CHEM 3541 Physical Chemistry Lecture Notes

Textbooks

Atkins' Physical Chemistry, 7th ed., pp. 304-316
Atkins' Physical Chemistry, 10th ed., pp. 290, 292-305

Table of Contents

Lecture 1 - Fundamental Concepts in Quantum Physics 1

1. Schrödinger Equation 1
2. Hermitian operator. 3
3. Expectation value 5
4. Heisenberg's uncertainty principle 5
Lecture 2 - Translational Motion 8
5. One-dimensional particle-in-a-box model 8
6. Two-dimensional model 10
7. Three-dimensional model 11
8. Tunnelling 12
9. Particle in a finite square-well potential 13
Lecture 3 - Vibrational Motion 15
10. One-dimensional harmonic oscillator 15
11. The vibration of a diatomic molecule 17
Lecture 4 - Rotational Motion 19
12. Two-dimensional rotational motion 19
13. Compatibility theorem 20
14. Three-dimensional rotational motion. 20
Lecture 5 - Hydrogen Atom 23
15. Separation of CM motion and relative motion 23
16. Separation of radial motion and rotational motion 24

Lecture 1 - Fundamental Concepts in Quantum Physics

1. Schrödinger Equation

Time-independent S.E.

$$
\widehat{H} \Psi=E \Psi
$$

- $\widehat{H}:$ Hamiltonian operator
- Ψ : Wavefunction, $\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{n}\right)$
- $\widehat{H}=\widehat{K}+\widehat{V}$: Kinetic energy operator and potential energy operator. In many situations, \hat{V} operator is simply a function.

Time-dependent S.E.

- If potential V and thus wavefunction depend on time explicitly, one need to solve time-dependent S.E.

$$
i \hbar \frac{\partial \Psi(\boldsymbol{r}, t)}{\partial t}=\widehat{H}(t) \Psi(\boldsymbol{r}, \mathrm{t})
$$

I. One-dimensional system with one particle

$$
\widehat{H}=-\frac{\hbar^{2}}{2 m} \cdot \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V(x)
$$

h is Planck constant, whereas $\hbar=\frac{h}{2 \pi}$ is called reduced Planck constant. $\widehat{V}(x)$ operator is simply a function. The S.E. reads

$$
\left[-\frac{\hbar^{2}}{2 m} \cdot \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V(x)\right] \Psi(x)=E \Psi(x)
$$

Wavefunction contains all the information of this system. The simplest one is probability density $|\Psi(x)|^{2}$, which tells that the probability to find the particle between x and $x+\mathrm{d} x$ is $|\Psi(x)|^{2} \mathrm{~d} x$.

Since total probability to find the particle between $-\infty$ and $+\infty$ should be 1 , we require the wavefunction to be normalized:

$$
\int_{-\infty}^{+\infty}|\Psi(x)|^{2} \mathrm{~d} x=1
$$

For an unnormalized wavefunction, it can be normalized as

$$
\Psi(x)=\frac{\Psi^{\prime}(x)}{\sqrt{\int_{-\infty}^{+\infty}\left|\Psi^{\prime}(x)\right|^{2} \mathrm{~d} x}}
$$

Example 1: constant potential
For $V(x)=$ const., the S.E. is

$$
\frac{\mathrm{d}^{2} \Psi}{\mathrm{~d} x^{2}}=-\frac{2 m}{\hbar^{2}}(E-V) \Psi
$$

If $E>V$, the general solution is $\Psi(x)=A e^{i k x}+B e^{-i k x}$, where $A, B \in \mathbb{C}$. The wave vector is defined as $k=\sqrt{2 m(E-V)} / \hbar$.

- Kinetic energy $K=E-V=\frac{\hbar^{2} k^{2}}{2 m}$.
- Momentum $p=\hbar k=\frac{h}{\lambda}$. λ is de Broglie wavelength. To see the meaning of λ, let $\widetilde{\Psi}=e^{i k x}+e^{-i k x}=2 \cos k x$, then the period of $\widetilde{\Psi}$ is $\frac{2 \pi}{k}=\frac{h}{p}=\lambda$.

Example 2: normalization of wavefunction
Q. Given a wave function $\psi(\boldsymbol{r}) \propto e^{-r / a_{0}}$ where a_{0} is a given constant, try to normalize it. Noted that r in the exponent is radial distance but not position vector.
A. $\int\left(e^{-r / a_{0}}\right)^{2} \mathrm{~d} \boldsymbol{r}=4 \pi \int_{0}^{\infty} r^{2} e^{-2 r / a_{0}} \mathrm{~d} r=4 \pi I(k)$, where $k=2 / a_{0}$.

$$
I(k)=\int_{0}^{\infty} r^{2} e^{-k r} \mathrm{~d} r=\frac{\mathrm{d}^{2}}{\mathrm{~d} k^{2}} \int_{0}^{\infty} e^{-k r} \mathrm{~d} r=\frac{\mathrm{d}^{2}}{\mathrm{~d} k^{2}}\left(\frac{1}{k}\right)=\frac{2}{k^{3}}
$$

Thus $\psi(\boldsymbol{r})=\left(\pi a_{0}^{3}\right)^{-1 / 2} e^{-r / a_{0}}$.
II. Three-dimensional system with one particle
i. Cartesian coordinates

Wavefunction is $\Psi(x, y, z)$. The probability to find the particle in $[x, x+\mathrm{d} x] \cap[y, y+\mathrm{d} y] \cap[z, z+\mathrm{d} z]$ is $|\Psi(x, y, z)|^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$.
$\widehat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x, y, z)$, where $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is Laplacian operator.
S.E. is $\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x, y, z)\right] \Psi(x, y, z)=E \Psi(x, y, z)$. Wavefunction and energy are unknown variables.
ii. Spherical coordinates

Relationship to Cartesian coordinates

$$
\left\{\begin{array}{l}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \theta
\end{array}\right.
$$

r : radial distance
θ : polar angle
ϕ : azimuth angle
Wavefunction is $\Psi(r, \theta, \phi)$. The probability to find the particle in $[r, r+\mathrm{d} r] \cap[\theta, \theta+\mathrm{d} \theta] \cap[\phi, \phi+\mathrm{d} \phi]$ is $|\Psi(r, \theta, \phi)|^{2} r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi$.

Laplacian operator is more complex in spherical coordinates

$$
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{\Lambda^{2}}{r^{2}}
$$

where $\Lambda^{2}=\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\csc ^{2} \theta \frac{\partial^{2}}{\partial \phi^{2}}$.
S.E. is $\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r, \theta, \phi)\right] \Psi(r, \theta, \phi)=E \Psi(r, \theta, \phi)$
III. Eigenequation, eigenfunction and eigenvalue

The solution of S.E. $\widehat{H} \Psi=E \Psi$ is a set of eigenenergy/value E_{i} and eigenfunction $\Psi_{i}, i=1,2, \ldots, \infty$.

For any operator $\widehat{\Omega}$, if there exist some values satisfy $\widehat{\Omega} \psi=\Omega \psi, \psi$ is then called eigen function of operator $\widehat{\Omega}$.

For example, since $\widehat{\Omega} \psi=-\alpha \psi, \psi=e^{-\alpha x}$ is an eigenfunction of operator $\widehat{\Omega}=\frac{\mathrm{d}}{\mathrm{d} x}$ with corresponding eigen value $-\alpha$. But $\psi=e^{-\alpha x^{2}}$ is not an eigenfunction of $\widehat{\Omega}$.

For one-dimensional system with one particle, we can choose two wavefunctions with different eigenvalues E_{1} and E_{2},

- $\Psi_{1}=e^{i k_{1} x}, k_{1}=\frac{\sqrt{2 m\left(E_{1}-V\right)}}{\hbar}$
- $\Psi_{2}=e^{i k_{2} x}, k_{2}=\frac{\sqrt{2 m\left(E_{2}-V\right)}}{\hbar}$

Generally, $\Psi^{\prime}=A \Psi_{1}+B \Psi_{2},(A, B \neq 0)$ is NOT a solution of S.E. $\widehat{H} \Psi=E \Psi$. Only when $E_{1}=E_{2}=E, \widehat{H} \Psi^{\prime}=A E_{1} \Psi_{1}+B E_{2} \Psi_{2}=E\left(A \Psi_{1}+B \Psi_{2}\right)=E \Psi^{\prime}$.

2. Hermitian operator

For any two functions, if the following equation holds, then $\widehat{\Omega}$ is called Hermitian operator.

$$
\int \mathrm{d} \tau \psi_{j}^{*} \widehat{\Omega} \psi_{i}=\left(\int \mathrm{d} \tau \psi_{i}^{*} \widehat{\Omega} \psi_{j}\right)^{*}
$$

For example, $\frac{\mathrm{d}}{\mathrm{d} x}$ is not a Hermitian operator since

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \mathrm{d} x \psi_{j}^{*} \frac{\mathrm{~d} \psi_{i}}{\mathrm{~d} x} & =\left.\psi_{j}^{*} \psi_{i}\right|_{-\infty} ^{+\infty}-\int_{-\infty}^{+\infty} \mathrm{d} x \psi_{i} \frac{\mathrm{~d} \psi_{j}^{*}}{\mathrm{~d} x} \\
& =-\left(\int_{-\infty}^{+\infty} \mathrm{d} x \psi_{i}^{*} \frac{\mathrm{~d} \psi_{j}}{\mathrm{~d} x}\right)^{*} \\
& \neq\left(\int_{-\infty}^{+\infty} \mathrm{d} x \psi_{i}^{*} \frac{\mathrm{~d} \psi_{j}}{\mathrm{~d} x}\right)^{*}
\end{aligned}
$$

But $\frac{1}{i} \frac{\mathrm{~d}}{\mathrm{~d} x}$ is a Hermitian operator

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \mathrm{d} x \psi_{j}^{*} \frac{1}{i} \frac{\mathrm{~d} \psi_{i}}{\mathrm{~d} x} & =-\frac{1}{i}\left(\int_{-\infty}^{+\infty} \mathrm{d} x \psi_{i}^{*} \frac{\mathrm{~d} \psi_{j}}{\mathrm{~d} x}\right)^{*} \\
& =\left(\int_{-\infty}^{+\infty} \mathrm{d} x \psi_{i}^{*} \frac{1}{i} \frac{\mathrm{~d} \psi_{j}}{\mathrm{~d} x}\right)^{*}
\end{aligned}
$$

I. Eigenvalues of Hermitian operator

- Theorem: Any eigenvalue of Hermitian operator is a real number.
- Proof:

Given a Hermitian operator $\widehat{\Omega}$ with eigenvalue ω_{i} and normalized eigenfunction ψ_{i}, i.e., $\widehat{\Omega} \psi_{i}=\omega_{i} \psi_{i}$. Applying the definition of Hermitian operator, we have

$$
\begin{aligned}
\omega_{i} & =\int \mathrm{d} \tau \psi_{i}^{*} \widehat{\Omega} \psi_{i} \\
& =\left(\int_{\mathrm{d}} \mathrm{~d} \psi_{i}^{*} \widehat{\Omega} \psi_{i}\right)^{*} \\
& =\omega_{i}^{*}
\end{aligned}
$$

Thus ω_{i} must be real.
Q.E.D.

