑘𝑓𝑥

2𝜑(𝑥)]Φ(𝑥c) = 𝐸Φ(𝑥c)𝜑(𝑥) 

Divide both sides by Φ(𝑥c)𝜑(𝑥), 

−
ℏ2

2𝑀

1

Φ(𝑥c)

d2Φ(𝑥c)

d𝑥c2
+ [−

ℏ2

2𝜇

1

𝜑(𝑥)

d2𝜑(𝑥)

d𝑥2
+
1

2
𝑘𝑓𝑥

2] = 𝐸 

Thus 

−
ℏ2

2𝑀

d2Φ(𝑥c)

d𝑥c2
= 𝐸1Φ(𝑥c) 

(−
ℏ2

2𝜇

d2

d𝑥2
+
1

2
𝑘𝑓𝑥

2)𝜑(𝑥) = 𝐸2𝜑(𝑥) 

𝐸1 + 𝐸2 = 𝐸 

The solution is 

Φ(𝑥c) = 𝐴𝑒
𝑖𝑘𝑥c + 𝐵𝑒−𝑖𝑘𝑥c , 𝑘 =

√2𝑚𝐸1
ℏ

 

𝜑(𝑥) = (𝛼√𝜋2𝜈𝜈!)
−
1
2𝐻𝜈 (

𝑥

𝛼
) 𝑒

−
𝑥2

2𝛼2 , 𝛼 = (
ℏ2

𝜇𝑘𝑓
)

1
4

 

𝐸2 = ℏ𝜔 (𝜈 +
1

2
) , 𝜔 = √

𝑘𝑓
𝜇
,  𝜈 = 0,1,2,… 

 

Appendix: Direct coordinate transformations of Hamiltonian 

It’s straightforward to find that 

𝜕

𝜕𝑥1
=
𝜕

𝜕𝑥
+
𝑚1

𝑀

𝜕

𝜕𝑥c
,

𝜕

𝜕𝑥2
= −

𝜕

𝜕𝑥
+
𝑚2

𝑀

𝜕

𝜕𝑥c
 

Thus 

𝜕2

𝜕𝑥1
2 =

𝜕2

𝜕𝑥2
+
2𝑚1

𝑀

𝜕2

𝜕𝑥𝜕𝑥c
+
𝑚1
2

𝑀2

𝜕2

𝜕𝑥c
2
 

𝜕2

𝜕𝑥2
2 =

𝜕2

𝜕𝑥2
−
2𝑚2

𝑀

𝜕2

𝜕𝑥𝜕𝑥c
+
𝑚2
2

𝑀2

𝜕2

𝜕𝑥c
2
 

Finally, 

�̂� = −
ℏ2

2𝑚1

𝜕2

𝜕𝑥1
2 −

ℏ2

2𝑚2

𝜕2

𝜕𝑥2
2 +

1

2
𝑘𝑓(𝑥1 − 𝑥2)

2

= −
ℏ2

2
[
1

𝑀

𝜕2

𝜕𝑥c2
+ (

1

𝑚1
+
1

𝑚2
)
𝜕2

𝜕𝑥2
] +

1

2
𝑘𝑓𝑥

2

= −
ℏ2

2𝑀

𝜕2

𝜕𝑥c2
−
ℏ2

2𝜇

𝜕2

𝜕𝑥2
+
1

2
𝑘𝑓𝑥

2
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Lecture 4 – Rotational Motion 
1. Two-dimensional rotational motion 

A particle of mass 𝑚 moves in a ring of radius 𝑟 in the 𝑥𝑦-plane 

with zero potential. We use cylindrical coordinates for convenience. 

Laplace operator has following form 

∇2=
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) +

1

𝑟2
𝜕2

𝜕𝜙2
+
𝜕2

𝜕𝑧2
 

Since 𝑟,  𝑧 are fixed, it can be simplified to ∇2=
1

𝑟2
d2

d𝜙2
. 