All operators corresponding to physical observables (properties that can be measured) are Hermitian operators.
II. Eigenfunctions of Hermitian operator

- Theorem: Eigenfunctions of Hermitian operator with different eigenvalues are orthogonal.
- Proof:

Using the definition of Hermitian operator, we have

$$
\begin{aligned}
\int \mathrm{d} \tau \psi_{i}^{*} \widehat{\Omega} \psi_{j} & =\left(\int \mathrm{d} \tau \psi_{j}^{*} \widehat{\Omega} \psi_{i}\right)^{*} \\
& =\left(\omega_{i} \int \mathrm{~d} \tau \psi_{j}^{*} \psi_{i}\right)^{*} \\
& =\omega_{i} \int \mathrm{~d} \tau \psi_{j} \psi_{i}^{*}
\end{aligned}
$$

Also,

$$
\int \mathrm{d} \tau \psi_{i}^{*} \widehat{\Omega} \psi_{j}=\omega_{j} \int \mathrm{~d} \tau \psi_{i}^{*} \psi_{j}
$$

Subtracting the first equation from the second one gives

$$
0=\left(\omega_{j}-\omega_{i}\right) \int \mathrm{d} \tau \psi_{i}^{*} \psi_{j}
$$

For $\omega_{j} \neq \omega_{i}$, we have

$$
\int \mathrm{d} \tau \psi_{i}^{*} \psi_{j}=0
$$

Q.E.D.

Example1: one-dimensional momentum operator
For particle in constant potential, take the wavefunction as $\psi_{k}=e^{i k x}$. Define the momentum operator as

$$
\hat{p}_{x}=\frac{\hbar}{i} \frac{\mathrm{~d}}{\mathrm{~d} x}
$$

which has been proved to be Hermitian. Apply it to above wavefunction,

$$
\hat{p}_{x} \psi_{k}=\frac{\hbar}{i} \frac{\mathrm{~d}}{\mathrm{~d} x} \psi_{k}=\hbar k \psi_{k}
$$

By definition, $p=\hbar k$, thus $\hat{p}_{x} \psi_{k}=p \psi_{k}$, and \hat{p}_{x} is indeed the momentum operator.

Example2: three-dimensional momentum operator
Momentum operator $\hat{p}=\frac{\hbar}{i} \nabla=\frac{\hbar}{i}\left(\vec{e}_{x} \frac{\partial}{\partial x}+\vec{e}_{y} \frac{\partial}{\partial y}+\vec{e}_{z} \frac{\partial}{\partial z}\right)$ is Hermitian since all components of it are Hermitian.

3. Expectation value

For a Hamiltonian with normalized wavefunctions $\widehat{H} \psi_{i}=E_{i} \psi_{i}, i=1,2, \ldots$, we construct a wavefunction $\psi=c_{1} \psi_{1}+c_{2} \psi_{2}$ where $\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1$. The expectation value, or the average value of energy is then

$$
\begin{aligned}
\langle E\rangle= & \int \mathrm{d} \tau \psi^{*} \widehat{H} \psi \\
= & \int \mathrm{d} \tau\left(c_{1}^{*} \psi_{1}^{*}+c_{2}^{*} \psi_{2}^{*}\right)\left(c_{1} E_{1} \psi_{1}+c_{2} E_{2} \psi_{2}\right) \\
= & \left|c_{1}\right|^{2} E_{1} \int \mathrm{~d} \tau \psi_{1}^{*} \psi_{1}+c_{1}^{*} c_{2} E_{2} \int \mathrm{~d} \tau \psi_{1}^{*} \psi_{2}+ \\
& c_{2}^{*} c_{1} E_{1} \int \mathrm{~d} \tau \psi_{2}^{*} \psi_{1}+\left|c_{2}\right|^{2} E_{2} \int \mathrm{~d} \tau \psi_{2}^{*} \psi_{2} \\
= & \left|c_{1}\right|^{2} E_{1}+\left|c_{2}\right|^{2} E_{2}
\end{aligned}
$$

Generally, for any operator $\widehat{\Omega}$ in a quantum state ψ, its expectation value is

$$
\langle\widehat{\Omega}\rangle=\int \mathrm{d} \tau \psi^{*} \widehat{\Omega} \psi
$$

4. Heisenberg's uncertainty principle

Suppose we have measured an observable ωN times ($N \gg 1$), then the uncertainty of ω is defined as

$$
\Delta \omega=\sqrt{\frac{\sum_{i=1}^{N}\left(\omega_{i}-\bar{\omega}\right)^{2}}{N}}
$$

For position and momentum, their uncertainties satisfy the following Heisenberg's uncertainty principle

$$
\Delta x \cdot \Delta p_{x} \geq \frac{\hbar}{2}
$$

Apply $\hat{p}_{x} \hat{x}$ to an arbitrary wavefunction $\phi(x)$ gives

$$
\hat{p}_{x} \hat{x} \phi=\frac{\hbar}{i} \frac{\mathrm{~d}}{\mathrm{~d} x}(x \phi)=\frac{\hbar}{i} \phi+x \frac{\hbar}{i} \frac{\mathrm{~d} \phi}{\mathrm{~d} x}=\frac{\hbar}{i} \phi+\hat{x} \hat{p}_{x} \phi
$$

Thus, $\left(\hat{x} \hat{p}_{x}-\hat{p}_{x} \hat{x}\right) \phi=i \hbar \phi$. Since $\phi(x)$ is arbitrary, we have

$$
\hat{x} \hat{p}_{x}-\hat{p}_{x} \hat{x}=i \hbar
$$

Define commutator of two operators \hat{A} and \hat{B} as $[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$, the above equation can be rewritten as

$$
\left[\hat{x}, \hat{p}_{x}\right]=i \hbar
$$

If $\hbar \rightarrow 0$, quantum mechanics will degenerate to classical mechanics.

- Heisenberg's uncertainty principle: If the commutator of two operators \hat{A} and \hat{B} is $[\hat{A}, \hat{B}]=i \hat{C}$, then their uncertainties satisfy the following inequality

$$
\Delta A \cdot \Delta B \geq \frac{1}{2}|\langle\hat{C}\rangle|
$$

- Proof:

Given an arbitrary wave function ϕ, constructing a non-negative integral with real variable ξ

$$
I(\xi)=\int \mathrm{d} \tau|\xi \hat{A} \phi+i \hat{B} \phi|^{2}
$$

Noted that for a complex number $c,|c|^{2}=c^{*} c$. Expanding above integral, we have

$$
\begin{aligned}
I(\xi) & =\xi^{2} \int \mathrm{~d} \tau|\hat{A} \phi|^{2}+\int \mathrm{d} \tau|\hat{B} \phi|^{2}+i \xi \int \mathrm{~d} \tau(\hat{A} \phi)^{*}(\hat{B} \phi)-i \xi \int \mathrm{~d} \tau(\hat{B} \phi)^{*}(\hat{A} \phi) \\
& =\xi^{2} \int d \tau \phi^{*} \hat{A}^{2} \phi+\int d \tau \phi^{*} \hat{B}^{2} \phi+i \xi \int d \tau \phi^{*}[\hat{A}, \hat{B}] \phi \\
& =\xi^{2} \int d \tau \phi^{*} \hat{A}^{2} \phi-\xi \int d \tau \phi^{*} \hat{C} \phi+\int d \tau \phi^{*} \hat{B}^{2} \phi \\
& \geq 0
\end{aligned}
$$

To ensure above quadratic function of ξ is non-negative, there must be

$$
4\left\langle\hat{A}^{2}\right\rangle\left\langle\hat{B}^{2}\right\rangle-\langle\hat{C}\rangle^{2} \geq 0
$$

i.e.

$$
\sqrt{\left\langle\hat{A}^{2}\right\rangle\left\langle\hat{B}^{2}\right\rangle} \geq \frac{1}{2}|\langle\hat{C}\rangle|
$$

Define $\Delta \hat{A}=\hat{A}-\langle\hat{A}\rangle, \Delta \hat{B}=\hat{B}-\langle\widehat{B}\rangle$, apparently,

$$
\begin{aligned}
{[\Delta \hat{A}, \Delta \hat{B}] } & =(\hat{A}-\langle\hat{A}\rangle) \hat{B}-(\hat{A}-\langle\hat{A}\rangle)\langle\hat{B}\rangle-\hat{B}(\hat{A}-\langle\hat{A}\rangle)+\langle\hat{B}\rangle(\hat{A}-\langle\hat{A}\rangle) \\
& =\hat{A} \hat{B}-\langle\hat{A}\rangle \hat{B}-\hat{B} \hat{A}+\hat{B}\langle\hat{A}\rangle \\
& =\hat{A} \hat{B}-\hat{B} \hat{A} \\
& =[\hat{A}, \hat{B}]
\end{aligned}
$$

Thus

$$
[\Delta \hat{A}, \Delta \widehat{B}]=i \hat{C}
$$

Substitute \hat{A}, \hat{B} with $\Delta \hat{A}$ and $\Delta \hat{B}$ respectively in $\sqrt{\left\langle\hat{A}^{2}\right\rangle\left\langle\hat{B}^{2}\right\rangle} \geq \frac{1}{2}|\langle\hat{C}\rangle|$,

$$
\sqrt{\left\langle(\Delta \hat{A})^{2}\right\rangle\left\langle(\Delta \hat{B})^{2}\right\rangle} \geq \frac{1}{2}|\langle\hat{C}\rangle|
$$

Noted that $\Delta A=\sqrt{\left\langle(\Delta \hat{A})^{2}\right\rangle}$ and $\Delta B=\sqrt{\left\langle(\Delta \hat{B})^{2}\right\rangle}$, finally we have

$$
\Delta A \cdot \Delta B \geq \frac{1}{2}|\langle\hat{C}\rangle|
$$

Q.E.D.