 

S.E. is −
ℏ2

2𝑚𝑟2
d2

d𝜙2
𝜓 = 𝐸𝜓. Denote 𝐼 = 𝑚𝑟2 as moment of inertia, we have 

−
ℏ2

2𝐼

d2

d𝜙2
𝜓(𝜙) = 𝐸𝜓(𝜙) 

The solution is 𝜓(𝜙) = 𝑁𝑒±𝑖√𝜖𝜙 where 𝜖 =
2𝐼𝐸

ℏ2
. We then apply cyclic boundary 

condition 𝜓(0) = 𝜓(2𝜋), i.e. 𝑁 = 𝑁𝑒±𝑖2𝜋√𝜖. 𝑒±𝑖2𝜋√𝜖 = 1 leads to √𝜖 = 0,1,2,…, thus 

𝜓(𝜙) = 𝑁𝑒𝑖𝑚𝜙, 𝑚 = 0,±1,±2,  … 

After normalization, we have 𝑁 =
1

√2𝜋
 and 

𝜓𝑚(𝜙) =
1

√2𝜋
𝑒𝑖𝑚𝜙, 𝑚 = 0,±1,±2,  … 

 

I. Energy 

�̂�𝜓𝑚 =
ℏ2

2𝐼
𝑚2𝜓𝑚, 𝐸𝑚 =

𝑚2ℏ2

2𝐼
, 𝑚 = 0,±1,±2,  … 

• Ground state energy is zero. 

• First excited states are degenerated. 𝐸±1 =
ℏ2

2𝐼
 with degeneracy 2. 

 

II. Linear momentum 

�̂� =
ℏ

𝑖
∇=

ℏ

𝑖

d

d(𝑟𝜙)
=
ℏ

𝑖𝑟

d

d𝜙
 

�̂�𝜓𝑚 =
𝑚ℏ

𝑟
𝜓𝑚, 𝑝𝑚 =

𝑚ℏ

𝑟
 

Thus 𝜓𝑚 are also eigenfunctions of �̂�. 

 

III. Angular momentum 

Classically, 𝑙 = 𝑟 × �⃗�. In quantum mechanics, for a particle in a circle 

𝑙 = �̂��̂� =
ℏ

𝑖

d

d𝜙
 

𝑙𝜓𝑚 = 𝑚ℏ𝜓𝑚, 𝑙𝑚 = 𝑚ℏ 

Thus 𝜓𝑚 are also eigenfunctions of 𝑙. 

 

These co-eigenfunction phenomenon are described by compatibility theorem next 

section. 

r 

m 

𝜙 
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2. Compatibility theorem 

• Theorem: Giving two Hermitian operators �̂� and �̂�, if �̂� and �̂� are commuting, viz 

[�̂�, �̂�] = 0, we can conclude that �̂� and �̂� have a common eigen basis, i.e. we can find 

a set of 𝜓𝑖 satisfying �̂�𝜓𝑖 = 𝑎𝑖𝜓𝑖 and �̂�𝜓𝑖 = 𝑏𝑖𝜓𝑖 

o Examples: [�̂�, �̂�] = [�̂�, 𝑙] = [𝑙, �̂�] = 0, so 𝜓𝑚 =
1

√2𝜋
𝑒𝑖𝑚𝜙 are their common 

eigenfunctions. 

 

3. Three-dimensional rotational motion 

A particle of mass 𝑚 moves on the surface of a sphere of radius 𝑟 with zero potential. 

Now we use spherical coordinates where 

∇2=
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

Λ2

𝑟2
 

Λ2 =
1

sin2 𝜃

𝜕2

𝜕𝜙2
+

1

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕

𝜕𝜃
) 

Since 𝑟 is fixed, Laplace operator is simplified to ∇2=
Λ2

𝑟2
. The S.E. is 

�̂�𝑌(𝜃, 𝜙) = 𝐸𝑌(𝜃, 𝜙) 

i.e. Λ2𝑌 = −𝜖𝑌 with the same definition for ϵ as in 2D motion. 

 

Let 𝑌(𝜃, 𝜙) = Θ(𝜃)Φ(𝜙), we have 

Θ

sin2 𝜃

d2Φ

d𝜙2
+

Φ

sin𝜃

d

d𝜃
(sin𝜃

dΘ

d𝜃
) = −𝜖ΘΦ 

Dividing two sides by ΘΦ and rearranging the equation, 

1

Φ

d2Φ

d𝜙2
+
sin𝜃

Θ

d

d𝜃
(sin𝜃

dΘ

d𝜃
) + 𝜖 sin2 𝜃 = 0 

Thus, 

1

Φ

d2Φ

d𝜙2
= −𝛽 

and 

sin 𝜃

Θ

d

d𝜃
(sin 𝜃

dΘ

d𝜃
) + 𝜖 sin2 𝜃 = 𝛽 

should hold, where 𝛽 is a constant. 

 

For 
1

Φ

d2Φ

d𝜙2
= −𝛽, the solution is 

Φ𝑚𝑙
=

1

√2𝜋
𝑒𝑖𝑚𝑙𝜙, 𝑚𝑙 = 0,±1,±2,… 

For 
sin𝜃

Θ

d

d𝜃
(sin𝜃

dΘ

d𝜃
) + 𝜖 sin2 𝜃 = 𝑚𝑙

2, let 𝑢 = cos 𝜃, this equation can be rewritten as 

associated Legendre equation 

(1 − 𝑢2)
d2Θ

d𝑢2
− 2𝑢

dΘ

d𝑢
+ (𝜖 −

𝑚𝑙
2

1 − 𝑢2
)Θ = 0 

Its solutions Θ𝑙𝑚𝑙
(𝜃) are called associated Legendre functions where 𝑙 = 0,1,2,… and 

𝑚𝑙 = 0,±1, ±2,… , ±𝑙. 
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The overall solutions 𝑌𝑙𝑚𝑙
(𝜃,𝜙) = Θ𝑙𝑚𝑙

(𝜃)Φ𝑚𝑙
(𝜙) are called spherical harmonics 

which satisfy following equation 

Λ2𝑌𝑙𝑚 = −𝑙(𝑙 + 1)𝑌𝑙𝑚 

Hereafter we will drop out subscript 𝑙 from 𝑚𝑙 for simplicity. First few of them are listed 

below. 

• 𝑙 = 0 

o 𝑚 = 0: √1/4𝜋 

• 𝑙 = 1 

o 𝑚 = 0: √3/4𝜋 cos 𝜃 

o 𝑚 = ±1: ∓√3/8𝜋 sin 𝜃 𝑒±𝑖𝜙 

• 𝑙 = 2 

o 𝑚 = 0: √5/16𝜋(3 cos2 𝜃 − 1) 

o 𝑚 = ±1: ∓√15/8𝜋 cos 𝜃 sin 𝜃 𝑒±𝑖𝜙 

o 𝑚 = ±2: √15/32𝜋 sin2 𝜃 𝑒±2𝑖𝜙 

 

I. Energy and square of angular momentum 

The Hamiltonian �̂� = −
ℏ2

2𝑚
⋅
Λ2

𝑟2
, 

�̂�𝑌𝑙𝑚 =
ℏ2

2𝐼
⋅ 𝑙(𝑙 + 1)𝑌𝑙𝑚 

gives out energy levels 

𝐸𝑙 =
𝑙(𝑙 + 1)ℏ2

2𝐼
 

 

For square of angular momentum, �̂�2, classically we have 𝐸 = 𝐿2/2𝐼 and quantum 

mechanically �̂�2 = −ℏ2Λ2. 