Examples

- $\hat{A}=\hat{x}, \hat{B}=\hat{p}_{x} \cdot\left[\hat{x}, \hat{p}_{x}\right]=i \hbar, \hat{C}=\hbar . \Delta x \cdot \Delta p_{x} \geq \hbar / 2$.
- $\psi_{k}=e^{i k x}$ has definite momentum $p_{x}=\hbar k$, so that $\Delta p_{x}=0 . \Delta x$ must be $+\infty$, which means the particle is diffused in the whole x space.
- If $\Delta x=0$, we have $\Delta p_{x} \rightarrow+\infty$, thus $\langle\widehat{H}\rangle=\left\langle\frac{\hat{p}_{x}^{2}}{2 m}+V\right\rangle=\frac{\left\langle\hat{h}_{\hat{p}}^{2}\right\rangle}{2 m}+\langle V\rangle \rightarrow+\infty$. This means we need infinite energy to constrain one quantal particle to a certain position.
- If two operators commute, i.e. $\hat{A} \hat{B}=\hat{B} \hat{A}, \hat{C}=0$, we have $\Delta A \cdot \Delta B \geq 0$. So \hat{A} and \hat{B} can be measured precisely at the same time.
- $\left[\hat{x}, \hat{p}_{y}\right]=0$
- A particle with mass m moves along x direction subjected to a potential $V(x)$.
$\widehat{H}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V(x), \hat{p}_{x}=\frac{\hbar}{i} \frac{\mathrm{~d}}{\mathrm{~d} x} .\left[\widehat{H}, \hat{p}_{x}\right] \psi(x)=i \hbar \psi(x) \frac{\mathrm{d} V(x)}{\mathrm{d} x}$, i.e. $\left[\widehat{H}, \hat{p}_{x}\right]=$ $i \hbar \frac{\mathrm{~d} V(x)}{\mathrm{d} x}$
- If and only if $V(x)$ is equal to some constant will \widehat{H} and \hat{p}_{x} commute, thus energy and x momentum can be measured precisely at the same time.
- From time-dependent S.E. $i \hbar \frac{\partial}{\partial t} \psi=\widehat{H} \psi$, we define $\widehat{H}=i \hbar \frac{\partial}{\partial t}$. Since $[\widehat{H}, t] \phi=$ $\widehat{H}(t \phi)-t(\widehat{H} \phi)=i \hbar \phi, \Delta E \cdot \Delta t \geq \hbar / 2$.
- If a quantum state has definite energy, i.e. $\Delta E=0$, then the lifetime of this state will be $\Delta t \rightarrow \infty$.
- In reality, energy level is broadened, and $\Delta t \sim \hbar / \Delta E$ is regarded as lifetime of the energy level.

Lecture 2 - Translational Motion

1. One-dimensional particle-in-a-box model

Suppose we have one particle with mass m confined in a box $[0, L]$, then its Hamiltonian is

$$
\widehat{H}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V(x)
$$

where the potential is

$$
V(x)=\left\{\begin{array}{c}
0,0<x<L \\
+\infty, x \leq 0 \text { or } x \geq L
\end{array}\right.
$$

I. Wavefunctions and energy levels

Within $(0, L)$, this S.E. has solution

$$
\psi(x)=A e^{i k x}+B e^{-i k x}, k=\sqrt{2 m E} / \hbar
$$

Outside ($0, L$)

$$
\psi=0
$$

Since wavefunction should be continuous, we impose following boundary conditions

$$
\psi(0)=\psi(L)=0
$$

Plug $x=0$ and $x=L$ into $\psi(x)=A e^{i k x}+B e^{-i k x}$, we have

$$
\psi(0)=A+B=0 \Rightarrow A=-B
$$

$$
\psi(L)=-B e^{i k L}+B e^{-i k L}=-2 i B \sin k L=0 \Rightarrow k L=n \pi, n=1,2, \ldots
$$

So that after normalization, within ($0, L$),

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right), n=1,2, \ldots
$$

Energy levels corresponding to each $\psi_{n}(x)$ is

$$
E_{n}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}, n=1,2, \ldots
$$

Figure 1 First five normalized wavefunctions
II. Orthogonality of wavefunctions For $n \neq m$,

$$
\begin{aligned}
\int_{0}^{L} \mathrm{~d} x \psi_{n}^{*} \psi_{m} & =\frac{2}{L} \int_{0}^{L} \mathrm{~d} x \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} \\
& =-\frac{1}{L} \int_{0}^{L} \mathrm{~d} x\left[\cos \frac{(n+m) \pi x}{L}-\cos \frac{(n-m) \pi x}{L}\right] \\
& =-\frac{1}{L}\left[\left.\frac{L}{(n+m) \pi} \cdot \sin \frac{(n+m) \pi x}{L}\right|_{0} ^{L}-\left.\frac{L}{(n-m) \pi} \cdot \sin \frac{(n-m) \pi x}{L}\right|_{0} ^{L}\right] \\
& =0
\end{aligned}
$$

III. Uncertainty principle for ground state

Noted that $\Delta A=\sqrt{\left\langle(\Delta \hat{A})^{2}\right\rangle}$ and $\Delta \hat{A}=\hat{A}-\langle\hat{A}\rangle$, we can rewrite uncertainty as

$$
\Delta A=\sqrt{\left\langle\hat{A}^{2}-2 \hat{A}\langle\hat{A}\rangle+\langle\hat{A}\rangle^{2}\right\rangle}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-2\langle\hat{A}\rangle\langle\hat{A}\rangle+\langle\hat{A}\rangle^{2}}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}
$$

$\left\langle\hat{A}^{2}\right\rangle$ and $\langle\hat{A}\rangle$ are needed to calculate ΔA.
$\langle\hat{x}\rangle=\frac{2}{L} \int_{0}^{L} x \sin ^{2} \frac{\pi x}{L} \mathrm{~d} x=\frac{1}{L} \int_{0}^{L} x\left(1-\cos \frac{2 \pi x}{L}\right) \mathrm{d} x=\frac{L}{2}-\frac{1}{L} \int_{0}^{L} x \cos \frac{2 \pi x}{L} \mathrm{~d} x$ $=\frac{L}{2}$
$\langle\hat{p}\rangle=\frac{2 \hbar}{i L} \cdot \frac{\pi}{L} \int_{0}^{L} \sin \frac{\pi x}{L} \cos \frac{\pi x}{L} \mathrm{~d} x=\frac{\hbar \pi}{i L^{2}} \int_{0}^{L} \sin \frac{2 \pi x}{L} \mathrm{~d} x=\frac{L}{2}$
$\left\langle\hat{x}^{2}\right\rangle=\frac{2}{L} \int_{0}^{L} x^{2} \sin ^{2} \frac{\pi x}{L} \mathrm{~d} x=\frac{1}{L} \int_{0}^{L} x^{2}\left(1-\cos \frac{2 \pi x}{L}\right) \mathrm{d} x=\frac{L^{2}}{3}-\frac{1}{L} \int_{0}^{L} x^{2} \cos \frac{2 \pi x}{L} \mathrm{~d} x$
$=\frac{L^{2}}{3}-\frac{L^{2}}{2 \pi^{2}}$
$\left\langle\hat{p}^{2}\right\rangle=\frac{2 \hbar^{2}}{L} \cdot \frac{\pi^{2}}{L^{2}} \int_{0}^{L} \sin ^{2} \frac{\pi x}{L} \mathrm{~d} x=\frac{\pi^{2} \hbar^{2}}{L^{3}} \int_{0}^{L}\left(1-\cos \frac{2 \pi x}{L}\right) \mathrm{d} x=\frac{\pi^{2} \hbar^{2}}{L^{2}}$
$\Delta x=\sqrt{\left(\frac{L^{2}}{3}-\frac{L^{2}}{2 \pi^{2}}\right)-\left(\frac{L}{2}\right)^{2}}=\frac{L}{2 \pi} \sqrt{\frac{\pi^{2}}{3}-2}$
$\Delta p=\frac{\pi \hbar}{L}$

Thus

$$
\Delta x \cdot \Delta p=\frac{\hbar}{2} \cdot \sqrt{\frac{\pi^{2}}{3}-2} \approx 1.136 \cdot \frac{\hbar}{2}>\frac{\hbar}{2}
$$

- Calculation details

Let $\alpha(k)=\int_{0}^{L} \sin k x \mathrm{~d} x=\frac{1-\cos k L}{k}$

$$
\frac{\mathrm{d} \alpha(k)}{\mathrm{d} k}=\int_{0}^{L} x \cos k x \mathrm{~d} x=\frac{L \sin k L}{k}+\frac{\cos k L-1}{k^{2}}
$$

So

$$
\int_{0}^{L} x \cos \frac{2 \pi x}{L} \mathrm{~d} x=\left.\frac{\mathrm{d} \alpha(k)}{\mathrm{d} k}\right|_{k=2 \pi / L}=0
$$

Let $\beta(k)=\int_{0}^{L} \cos k x \mathrm{~d} x=\frac{\sin k L}{k}$

$$
\frac{\mathrm{d}^{2} \beta(k)}{\mathrm{d} k^{2}}=-\int_{0}^{L} x^{2} \cos k x \mathrm{~d} x=-\frac{L^{2} \sin k L}{k}-\frac{2 L \cos k L}{k^{2}}+\frac{2 \sin k L}{k^{3}}
$$

So

$$
\int_{0}^{L} x^{2} \cos \frac{2 \pi x}{L} \mathrm{~d} x=-\left.\frac{\mathrm{d}^{2} \beta(k)}{\mathrm{d} k^{2}}\right|_{k=2 \pi / L}=\frac{L^{3}}{2 \pi^{2}}
$$

- Example 8A. 2 (pp. 321)
- Problem: β-Carotene is a linear polyene in which 10 single and 11 double bonds alternate along a chain of 22 carbon atoms. If we take each C-C bond length to be about 140 pm , then the length L of the molecular box in β-carotene is $\mathrm{L}=2.94 \mathrm{~nm}$. Estimate the wavelength of the light absorbed by this molecule from its ground state to the next higher excited state.
- Answer:

$$
\begin{gathered}
\Delta E=E_{12}-E_{11}=1.60 \times 10^{-19} \mathrm{~J} \\
\lambda=\frac{h}{\Delta E}=1.24 \mu \mathrm{~m}
\end{gathered}
$$

2. Two-dimensional model

Hamiltonian operator

$$
\begin{aligned}
& \widehat{H}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+V(x, y) \\
& V(x, y)=\left\{\begin{array}{c}
0,0<x<L_{1} \text { and } 0<y<L_{2} \\
+\infty, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

S.E. is $\widehat{H} \psi(x, y)=E \psi(x, y)$.