�̂�2𝑌𝑙𝑚 = 𝑙(𝑙 + 1)ℏ2𝑌𝑙𝑚 

thus 

⟨�̂�2⟩
𝑙
= 𝑙(𝑙 + 1)ℏ2 

 

II. Angular momentum 

Classically, angular momentum is defined as �⃗⃗� = 𝑟 × �⃗�. In quantum mechanics, we 

change it into �̂⃗⃗� = �̂� × �̂⃗�, where �̂� = 𝑥𝑒𝑥 + 𝑦𝑒𝑦 + 𝑧𝑒𝑧, �̂⃗� = �̂�𝑥𝑒𝑥 + �̂�𝑦𝑒𝑦 + �̂�𝑧𝑒𝑧 and 

�̂�𝜇 =
ℏ

𝑖

𝜕

𝜕𝜇
 for 𝜇 = 𝑥, 𝑦, 𝑧. Here ‘×’ means cross product. Some basic properties of cross 

product are shown below 

�⃗� × (𝑘�⃗⃗�) = 𝑘(�⃗� × �⃗⃗�), �⃗� × �⃗� = 0⃗⃗, �⃗� × �⃗⃗� = −�⃗⃗� × �⃗�, �⃗� × (�⃗⃗� + 𝑐) = �⃗� × �⃗⃗� + �⃗� × 𝑐 

And for bases, their cross products are 

𝑒𝑥 × 𝑒𝑦 = 𝑒𝑧, 𝑒𝑦 × 𝑒𝑧 = 𝑒𝑥, 𝑒𝑧 × 𝑒𝑥 = 𝑒𝑦 

Using these relations, we have 

http://mathworld.wolfram.com/SphericalHarmonic.html
https://en.wikipedia.org/wiki/Cross_product
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�̂⃗⃗� = (𝑥𝑒𝑥 + 𝑦𝑒𝑦 + 𝑧𝑒𝑧) ×
ℏ

𝑖
(
𝜕

𝜕𝑥
𝑒𝑥 +

𝜕

𝜕𝑦
𝑒𝑦 +

𝜕

𝜕𝑧
𝑒𝑧)

=
ℏ

𝑖
[(𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) 𝑒𝑧 + (𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
)𝑒𝑥 + (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) 𝑒𝑦]

 

The components of �̂⃗⃗� are then 

�̂�𝑥 =
ℏ

𝑖
(𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
), �̂�𝑦 =

ℏ

𝑖
(𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
), �̂�𝑧 =

ℏ

𝑖
(𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) 

respectively. 

 

We then calculate commutators between these operators since the commutation 

relation is a key feature of angular momentum. Take �̂�𝑥 and �̂�𝑦 as example, 

[�̂�𝑥, �̂�𝑦] = − ℏ2 [(𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) − (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) (𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
)]

= −ℏ2 (𝑦
𝜕

𝜕𝑥
+ 𝑦𝑧

𝜕2

𝜕𝑧𝜕𝑥
− 𝑦𝑥

𝜕2

𝜕𝑧2
− 𝑧2

𝜕2

𝜕𝑦𝜕𝑥
+ 𝑧𝑥

𝜕2

𝜕𝑦𝜕𝑧
)

     + ℏ2 (𝑧𝑦
𝜕2

𝜕𝑥𝜕𝑧
− 𝑧2

𝜕2

𝜕𝑥𝜕𝑦
− 𝑥𝑦

𝜕2

𝜕𝑧2
+ 𝑥

𝜕

𝜕𝑦
+ 𝑥𝑧

𝜕2

𝜕𝑧𝜕𝑦
)

= ℏ2 (𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)

= 𝑖ℏ�̂�𝑧

 

Similarly, we have [�̂�𝑦 , �̂�𝑧] = 𝑖ℏ�̂�𝑥, [�̂�𝑧 , �̂�𝑥] = 𝑖ℏ�̂�𝑦. For [�̂�2, �̂�𝑧], we first decompose it 

into [�̂�𝑥
2 , �̂�𝑧] + [�̂�𝑦

2 , �̂�𝑧] + [�̂�𝑧
2 , �̂�𝑧]. Then it is straightforward to write 

[�̂�𝑧
2 , �̂�𝑧] = �̂�𝑧

3 − �̂�𝑧
3 = 0 

[�̂�𝑥
2 , �̂�𝑧] = �̂�𝑥

2 �̂�𝑧 − �̂�𝑥�̂�𝑧�̂�𝑥 + �̂�𝑥�̂�𝑧�̂�𝑥 − �̂�𝑧�̂�𝑥
2

= �̂�𝑥[�̂�𝑥, �̂�𝑧] + [�̂�𝑥 , �̂�𝑧]�̂�𝑥

= −𝑖ℏ(�̂�𝑥�̂�𝑦 + �̂�𝑦�̂�𝑥)

 

[�̂�𝑦
2 , �̂�𝑧] = 𝑖ℏ(�̂�𝑦�̂�𝑥 + �̂�𝑥�̂�𝑦) 

Thus [�̂�2, �̂�𝑧] = 0, and [�̂�, �̂�𝑧] = [
�̂�2

2𝐼
, �̂�𝑧] = 0. �̂�, �̂�2 and �̂�𝑧 are mutual commuting, which 

confirms that 𝑌𝑙𝑚 are the common eigenfunctions for them, i.e. 

�̂�𝑌𝑙𝑚 =
𝑙(𝑙 + 1)ℏ2

2𝐼
𝑌𝑙𝑚 

�̂�2𝑌𝑙𝑚 = 𝑙(𝑙 + 1)ℏ2𝑌𝑙𝑚 

�̂�𝑧𝑌𝑙𝑚 = 𝑚ℏ𝑌𝑙𝑚 
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Lecture 5 – Hydrogen Atom 
In this last lecture, we will try to solve a real 

system – hydrogen atom. The system is composed 

of two particles – one electron and one positron, 

and thus its total degree of freedom (DoF) is 6. 

Three of DoFs belong to translational motion, two 

of them rotational motion, and the last one is the 

relative radial motion. 

 

To begin with, we define following notations. 

• Mass: nucleus 𝑚𝑁, electron 𝑚𝑒, total 𝑚CM = 𝑚𝑁 +𝑚𝑒, reduced 𝜇 =
𝑚𝑒𝑚𝑁

𝑚𝑒+𝑚𝑁
 

• Position vector: nucleus 𝑟𝑁, electron 𝑟𝑒, centre of mass (CM) �⃗⃗� =
𝑚𝑒�⃗�𝑒+𝑚𝑁�⃗�𝑁

𝑚𝑒+𝑚𝑁
, electron 

relative to nucleus 𝑟 = 𝑟𝑒 − 𝑟𝑁 

• �⃗⃗� = 𝑅𝑥𝑒𝑥 + 𝑅𝑦𝑒𝑦 + 𝑅𝑧𝑒𝑧, 𝛻�⃗⃗�
2 =

𝜕2

𝜕𝑅𝑥
2 +

𝜕2

𝜕𝑅𝑦
2 +

𝜕2

𝜕𝑅𝑧
2 (similar for 𝛻�⃗�

2) 

• Classical momentum: nucleus �⃗�𝑁 = 𝑚𝑁�̇�𝑁, electron �⃗�𝑒 = 𝑚𝑒 �̇�𝑒, CM �⃗�CM = 𝑚CM �̇⃗⃗�, 

electron relative to nucleus �⃗�𝜇 = 𝜇�̇� 

• Vector without arrow means modulus 𝑟 = |𝑟|, etc 

Then we can separate out CM motion and relative motion in classical energy expression as 

𝐸 =
𝑝𝑒
2

2𝑚𝑒
+

𝑝𝑁
2

2𝑚𝑁
−
𝑒2

𝑟
=

𝑝CM
2

2𝑚CM
+
𝑝𝜇
2

2𝜇
−
𝑒2

𝑟
 

Thus quantum Hamiltonian can also be written as sum of two parts 

�̂� = −
ℏ2

2𝑚CM
∇
�⃗⃗�
2 −

ℏ2

2𝜇
∇�⃗�
2 −

𝑒2

𝑟
 

S.E. 