Within $0<x<L_{1}$ and $0<y<L_{2}$, S.E. is

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{\partial^{2} \psi(x, y)}{\partial x^{2}}+\frac{\partial^{2} \psi(x, y)}{\partial y^{2}}\right]=E \psi(x, y)
$$

Boundary conditions are

$$
\psi(0, y)=\psi\left(L_{1}, y\right)=\psi(x, 0)=\psi\left(x, L_{2}\right)=0
$$

To solve this multivariable equation, we perform separation of variables. Let $\psi(x, y)=X(x) Y(y)$ and plug this equation into S.E., we get

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\mathrm{~d}^{2} X}{\mathrm{~d} x^{2}} Y+X \frac{\mathrm{~d}^{2} Y}{\mathrm{~d} y^{2}}\right)=E X Y
$$

Divide both sides by $X Y$

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{1}{X} \frac{\mathrm{~d}^{2} X}{\mathrm{~d} x^{2}}+\frac{1}{Y} \frac{\mathrm{~d}^{2} Y}{\mathrm{~d} y^{2}}\right)=E
$$

To ensure $-\frac{\hbar^{2}}{2 m}\left(\frac{1}{X} \frac{\mathrm{~d}^{2} X}{\mathrm{~d} x^{2}}+\frac{1}{Y} \frac{\mathrm{~d}^{2} Y}{\mathrm{~d} y^{2}}\right)=E$, each term in the LHS should be some constant, viz.

$$
-\frac{\hbar^{2}}{2 m} \frac{1}{X} \frac{\mathrm{~d}^{2} X}{\mathrm{~d} x^{2}}=E_{1},-\frac{\hbar^{2}}{2 m} \frac{1}{Y} \frac{\mathrm{~d}^{2} Y}{\mathrm{~d} y^{2}}=E_{2}
$$

with $E_{1}+E_{2}=E$.

Now the 2D S.E. of $\psi(x, y)$ has been decomposed into two 1D S.E., thus its solution is just the product of two separated equations,

$$
\psi_{n_{1}, n_{2}}=\left\{\begin{array}{r}
\frac{2}{\sqrt{L_{1} L_{2}}} \sin \frac{n_{1} \pi x}{L_{1}} \sin \frac{n_{2} \pi y}{L_{2}}, \text { within 2D box } \\
0, \text { outside box }
\end{array}\right.
$$

Its energy levels are

$$
E_{n_{1}, n_{2}}=\frac{n_{1}^{2} \pi^{2} \hbar^{2}}{2 m L_{1}^{2}}+\frac{n_{2}^{2} \pi^{2} \hbar^{2}}{2 m L_{2}^{2}}
$$

where $n_{1}, n_{2}=1,2,3, \ldots$.

3. Three-dimensional model

Hamiltonian:

$$
\begin{gathered}
\widehat{H}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V(x, y, z) \\
V(x, y, z)=\left\{\begin{array}{c}
0,0<x<L_{1} \text { and } 0<y<L_{2} \text { and } 0<z<L_{3} \\
+\infty, \text { otherwise }
\end{array}\right.
\end{gathered}
$$

S.E.: $\widehat{H} \psi(x, y, z)=E \psi(x, y, z)$, within $0<x<L_{1}, 0<y<L_{2}$, and $0<z<L_{3}$

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right]=E \psi
$$

Boundary conditions

$$
\begin{aligned}
& \psi(0, y, z)=\psi\left(L_{1}, y, z\right)=0 \\
& \psi(x, 0, z)=\psi\left(x, L_{2}, z\right)=0 \\
& \psi(x, y, 0)=\psi\left(x, y, L_{3}\right)=0
\end{aligned}
$$

Now we perform similar procedures as 2D model. Let $\psi(x, y, z)=X(x) Y(y) Z(z)$ and plug this equation into S.E., we get

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\mathrm{~d}^{2} X}{\mathrm{~d} x^{2}} Y Z+\frac{\mathrm{d}^{2} Y}{\mathrm{~d} y^{2}} X Z+\frac{\mathrm{d}^{2} Z}{\mathrm{~d} Z^{2}} X Y\right)=E X Y Z
$$

Divide above equation by $X Y Z$

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{1}{X} \frac{\mathrm{~d}^{2} X}{\mathrm{~d} x^{2}}+\frac{1}{Y} \frac{\mathrm{~d}^{2} Y}{\mathrm{~d} y^{2}}+\frac{1}{Z} \frac{\mathrm{~d}^{2} Z}{\mathrm{~d} z^{2}}\right)=E
$$

Each term in the LHS should be some constant, viz.

$$
-\frac{\hbar^{2}}{2 m} \frac{1}{X} \frac{\mathrm{~d}^{2} X}{\mathrm{~d} x^{2}}=E_{1},-\frac{\hbar^{2}}{2 m} \frac{1}{Y} \frac{\mathrm{~d}^{2} Y}{\mathrm{~d} y^{2}}=E_{2},-\frac{\hbar^{2}}{2 m} \frac{1}{Z} \frac{\mathrm{~d}^{2} Z}{\mathrm{~d} z^{2}}=E_{3}
$$

where $E_{1}+E_{2}+E_{3}=E$. So, the solution is

$$
\psi_{n_{1}, n_{2}, n_{3}}=\left\{\begin{array}{r}
\frac{8}{L_{1} L_{2} L_{3}} \sin \frac{n_{1} \pi x}{L_{1}} \sin \frac{n_{2} \pi y}{L_{2}} \sin \frac{n_{3} \pi z}{L_{3}}, \text { within 3D box } \\
0, \text { outside box }
\end{array}\right.
$$

with energy levels

$$
E_{n_{1}, n_{2}, n_{3}}=\frac{n_{1}^{2} \pi^{2} \hbar^{2}}{2 m L_{1}^{2}}+\frac{n_{2}^{2} \pi^{2} \hbar^{2}}{2 m L_{2}^{2}}+\frac{n_{3}^{2} \pi^{2} \hbar^{2}}{2 m L_{3}^{2}}
$$

where $n_{1}, n_{2}, n_{3}=1,2,3, \ldots$.

4. Tunnelling

In this quantum tunnelling model, potential is set to be zero in $x<0$ or $x>L$ and be constant V in $0 \leq$ $x \leq L$. The energy of incident wavefunction is E and $E<V$. Denote the amplitude of incident and exit wave functions as A and A^{\prime} respectively and define transmission coefficient as $T=\left|\frac{A^{\prime}}{A}\right|$.

In zero-potential region, S.E. and wavefunction are

$$
-\frac{\hbar^{2}}{2 m} \cdot \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}=E \psi, \psi=e^{ \pm i k x}, k=\sqrt{2 m E} / \hbar
$$

For incident region $x<0$, we choose $\psi_{1}(x)=A e^{i k x}+B e^{-i k x}$, where two terms stand for incident and reflection wavefunctions respectively. For $x>L, \psi_{3}(x)=A^{\prime} e^{i k x}$ stands for tunnelling wavefunction.

In potential barrier region, $-\frac{\hbar^{2}}{2 m} \cdot \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}+V \psi=E \psi$. The general solution is

$$
\psi_{2}(x)=C e^{\kappa x}+D e^{-\kappa x}
$$

where $\kappa=\sqrt{2 m(V-E)} / \hbar$.

At the two interfaces, wavefunction shall be smooth, i.e.

$$
\psi_{1}(0)=\psi_{2}(0), \psi_{2}(L)=\psi_{3}(L), \psi_{1}^{\prime}(0)=\psi_{2}^{\prime}(0), \psi_{2}^{\prime}(L)=\psi_{3}^{\prime}(L)
$$

thus we can obtain four equations

$$
\begin{gathered}
A+B=C+D(1) \\
i k A-i k B=\kappa C-\kappa D(2) \\
C e^{\kappa L}+D e^{-\kappa L}=A^{\prime} e^{i k L}(3) \\
\kappa C e^{\kappa L}-\kappa D e^{-\kappa L}=i k A^{\prime} e^{i k L}(4)
\end{gathered}
$$

C, D and A can all be expressed in A^{\prime} as
$\kappa(3)+(4): C=\frac{\kappa+i k}{2 \kappa} e^{(i k-\kappa) L} A^{\prime}, \kappa(3)-(4): D=\frac{\kappa-i k}{2 \kappa} e^{(i k+\kappa) L} A^{\prime}$
$i k(1)+(2): A=\frac{(i k+\kappa) C+(i k-\kappa) D}{2 i k}=\frac{A^{\prime}}{4 i \kappa k}\left[(\kappa+i k)^{2} e^{(i k-\kappa) L}-(\kappa-i k)^{2} e^{(i k+\kappa) L}\right]$
Then we try to solve transmission coefficient.

$$
\begin{aligned}
\frac{A}{A^{\prime} e^{i k L}} & =\frac{1}{4 i \kappa k}\left[(\kappa+i k)^{2} e^{-\kappa L}-(\kappa-i k)^{2} e^{\kappa L}\right] \\
& =\frac{1}{4 i \kappa k}\left[\left(\kappa^{2}-k^{2}\right)\left(e^{-\kappa L}-e^{\kappa L}\right)+2 i \kappa k\left(e^{-\kappa L}+e^{\kappa L}\right)\right] \\
& =\frac{1}{2}\left(e^{-\kappa L}+e^{\kappa L}\right)-i \frac{V-2 E}{4 \sqrt{E(V-E)}} \cdot\left(e^{-\kappa L}-e^{\kappa L}\right)
\end{aligned}
$$

denote $\epsilon=\frac{E}{V}$,

$$
\begin{aligned}
\left|\frac{A}{A^{\prime}}\right|^{2} & =\frac{1}{4}\left(e^{-\kappa L}+e^{\kappa L}\right)^{2}+\frac{1}{16} \frac{1-4 \epsilon(1-\epsilon)}{\epsilon(1-\epsilon)}\left(e^{-\kappa L}-e^{\kappa L}\right)^{2} \\
& =\frac{1}{4}\left(e^{-\kappa L}+e^{\kappa L}\right)^{2}-\frac{1}{4}\left(e^{-\kappa L}-e^{\kappa L}\right)^{2}+\frac{\left(e^{-\kappa L}-e^{\kappa L}\right)^{2}}{16 \epsilon(1-\epsilon)} \\
& =1+\frac{\left(e^{-\kappa L}-e^{\kappa L}\right)^{2}}{16 \epsilon(1-\epsilon)}
\end{aligned}
$$

Finally,

$$
T=\left|\frac{A^{\prime}}{A}\right|=\left[1+\frac{\left(e^{-\kappa L}-e^{\kappa L}\right)^{2}}{16 \epsilon(1-\epsilon)}\right]^{-1 / 2}
$$

- If $\epsilon \ll 1$, i.e. $E \ll V: T \approx \frac{4 \sqrt{\epsilon(1-\epsilon)}}{e^{\kappa L}-e^{-\kappa L}} \approx 0$.
- If $\kappa L \gg 1$, i.e. high, wide barrier: $T \approx 4 \sqrt{\epsilon(1-\epsilon)} e^{-\kappa L}$.
- The heavier the mass, the smaller the T.

5. Particle in a finite square-well potential

Potential is constant V in $x<0$ or $x>L$ and zero in $0 \leq x \leq L$. The energy of particle is E and $E<V$. Denote $k=\sqrt{2 m E} / \hbar$ and $\kappa=\sqrt{2 m(V-E)} / \hbar$.

Similar to above tunnelling model, we use following wavefunctions

$$
\begin{aligned}
x<0: \psi_{1}(x) & =C e^{\kappa x}+C^{\prime} e^{-\kappa x} \\
0<x<L: \psi_{2}(x) & =A e^{i k x}+B e^{-i k x} \\
x>L: \psi_{3}(x) & =D e^{-\kappa(x-L)}+D^{\prime} e^{\kappa(x-L)}
\end{aligned}
$$

At infinity, wavefunction should vanish, thus $C^{\prime}=D^{\prime}=0$. At $x=0$, applying boundary conditions $\psi_{1}(0)=\psi_{2}(0)$ and $\psi_{1}^{\prime}(0)=\psi_{2}^{\prime}(0)$, we get $C=A+B$ and $\kappa C=i k(A-B)$, i.e.

$$
A=\frac{i k+\kappa}{2 i k} C, B=\frac{i k-\kappa}{2 i k} C
$$

Similarly, at $x=L$ we have $A e^{i k L}+B e^{-i k L}=D$ and $i k\left(A e^{i k L}-B e^{-i k L}\right)=-\kappa D$, i.e.

$$
A=\frac{i k-\kappa}{2 i k} e^{-i k L} D, B=\frac{i k+\kappa}{2 i k} e^{i k L} D
$$

Then C can be expressed in terms of D as $C=\frac{i k-\kappa}{i k+\kappa} e^{-i k L} D$ or $C=\frac{i k+\kappa}{i k-\kappa} e^{i k L} D$. Use the first expression, we have

$$
\psi(x)=D \cdot \begin{cases}\frac{i k-\kappa}{i k+\kappa} e^{-i k L} e^{\kappa x} & , x \leq 0 \\ \frac{i k-\kappa}{2 i k} e^{-i k L} e^{i k x}+\frac{i k+\kappa}{2 i k} e^{i k L} e^{-i k x} & , 0<x<L \\ e^{-\kappa(x-L)} & , x \geq L\end{cases}
$$

At $x=0, \psi(x)$ should be continuous

$$
\frac{i k-\kappa}{i k+\kappa} e^{-i k L}=\frac{i k-\kappa}{2 i k} e^{-i k L}+\frac{i k+\kappa}{2 i k} e^{i k L}
$$

i.e.

$$
\left(\kappa^{2}-k^{2}-2 i \kappa k\right)(\cos k L-i \sin k L)=\left(\kappa^{2}-k^{2}+2 i \kappa k\right)(\cos k L+i \sin k L)
$$

Real parts of LHS and RHS are identical, and the imaginary parts should be equal

$$
-\left[2 \kappa k \cos k L+\left(\kappa^{2}-k^{2}\right) \sin k L\right]=2 \kappa k \cos k L+\left(\kappa^{2}-k^{2}\right) \sin k L
$$

i.e.

$$
4 \kappa k \cos k L=2\left(k^{2}-\kappa^{2}\right) \sin k L
$$

- When $\cos k L \neq 0$, we have $\tan k L=\frac{2 \kappa k}{k^{2}-\kappa^{2}}$, i.e. $\tan \frac{\sqrt{2 m E} L}{\hbar}=\frac{2 \sqrt{E(V-E)}}{2 E-V}$.
- When $\cos k L=0$ and $k^{2}=\kappa^{2}$, we have $E=\frac{V}{2}$ and $E=\frac{\left(n+\frac{1}{2}\right)^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}$ where $n=$ $0,1,2, \ldots$. For a given V, if there is no such E satisfy these two equations, then this state is quantum forbidden.

Lecture 3 - Vibrational Motion

1. One-dimensional harmonic oscillator

The force of spring is $F=-k_{f} x$, thus its potential can be
unstretched spring calculated as $V(x)=-\int_{0}^{x} F \mathrm{~d} x^{\prime}=\frac{1}{2} k_{f} x$. The Hamiltonian is then $\widehat{H}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\frac{1}{2} k_{f} x^{2}$, and its corresponding S.E. is
$F_{\text {spring }}=-k x$
Spring constant k

$$
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi(x)}{\mathrm{d} x^{2}}+\frac{1}{2} k_{f} x^{2} \psi(x)=E \psi(x)
$$

We first change variable from x to $y=x / \alpha$ where $\alpha=\left(\frac{\hbar^{2}}{m k_{f}}\right)^{\frac{1}{4}}$. Under this operation, $\psi(x)$ changes to $\phi(y)$. After some algebra, we have

$$
\frac{\mathrm{d}^{2} \phi(y)}{\mathrm{d} y^{2}}+\left(\lambda-y^{2}\right) \phi(y)=0
$$

where $\lambda=\frac{2 E}{\hbar \omega}$ and $\omega=\sqrt{k_{f} / m}$.
Now we take a look at asymptotic behaviour of above equation. When $y \rightarrow \pm \infty$,

$$
\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} y^{2}}-y^{2} \phi=0
$$

thus $\phi \rightarrow e^{-\frac{y^{2}}{2}}$. Rewrite $\phi(y)=N \cdot H(y) e^{-\frac{y^{2}}{2}}$, we have following Hermite equation

$$
\frac{\mathrm{d}^{2} H}{\mathrm{~d} y^{2}}-2 y \frac{\mathrm{~d} H}{\mathrm{~d} y}+(\lambda-1) H=0
$$

Expand $H(y)$ as $H(y)=\sum_{n=0}^{\infty} c_{n} y^{n}$ and plug this expansion into Hermite equation,

$$
\begin{gathered}
\sum_{n=0}^{\infty} y^{n}\left[c_{n+2}(n+2)(n+1)-(2 n-\lambda+1) c_{n}\right]=0 \\
c_{n+2}=\frac{2 n+1-\lambda}{(n+2)(n+1)} c_{n}
\end{gathered}
$$

But when $y \rightarrow \pm \infty, \sum_{n=0}^{\infty} c_{n} y^{n} \rightarrow \infty$ as fast as $e^{y^{2}}$, causing $\phi \sim e^{-\frac{y^{2}}{2}} \sum_{n=0}^{\infty} c_{n} y^{n} \rightarrow \infty$ as fast as $e^{\frac{y^{2}}{2}}$. To ensure $\phi(\pm \infty)=0$ the expansion of $H(y)$ must be truncated, i.e.

$$
c_{v} \neq 0, c_{v+2}=0
$$

Thus we get quantized energy as

$$
\begin{gathered}
2 v+1=\lambda=\frac{2 E}{\hbar \omega} \\
E_{v}=\hbar \omega\left(v+\frac{1}{2}\right), v=0,1,2, \ldots
\end{gathered}
$$

It is worthwhile noting that the ground state energy, also called zero-point energy, $E_{0}=$ $\frac{1}{2} \hbar \omega$ is non-zero.
I. Wavefunction

Solutions of Hermite equation are called Hermite polynomials. They satisfy following recursive and orthonormal relations

$$
\begin{gathered}
H_{v+1}-2 y H_{v}+2 v H_{v-1}=0 \\
\int_{-\infty}^{+\infty} \mathrm{d} y H_{v^{\prime}} H_{v} e^{-y^{2}}= \begin{cases}0 & \text { if } v^{\prime} \neq v \\
\sqrt{\pi} 2^{v} v! & \text { if } v^{\prime}=v\end{cases}
\end{gathered}
$$

First three Hermite polynomials are listed below.

v	0	1	2
H_{v}	1	$2 y$	$4 y^{2}-2$

Now we need to normalize wavefunction $\phi(y)=N \cdot H(y) e^{-\frac{y^{2}}{2}}$.

$$
\int_{-\infty}^{+\infty} \mathrm{d} x \psi_{v}^{*}(x) \psi_{v}(x)=N_{v}^{2} \alpha \int_{-\infty}^{+\infty} \mathrm{d} y H_{v}^{2} e^{-y^{2}}=N_{v}^{2} \alpha \sqrt{\pi} 2^{v} v!
$$

Thus $N_{v}=\left(\alpha \sqrt{\pi} 2^{v} v!\right)^{-\frac{1}{2}}$ and the normalized result is

$$
\psi_{v}(x)=\left(\alpha \sqrt{\pi} 2^{v} v!\right)^{-\frac{1}{2}} H_{v}\left(\frac{x}{\alpha}\right) e^{-\frac{x^{2}}{2 \alpha^{2}}}
$$

II. Uncertainty of position

$$
\begin{aligned}
\langle\hat{x}\rangle & =\int_{-\infty}^{+\infty} d x \psi_{v}^{*}(x) x \psi_{v}(x) \\
& =N_{v}^{2} \alpha^{2} \int_{-\infty}^{+\infty} d y H_{v}(y) y H_{v}(y) e^{-y^{2}} \\
& =N_{v}^{2} \alpha^{2} \int_{-\infty}^{+\infty} d y H_{v} \frac{H_{v+1}+2 v H_{v-1}}{2} e^{-y^{2}} \\
& =0 \\
\left\langle\hat{x}^{2}\right\rangle & =\int_{-\infty}^{+\infty} d x \psi_{v}^{*}(x) x^{2} \psi_{v}(x) \\
& =N_{v}^{2} \alpha^{3} \int_{-\infty}^{+\infty} d y\left[y H_{v}(y)\right]\left[y H_{v}(y)\right] e^{-y^{2}} \\
& =N_{v}^{2} \alpha^{3} \int_{-\infty}^{+\infty} d y\left(\frac{H_{v+1}+2 v H_{v-1}}{2}\right)^{2} e^{-y^{2}} \\
& =\frac{1}{4} N_{v}^{2} \alpha^{3} \int_{-\infty}^{+\infty} d y\left(H_{v+1}^{2}+4 v H_{v+1} H_{v-1}+4 v^{2} H_{v-1}\right) e^{-y^{2}} \\
& =\frac{\alpha^{2}}{\sqrt{\pi} 2^{v+2} v!}\left[\sqrt{\pi} 2^{v+1}(v+1)!+v \sqrt{\pi} 2^{v+1} v!\right] \\
& =\alpha^{2}\left(v+\frac{1}{2}\right)
\end{aligned}
$$

Thus $\Delta x=\alpha \sqrt{v+\frac{1}{2}}$.
III. Potential energy

$$
\langle\widehat{V}\rangle=\left\langle\frac{1}{2} k_{f} \hat{x}^{2}\right\rangle=\frac{1}{2} k_{f} \alpha^{2}\left(v+\frac{1}{2}\right)=\frac{1}{2} \hbar \omega\left(v+\frac{1}{2}\right)=\frac{1}{2} E_{v}
$$

IV. Tunnelling - classically forbidden region

Classically forbidden region is where $V(x)>E_{v}$. Quantal oscillator can reach classically forbidden region with some tunnelling probability.