(−
ℏ2

2𝑚CM
∇
�⃗⃗�
2 −

ℏ2

2𝜇
∇�⃗�
2 −

𝑒2

𝑟
)Φ(𝑟, �⃗⃗�) = 𝐸Φ(�⃗�, �⃗⃗�) 

 

1. Separation of CM motion and relative motion 

Let Φ(𝑟, �⃗⃗�) = 𝜒(�⃗⃗�)𝜓(𝑟), 

−
ℏ2

2𝑚CM
(∇

�⃗⃗�
2𝜒)𝜓 −

ℏ2

2𝜇
𝜒∇�⃗�

2𝜓−
𝑒2

𝑟
𝜒𝜓 = 𝐸𝜒𝜓 

Divide both sides by 𝜒𝜓: 

−
ℏ2

2𝑚CM

∇
�⃗⃗�
2𝜒

𝜒
−
ℏ2

2𝜇

∇�⃗�
2𝜓

𝜓
−
𝑒2

𝑟
= 𝐸 

Thus 

−
ℏ2

2𝑚CM

∇
�⃗⃗⃗�
2𝜒

𝜒
= 𝐸CM and −

ℏ2

2𝜇

∇�⃗⃗⃗�
2𝜓

𝜓
−

𝑒2

𝑟
= 𝐸𝑒 

where 𝐸CM + 𝐸𝑒 = 𝐸. 

 

electron 

O 

positron 

𝑚𝑒 𝑚𝑁 
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Since 𝑚𝑁 ≫ 𝑚𝑒, 𝑚CM ≈ 𝑚𝑒. Roughly, 𝜒(�⃗⃗�) and 𝜓(𝑟) are nuclear and electron 

wavefunctions respectively. 

 

I. CM motion 𝜒(�⃗⃗�) 

−
ℏ2

2𝑚CM
∇
�⃗⃗�
2𝜒 = 𝐸CM𝜒 

This is just a free particle moving in 3D space. Its solution is plane wave 

𝜒(�⃗⃗�) = 𝐴𝑒𝑖�⃗⃗�CM⋅�⃗⃗� 

Its wave vector �⃗⃗�CM has modulus 
√2𝑚CM𝐸CM

ℏ
 and is parallel to �⃗�𝑝. 

 

II. Relative motion 𝜓 

−
ℏ2

2𝜇
∇�⃗�
2𝜓−

𝑒2

𝑟
𝜓 = 𝐸𝑒𝜓 

∇�⃗�
2 can be expressed in spherical coordinate system located at nucleus 

∇�⃗�
2=

𝜕2

𝜕𝑟2
+
2

𝑟

𝜕

𝜕𝑟
+
Λ2

𝑟2
 

From now on, we will omit the subscript of 𝐸𝑒  for simplicity. 

 

2. Separation of radial motion and rotational motion 

Let 𝜓(𝑟) = 𝑅(𝑟)𝑌(𝜃, 𝜙), 

−
ℏ2

2𝜇
𝑟2 (

d2𝑅

d𝑟2
+
2

𝑟

d𝑅

d𝑟
)𝑌 − 𝑒2𝑟𝑅𝑌 − 𝐸𝑟2𝑅𝑌 −

ℏ2

2𝜇
𝑅Λ2𝑌 = 0 

Divide both sides by 𝑅𝑌, 

−
ℏ2𝑟2

2𝜇𝑅
(
d2𝑅

d𝑟2
+
2

𝑟

d𝑅

d𝑟
) − 𝑒2𝑟 − 𝐸𝑟2 −

ℏ2

2𝜇𝑌
Λ2𝑌 = 0 

Thus we have 

−
ℏ2

2𝜇𝑌
Λ2𝑌 = 𝐴 

−
ℏ2𝑟2

2𝜇𝑅
(
d2𝑅

d𝑟2
+
2

𝑟

d𝑅

d𝑟
) − 𝑒2𝑟 − 𝐸𝑟2 = −𝐴 

 

I. Rotational motion 𝑌(𝜃, 𝜙) 

Rearrange −
ℏ2

2𝜇𝑌
Λ2𝑌 = 𝐴 as Λ2𝑌 = −

2𝜇𝐴

ℏ2
𝑌. The solution is apparently spherical 

harmonic functions, 𝑌 = 𝑌𝑙𝑚(𝜃, 𝜙) with eigenvalues −
2𝜇𝐴

ℏ2
= −𝑙(𝑙 + 1). Thus, 

𝐴 =
𝑙(𝑙 + 1)ℏ2

2𝜇
 

 

II. Radial motion 𝑅(𝑟) 

−
ℏ2𝑟2

2𝜇𝑅
(
d2𝑅

d𝑟2
+
2

𝑟

d𝑅

d𝑟
) − 𝑒2𝑟 − 𝐸𝑟2 = −

𝑙(𝑙 + 1)ℏ2

2𝜇
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i.e. 