For ground state, $\psi_{0}=N_{0} e^{-\frac{x^{2}}{2 \alpha^{2}}}, E_{0}=\frac{1}{2} \hbar \omega$. Denote x_{L} and x_{R} as the negative and positive solutions of $V(x)=E_{0}$ respectively. The tunnelling probability is then

$$
P\left(x<x_{L}\right)+P\left(x>x_{R}\right)=2 \int_{x_{R}}^{+\infty} \mathrm{d} x \psi_{0}^{2}(x) \approx 15.7 \%
$$

2. The vibration of a diatomic molecule

Classically, the kinetic energy of this system is

$$
K=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}
$$

where $\dot{x}_{i}=\mathrm{d} x_{i} / \mathrm{d} t$. Define the coordinate of centre-of-mass as

$$
x_{\mathrm{c}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

and the distance between two atoms as

$$
x=x_{1}-x_{2}
$$

It is easy to find the inverse transformations as

$$
\left\{\begin{array}{l}
x_{1}=x_{\mathrm{c}}+\frac{m_{2}}{m_{1}+m_{2}} x \\
x_{2}=x_{\mathrm{c}}-\frac{m_{1}}{m_{1}+m_{2}} x
\end{array}\right.
$$

Thus the kinetic energy can be expressed in $\left\{x, x_{\mathrm{c}}\right\}$ as

$$
K=\frac{1}{2} m_{1}\left(\dot{x}_{\mathrm{c}}+\frac{m_{2}}{m_{1}+m_{2}} \dot{x}\right)^{2}+\frac{1}{2} m_{2}\left(\dot{x}_{\mathrm{c}}-\frac{m_{1}}{m_{1}+m_{2}} \dot{x}\right)^{2}=\frac{1}{2} M \dot{x}_{\mathrm{c}}^{2}+\frac{1}{2} \mu \dot{x}^{2}
$$

Here $M=m_{1}+m_{2}$ is the total mass and $\mu=m_{1} m_{2} / M$ is the reduced mass.

Define the momentum of centre-of-mass and vibration as

$$
P_{\mathrm{c}}=M \dot{x}_{\mathrm{c}}, p=\mu \dot{x}
$$

The kinetic energy is then

$$
K=\frac{P_{c}^{2}}{2 M}+\frac{p^{2}}{2 \mu}
$$

Its corresponding quantum Hamiltonian is

$$
\widehat{H}=-\frac{\hbar^{2}}{2 M} \frac{\partial^{2}}{\partial x_{\mathrm{c}}^{2}}-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} k_{f} x^{2}
$$

The Schrödinger equation $\widehat{H} \psi\left(x_{1}, x_{2}\right)=E \psi\left(x_{1}, x_{2}\right)$ is now separable. Assuming that

$$
\psi\left(x_{1}, x_{2}\right)=\Phi\left(x_{\mathrm{c}}\right) \varphi(x)
$$

we have

$$
-\frac{\hbar^{2}}{2 M} \frac{\mathrm{~d}^{2} \Phi\left(x_{\mathrm{c}}\right)}{\mathrm{d} x_{\mathrm{c}}^{2}} \cdot \varphi(x)+\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2} \varphi(x)}{\mathrm{d} x^{2}}+\frac{1}{2} k_{f} x^{2} \varphi(x)\right] \Phi\left(x_{\mathrm{c}}\right)=E \Phi\left(x_{\mathrm{c}}\right) \varphi(x)
$$

Divide both sides by $\Phi\left(x_{\mathrm{c}}\right) \varphi(x)$,

$$
-\frac{\hbar^{2}}{2 M} \frac{1}{\Phi\left(x_{\mathrm{c}}\right)} \frac{\mathrm{d}^{2} \Phi\left(x_{\mathrm{c}}\right)}{\mathrm{d} x_{\mathrm{c}}^{2}}+\left[-\frac{\hbar^{2}}{2 \mu} \frac{1}{\varphi(x)} \frac{\mathrm{d}^{2} \varphi(x)}{\mathrm{d} x^{2}}+\frac{1}{2} k_{f} x^{2}\right]=E
$$

Thus

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 M} \frac{\mathrm{~d}^{2} \Phi\left(x_{\mathrm{c}}\right)}{\mathrm{d} x_{\mathrm{c}}^{2}}=E_{1} \Phi\left(x_{\mathrm{c}}\right) \\
\left(-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\frac{1}{2} k_{f} x^{2}\right) \varphi(x)=E_{2} \varphi(x) \\
E_{1}+E_{2}=E
\end{gathered}
$$

The solution is

$$
\begin{gathered}
\Phi\left(x_{\mathrm{c}}\right)=A e^{i k x_{\mathrm{c}}}+B e^{-i k x_{\mathrm{c}}}, k=\frac{\sqrt{2 m E_{1}}}{\hbar} \\
\varphi(x)=\left(\alpha \sqrt{\pi} 2^{v} v!\right)^{-\frac{1}{2}} H_{v}\left(\frac{x}{\alpha}\right) e^{-\frac{x^{2}}{2 \alpha^{2}}}, \alpha=\left(\frac{\hbar^{2}}{\mu k_{f}}\right)^{\frac{1}{4}} \\
E_{2}=\hbar \omega\left(v+\frac{1}{2}\right), \omega=\sqrt{\frac{k_{f}}{\mu}}, v=0,1,2, \ldots
\end{gathered}
$$

Appendix: Direct coordinate transformations of Hamiltonian
It's straightforward to find that

$$
\frac{\partial}{\partial x_{1}}=\frac{\partial}{\partial x}+\frac{m_{1}}{M} \frac{\partial}{\partial x_{\mathrm{c}}}, \quad \frac{\partial}{\partial x_{2}}=-\frac{\partial}{\partial x}+\frac{m_{2}}{M} \frac{\partial}{\partial x_{\mathrm{c}}}
$$

Thus

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x_{1}^{2}} & =\frac{\partial^{2}}{\partial x^{2}}+\frac{2 m_{1}}{M} \frac{\partial^{2}}{\partial x \partial x_{\mathrm{c}}}+\frac{m_{1}^{2}}{M^{2}} \frac{\partial^{2}}{\partial x_{\mathrm{c}}^{2}} \\
\frac{\partial^{2}}{\partial x_{2}^{2}} & =\frac{\partial^{2}}{\partial x^{2}}-\frac{2 m_{2}}{M} \frac{\partial^{2}}{\partial x \partial x_{\mathrm{c}}}+\frac{m_{2}^{2}}{M^{2}} \frac{\partial^{2}}{\partial x_{\mathrm{c}}^{2}}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\widehat{H} & =-\frac{\hbar^{2}}{2 m_{1}} \frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\hbar^{2}}{2 m_{2}} \frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{1}{2} k_{f}\left(x_{1}-x_{2}\right)^{2} \\
& =-\frac{\hbar^{2}}{2}\left[\frac{1}{M} \frac{\partial^{2}}{\partial x_{c}^{2}}+\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \frac{\partial^{2}}{\partial x^{2}}\right]+\frac{1}{2} k_{f} x^{2} \\
& =-\frac{\hbar^{2}}{2 M} \frac{\partial^{2}}{\partial x_{c}^{2}}-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} k_{f} x^{2}
\end{aligned}
$$

Lecture 4 - Rotational Motion

1. Two-dimensional rotational motion

A particle of mass m moves in a ring of radius r in the $x y$-plane with zero potential. We use cylindrical coordinates for convenience. Laplace operator has following form

$$
\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

Since r, z are fixed, it can be simplified to $\nabla^{2}=\frac{1}{r^{2}} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \phi^{2}}$.
S.E. is $-\frac{\hbar^{2}}{2 m r^{2}} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \phi^{2}} \psi=E \psi$. Denote $I=m r^{2}$ as moment of inertia, we have

$$
-\frac{\hbar^{2}}{2 I} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \phi^{2}} \psi(\phi)=E \psi(\phi)
$$

The solution is $\psi(\phi)=N e^{ \pm i \sqrt{\epsilon} \phi}$ where $\epsilon=\frac{2 I E}{\hbar^{2}}$. We then apply cyclic boundary condition $\psi(0)=\psi(2 \pi)$, i.e. $N=N e^{ \pm i 2 \pi \sqrt{\epsilon}} . e^{ \pm i 2 \pi \sqrt{\epsilon}}=1$ leads to $\sqrt{\epsilon}=0,1,2, \ldots$, thus

$$
\psi(\phi)=N e^{i m \phi}, m=0, \pm 1, \pm 2, \ldots
$$

After normalization, we have $N=\frac{1}{\sqrt{2 \pi}}$ and

$$
\psi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}, m=0, \pm 1, \pm 2, \ldots
$$

I. Energy

$$
\widehat{H} \psi_{m}=\frac{\hbar^{2}}{2 I} m^{2} \psi_{m}, E_{m}=\frac{m^{2} \hbar^{2}}{2 I}, m=0, \pm 1, \pm 2, \ldots
$$

- Ground state energy is zero.
- First excited states are degenerated. $E_{ \pm 1}=\frac{\hbar^{2}}{2 I}$ with degeneracy 2 .
II. Linear momentum

$$
\begin{gathered}
\hat{p}=\frac{\hbar}{i} \nabla=\frac{\hbar}{i} \frac{\mathrm{~d}}{\mathrm{~d}(r \phi)}=\frac{\hbar}{i r} \frac{\mathrm{~d}}{\mathrm{~d} \phi} \\
\hat{p} \psi_{m}=\frac{m \hbar}{r} \psi_{m}, p_{m}=\frac{m \hbar}{r}
\end{gathered}
$$

Thus ψ_{m} are also eigenfunctions of \hat{p}.

III. Angular momentum

Classically, $\vec{l}=\vec{r} \times \vec{p}$. In quantum mechanics, for a particle in a circle

$$
\begin{gathered}
\hat{l}=\hat{r} \hat{p}=\frac{\hbar}{i} \frac{\mathrm{~d}}{\mathrm{~d} \phi} \\
\hat{l} \psi_{m}=m \hbar \psi_{m}, l_{m}=m \hbar
\end{gathered}
$$

Thus ψ_{m} are also eigenfunctions of \hat{l}.

These co-eigenfunction phenomenon are described by compatibility theorem next section.

2. Compatibility theorem

- Theorem: Giving two Hermitian operators \hat{A} and \hat{B}, if \hat{A} and \hat{B} are commuting, viz $[\hat{A}, \hat{B}]=0$, we can conclude that \hat{A} and \hat{B} have a common eigen basis, i.e. we can find a set of ψ_{i} satisfying $\hat{A} \psi_{i}=a_{i} \psi_{i}$ and $\hat{B} \psi_{i}=b_{i} \psi_{i}$
- Examples: $[\widehat{H}, \hat{p}]=[\widehat{H}, \hat{l}]=[\hat{l}, \hat{p}]=0$, so $\psi_{m}=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}$ are their common eigenfunctions.

3. Three-dimensional rotational motion

A particle of mass m moves on the surface of a sphere of radius r with zero potential. Now we use spherical coordinates where

$$
\begin{gathered}
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{\Lambda^{2}}{r^{2}} \\
\Lambda^{2}=\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)
\end{gathered}
$$

Since r is fixed, Laplace operator is simplified to $\nabla^{2}=\frac{\Lambda^{2}}{r^{2}}$. The S.E. is

$$
\widehat{H} Y(\theta, \phi)=E Y(\theta, \phi)
$$

i.e. $\Lambda^{2} Y=-\epsilon Y$ with the same definition for ϵ as in 2 D motion.

Let $Y(\theta, \phi)=\Theta(\theta) \Phi(\phi)$, we have

$$
\frac{\Theta}{\sin ^{2} \theta} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}+\frac{\Phi}{\sin \theta} \frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\sin \theta \frac{\mathrm{~d} \Theta}{\mathrm{~d} \theta}\right)=-\epsilon \Theta \Phi
$$

Dividing two sides by $\Theta \Phi$ and rearranging the equation,

$$
\frac{1}{\Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}+\frac{\sin \theta}{\Theta} \frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\sin \theta \frac{\mathrm{~d} \Theta}{\mathrm{~d} \theta}\right)+\epsilon \sin ^{2} \theta=0
$$

Thus,

$$
\frac{1}{\Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}=-\beta
$$

and

$$
\frac{\sin \theta}{\Theta} \frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\sin \theta \frac{\mathrm{~d} \Theta}{\mathrm{~d} \theta}\right)+\epsilon \sin ^{2} \theta=\beta
$$

should hold, where β is a constant.

For $\frac{1}{\Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}=-\beta$, the solution is

$$
\Phi_{m_{l}}=\frac{1}{\sqrt{2 \pi}} e^{i m_{l} \phi}, m_{l}=0, \pm 1, \pm 2, \ldots
$$

For $\frac{\sin \theta}{\Theta} \frac{\mathrm{d}}{\mathrm{d} \theta}\left(\sin \theta \frac{\mathrm{d} \theta}{\mathrm{d} \theta}\right)+\epsilon \sin ^{2} \theta=m_{l}^{2}$, let $u=\cos \theta$, this equation can be rewritten as associated Legendre equation

$$
\left(1-u^{2}\right) \frac{\mathrm{d}^{2} \Theta}{\mathrm{~d} u^{2}}-2 u \frac{\mathrm{~d} \Theta}{\mathrm{~d} u}+\left(\epsilon-\frac{m_{l}^{2}}{1-u^{2}}\right) \Theta=0
$$

Its solutions $\Theta_{l m_{l}}(\theta)$ are called associated Legendre functions where $l=0,1,2, \ldots$ and $m_{l}=0, \pm 1, \pm 2, \ldots, \pm l$.

The overall solutions $Y_{l m_{l}}(\theta, \phi)=\Theta_{l m_{l}}(\theta) \Phi_{m_{l}}(\phi)$ are called spherical harmonics which satisfy following equation

$$
\Lambda^{2} Y_{l m}=-l(l+1) Y_{l m}
$$

Hereafter we will drop out subscript l from m_{l} for simplicity. First few of them are listed below.

- $l=0$
- $m=0: \sqrt{1 / 4 \pi}$
- $l=1$
- $m=0: \sqrt{3 / 4 \pi} \cos \theta$
- $m= \pm 1: \mp \sqrt{3 / 8 \pi} \sin \theta e^{ \pm i \phi}$
- $l=2$
- $m=0: \sqrt{5 / 16 \pi}\left(3 \cos ^{2} \theta-1\right)$
- $m= \pm 1: \mp \sqrt{15 / 8 \pi} \cos \theta \sin \theta e^{ \pm i \phi}$
- $m= \pm 2: \sqrt{15 / 32 \pi} \sin ^{2} \theta e^{ \pm 2 i \phi}$
I. Energy and square of angular momentum

The Hamiltonian $\widehat{H}=-\frac{\hbar^{2}}{2 m} \cdot \frac{\Lambda^{2}}{r^{2}}$,

$$
\widehat{H} Y_{l m}=\frac{\hbar^{2}}{2 I} \cdot l(l+1) Y_{l m}
$$

gives out energy levels

$$
E_{l}=\frac{l(l+1) \hbar^{2}}{2 I}
$$

For square of angular momentum, \hat{L}^{2}, classically we have $E=L^{2} / 2 I$ and quantum mechanically $\hat{L}^{2}=-\hbar^{2} \Lambda^{2}$.

$$
\hat{L}^{2} Y_{l m}=l(l+1) \hbar^{2} Y_{l m}
$$

thus

$$
\left\langle\hat{L}^{2}\right\rangle_{l}=l(l+1) \hbar^{2}
$$

II. Angular momentum

Classically, angular momentum is defined as $\vec{L}=\vec{r} \times \vec{p}$. In quantum mechanics, we change it into $\hat{\vec{L}}=\hat{\vec{r}} \times \hat{\vec{p}}$, where $\hat{\vec{r}}=x \vec{e}_{x}+y \vec{e}_{y}+z \vec{e}_{z}, \hat{\vec{p}}=\hat{p}_{x} \vec{e}_{x}+\hat{p}_{y} \vec{e}_{y}+\hat{p}_{z} \vec{e}_{z}$ and $\hat{p}_{\mu}=\frac{\hbar}{i} \frac{\partial}{\partial \mu}$ for $\mu=x, y, z$. Here ' \times ' means cross product. Some basic properties of cross product are shown below

$$
\vec{a} \times(k \vec{b})=k(\vec{a} \times \vec{b}), \vec{a} \times \vec{a}=\overrightarrow{0}, \vec{a} \times \vec{b}=-\vec{b} \times \vec{a}, \vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}
$$

And for bases, their cross products are

$$
\vec{e}_{x} \times \vec{e}_{y}=\vec{e}_{z}, \vec{e}_{y} \times \vec{e}_{z}=\vec{e}_{x}, \vec{e}_{z} \times \vec{e}_{x}=\vec{e}_{y}
$$

Using these relations, we have

$$
\begin{aligned}
\hat{\vec{L}} & =\left(x \vec{e}_{x}+y \vec{e}_{y}+z \vec{e}_{z}\right) \times \frac{\hbar}{i}\left(\frac{\partial}{\partial x} \vec{e}_{x}+\frac{\partial}{\partial y} \vec{e}_{y}+\frac{\partial}{\partial z} \vec{e}_{z}\right) \\
& =\frac{\hbar}{i}\left[\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \vec{e}_{z}+\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \vec{e}_{x}+\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \vec{e}_{y}\right]
\end{aligned}
$$

The components of $\hat{\vec{L}}$ are then

$$
\hat{L}_{x}=\frac{\hbar}{i}\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right), \hat{L}_{y}=\frac{\hbar}{i}\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right), \hat{L}_{z}=\frac{\hbar}{i}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
$$

respectively.
We then calculate commutators between these operators since the commutation relation is a key feature of angular momentum. Take \hat{L}_{x} and \hat{L}_{y} as example,

$$
\begin{aligned}
{\left[\hat{L}_{x}, \hat{L}_{y}\right]=} & -\hbar^{2}\left[\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right)-\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right)\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)\right] \\
= & -\hbar^{2}\left(y \frac{\partial}{\partial x}+y z \frac{\partial^{2}}{\partial z \partial x}-y x \frac{\partial^{2}}{\partial z^{2}}-z^{2} \frac{\partial^{2}}{\partial y \partial x}+z x \frac{\partial^{2}}{\partial y \partial z}\right) \\
& +\hbar^{2}\left(z y \frac{\partial^{2}}{\partial x \partial z}-z^{2} \frac{\partial^{2}}{\partial x \partial y}-x y \frac{\partial^{2}}{\partial z^{2}}+x \frac{\partial}{\partial y}+x z \frac{\partial^{2}}{\partial z \partial y}\right) \\
= & \hbar^{2}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \\
= & i \hbar \hat{L}_{z}
\end{aligned}
$$

Similarly, we have $\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar \hat{L}_{x},\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar \hat{L}_{y}$. For $\left[\hat{L}^{2}, \hat{L}_{z}\right]$, we first decompose it into $\left[\hat{L}_{x}^{2}, \hat{L}_{z}\right]+\left[\hat{L}_{y}^{2}, \hat{L}_{z}\right]+\left[\hat{L}_{z}^{2}, \hat{L}_{z}\right]$. Then it is straightforward to write

$$
\begin{aligned}
& {\left[\hat{L}_{z}^{2}, \hat{L}_{z}\right]=\hat{L}_{z}^{3}-\hat{L}_{z}^{3}=0 } \\
{\left[\hat{L}_{x}^{2}, \hat{L}_{z}\right]=} & \hat{L}_{x}^{2} \hat{L}_{z}-\hat{L}_{x} \hat{L}_{z} \hat{L}_{x}+\hat{L}_{x} \hat{L}_{z} \hat{L}_{x}-\hat{L}_{z} \hat{L}_{x}^{2} \\
= & \hat{L}_{x}\left[\hat{L}_{x}, \hat{L}_{z}\right]+\left[\hat{L}_{x}, \hat{L}_{z}\right] \hat{L}_{x} \\
= & -i \hbar\left(\hat{L}_{x} \hat{L}_{y}+\hat{L}_{y} \hat{L}_{x}\right) \\
& {\left[\hat{L}_{y}^{2}, \hat{L}_{z}\right]=i \hbar\left(\hat{L}_{y} \hat{L}_{x}+\hat{L}_{x} \hat{L}_{y}\right) }
\end{aligned}
$$