[−
ℏ2

2𝜇
(
d2

d𝑟2
+
2

𝑟

d

d𝑟
) +

𝑙(𝑙 + 1)ℏ2

2𝜇𝑟2
−
𝑒2

𝑟
]𝑅 = 𝐸𝑅 

Remember ⟨�̂�2⟩ = 𝑙(𝑙 + 1)ℏ2, here 𝑙(𝑙 + 1)ℏ2/2𝜇𝑟2 can be regarded as effective 

potential due to angular momentum. 

 

Solution for above equation is 

𝑅𝑛𝑙(𝑟) = 𝑁𝑛𝑙𝜌
𝑙𝐿𝑛−𝑙−1
2𝑙+1 (𝜌)𝑒−𝜌/2 

• 𝜌 = 2𝑟/𝑛𝑎, 𝑎 = ℏ2/𝜇𝑒2 ≈ 0.529 Å. 

o 𝑎0 = ℏ
2/𝑚𝑒𝑒

2, called Bohr radius, is the unit length in atomic unit. 

• 𝐿𝑏
𝑎 : associated Laguerre polynomial. 

• Normalization factor 𝑁𝑛𝑙 = {(
2

𝑛𝑎
)
3 (𝑛−𝑙−1)!

2𝑛[(𝑛+𝑙)!]
}
1/2

. 

• 𝑛 = 1,2,3,…; 𝑙 = 0,1,2,… , 𝑛 − 1. 

• Energy 𝐸𝑛 = −
1

𝑛2
𝑒2

2𝑎
 (or in SI −

1

𝑛2
𝑒2

8𝜋𝜀0𝑎
). 

 

Overall, electronic wavefunction is 

𝜓𝑛𝑙𝑚(�⃗�) = 𝑅𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃,𝜙) 

It depends on three quantum numbers, 

• Principal quantum number: 𝑛 = 1,2,3,…. 

• Azimuthal quantum number: 𝑙 = 0,1,2,… , 𝑛 − 1. 

• Magnetic quantum number: 𝑚 = 0,±1,±2,… , ±𝑙. 

But its energy levels 𝐸𝑛 = −
1

𝑛2
𝑒2

2𝑎
 only depend on principal quantum number 𝑛. For 

ground state, 𝑛 = 1, 𝑙 = 0,𝑚 = 0, it is non-degenerate. For first excited state it is 4-fold 

degenerated. 

𝑛 = 2, {
𝑙 = 0,  𝑚 = 0

𝑙 = 1, {
𝑚 = 0
𝑚 = ±1

 

First few electronic wavefunctions are listed below 

𝜓1𝑠 = 𝜓100 =
1

√𝜋𝑎3
𝑒−

𝑟
𝑎

𝜓2𝑠 = 𝜓200 =
1

√8𝜋𝑎3
(1 −

𝑟

2𝑎
) 𝑒−

𝑟
2𝑎

𝜓2𝑝𝑧 = 𝜓210 =
1

4√2𝜋𝑎5
𝑟𝑒−

𝑟
2𝑎 cos 𝜃

𝜓2𝑝𝑥 =
𝜓211 +𝜓21−1

√2
=

1

4√2𝜋𝑎5
𝑟𝑒−

𝑟
2𝑎 sin 𝜃 cos 𝜙

𝜓2𝑝𝑦 =
𝜓211 −𝜓21−1

𝑖√2
=

1

4√2𝜋𝑎5
𝑟𝑒−

𝑟
2𝑎 sin 𝜃 sin 𝜙

 

http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html
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