Thus $\left[\hat{L}^{2}, \hat{L}_{z}\right]=0$, and $\left[\widehat{H}, \hat{L}_{z}\right]=\left[\frac{\hat{L}^{2}}{2 I}, \hat{L}_{z}\right]=0 . \widehat{H}, \hat{L}^{2}$ and \hat{L}_{z} are mutual commuting, which confirms that $Y_{l m}$ are the common eigenfunctions for them, i.e.

$$
\begin{gathered}
\widehat{H} Y_{l m}=\frac{l(l+1) \hbar^{2}}{2 I} Y_{l m} \\
\hat{L}^{2} Y_{l m}=l(l+1) \hbar^{2} Y_{l m} \\
\hat{L}_{z} Y_{l m}=m \hbar Y_{l m}
\end{gathered}
$$

Lecture 5 - Hydrogen Atom

In this last lecture, we will try to solve a real system - hydrogen atom. The system is composed of two particles - one electron and one positron, and thus its total degree of freedom (DoF) is 6 . Three of DoFs belong to translational motion, two of them rotational motion, and the last one is the relative radial motion.

To begin with, we define following notations.

- Mass: nucleus m_{N}, electron m_{e}, total $m_{\mathrm{CM}}=m_{N}+m_{e}$, reduced $\mu=\frac{m_{e} m_{N}}{m_{e}+m_{N}}$
- Position vector: nucleus \vec{r}_{N}, electron \vec{r}_{e}, centre of mass (CM) $\vec{R}=\frac{m_{e} \vec{r}_{e}+m_{N} \vec{r}_{N}}{m_{e}+m_{N}}$, electron relative to nucleus $\vec{r}=\vec{r}_{e}-\vec{r}_{N}$
- $\vec{R}=R_{x} \vec{e}_{x}+R_{y} \vec{e}_{y}+R_{z} \vec{e}_{z}, \nabla_{\vec{R}}^{2}=\frac{\partial^{2}}{\partial R_{x}^{2}}+\frac{\partial^{2}}{\partial R_{y}^{2}}+\frac{\partial^{2}}{\partial R_{z}^{2}}\left(\right.$ similar for $\left.\nabla_{\vec{r}}^{2}\right)$
- Classical momentum: nucleus $\vec{p}_{N}=m_{N} \dot{\vec{r}}_{N}$, electron $\vec{p}_{e}=m_{e} \dot{\vec{r}}_{e}, \mathrm{CM} \vec{p}_{\mathrm{CM}}=m_{\mathrm{CM}} \dot{\vec{R}}$, electron relative to nucleus $\vec{p}_{\mu}=\mu \dot{\vec{r}}$
- Vector without arrow means modulus $r=|\vec{r}|$, etc

Then we can separate out CM motion and relative motion in classical energy expression as

$$
E=\frac{p_{e}^{2}}{2 m_{e}}+\frac{p_{N}^{2}}{2 m_{N}}-\frac{e^{2}}{r}=\frac{p_{\mathrm{CM}}^{2}}{2 m_{\mathrm{CM}}}+\frac{p_{\mu}^{2}}{2 \mu}-\frac{e^{2}}{r}
$$

Thus quantum Hamiltonian can also be written as sum of two parts

$$
\widehat{H}=-\frac{\hbar^{2}}{2 m_{\mathrm{CM}}} \nabla_{\vec{R}}^{2}-\frac{\hbar^{2}}{2 \mu} \nabla_{\vec{r}}^{2}-\frac{e^{2}}{r}
$$

S.E.

$$
\left(-\frac{\hbar^{2}}{2 m_{\mathrm{CM}}} \nabla_{\vec{R}}^{2}-\frac{\hbar^{2}}{2 \mu} \nabla_{\vec{r}}^{2}-\frac{e^{2}}{r}\right) \Phi(\vec{r}, \vec{R})=E \Phi(\vec{r}, \vec{R})
$$

1. Separation of CM motion and relative motion

Let $\Phi(\vec{r}, \vec{R})=\chi(\vec{R}) \psi(\vec{r})$,

$$
-\frac{\hbar^{2}}{2 m_{\mathrm{CM}}}\left(\nabla_{\vec{R}}^{2} \chi\right) \psi-\frac{\hbar^{2}}{2 \mu} \chi \nabla_{\vec{r}}^{2} \psi-\frac{e^{2}}{r} \chi \psi=E \chi \psi
$$

Divide both sides by $\chi \psi$:

$$
-\frac{\hbar^{2}}{2 m_{\mathrm{CM}}} \frac{\nabla_{\vec{R}}^{2} \chi}{\chi}-\frac{\hbar^{2}}{2 \mu} \frac{\nabla_{\vec{r}}^{2} \psi}{\psi}-\frac{e^{2}}{r}=E
$$

Thus

$$
-\frac{\hbar^{2}}{2 m_{\mathrm{CM}}} \frac{\nabla_{\vec{R}}^{2} \chi}{\chi}=E_{\mathrm{CM}} \text { and }-\frac{\hbar^{2}}{2 \mu} \frac{\nabla_{r}^{2} \psi}{\psi}-\frac{e^{2}}{r}=E_{e}
$$

where $E_{\mathrm{CM}}+E_{e}=E$.

Since $m_{N} \gg m_{e}, m_{\mathrm{CM}} \approx m_{e}$. Roughly, $\chi(\vec{R})$ and $\psi(\vec{r})$ are nuclear and electron wavefunctions respectively.
I. CM motion $\chi(\vec{R})$

$$
-\frac{\hbar^{2}}{2 m_{\mathrm{CM}}} \nabla_{\vec{R}}^{2} \chi=E_{\mathrm{CM}} \chi
$$

This is just a free particle moving in 3D space. Its solution is plane wave
$\chi(\vec{R})=A e^{i \vec{k}_{\mathrm{CM}} \cdot \vec{R}}$
Its wave vector \vec{k}_{CM} has modulus $\frac{\sqrt{2 m_{\mathrm{CM}} E_{\mathrm{CM}}}}{\hbar}$ and is parallel to \vec{v}_{p}.
II. Relative motion ψ

$$
-\frac{\hbar^{2}}{2 \mu} \nabla_{\vec{r}}^{2} \psi-\frac{e^{2}}{r} \psi=E_{e} \psi
$$

$\nabla_{\vec{r}}^{2}$ can be expressed in spherical coordinate system located at nucleus

$$
\nabla_{\vec{r}}^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{\Lambda^{2}}{r^{2}}
$$

From now on, we will omit the subscript of E_{e} for simplicity.

2. Separation of radial motion and rotational motion

Let $\psi(\vec{r})=R(r) Y(\theta, \phi)$,

$$
-\frac{\hbar^{2}}{2 \mu} r^{2}\left(\frac{\mathrm{~d}^{2} R}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d} R}{\mathrm{~d} r}\right) Y-e^{2} r R Y-E r^{2} R Y-\frac{\hbar^{2}}{2 \mu} R \Lambda^{2} Y=0
$$

Divide both sides by $R Y$,

$$
-\frac{\hbar^{2} r^{2}}{2 \mu R}\left(\frac{\mathrm{~d}^{2} R}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d} R}{\mathrm{~d} r}\right)-e^{2} r-E r^{2}-\frac{\hbar^{2}}{2 \mu Y} \Lambda^{2} Y=0
$$

Thus we have

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 \mu Y} \Lambda^{2} Y=A \\
-\frac{\hbar^{2} r^{2}}{2 \mu R}\left(\frac{\mathrm{~d}^{2} R}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d} R}{\mathrm{~d} r}\right)-e^{2} r-E r^{2}=-A
\end{gathered}
$$

I. Rotational motion $Y(\theta, \phi)$

Rearrange $-\frac{\hbar^{2}}{2 \mu Y} \Lambda^{2} Y=A$ as $\Lambda^{2} Y=-\frac{2 \mu A}{\hbar^{2}} Y$. The solution is apparently spherical harmonic functions, $Y=Y_{l m}(\theta, \phi)$ with eigenvalues $-\frac{2 \mu A}{\hbar^{2}}=-l(l+1)$. Thus,

$$
A=\frac{l(l+1) \hbar^{2}}{2 \mu}
$$

II. Radial motion $R(r)$

$$
-\frac{\hbar^{2} r^{2}}{2 \mu R}\left(\frac{\mathrm{~d}^{2} R}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d} R}{\mathrm{~d} r}\right)-e^{2} r-E r^{2}=-\frac{l(l+1) \hbar^{2}}{2 \mu}
$$

i.e.

$$
\left[-\frac{\hbar^{2}}{2 \mu}\left(\frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\right)+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}-\frac{e^{2}}{r}\right] R=E R
$$

Remember $\left\langle\hat{L}^{2}\right\rangle=l(l+1) \hbar^{2}$, here $l(l+1) \hbar^{2} / 2 \mu r^{2}$ can be regarded as effective potential due to angular momentum.

Solution for above equation is

$$
R_{n l}(r)=N_{n l} \rho^{l} L_{n-l-1}^{2 l+1}(\rho) e^{-\rho / 2}
$$

- $\rho=2 r / n a, a=\hbar^{2} / \mu e^{2} \approx 0.529 \AA$.
- $a_{0}=\hbar^{2} / m_{e} e^{2}$, called Bohr radius, is the unit length in atomic unit.
- L_{b}^{a} : associated Laguerre polynomial.
- Normalization factor $N_{n l}=\left\{\left(\frac{2}{n a}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!]}\right\}^{1 / 2}$.
- $n=1,2,3, \ldots ; l=0,1,2, \ldots, n-1$.
- Energy $E_{n}=-\frac{1}{n^{2}} \frac{e^{2}}{2 a}\left(\right.$ or in SI $\left.-\frac{1}{n^{2}} \frac{e^{2}}{8 \pi \varepsilon_{0} a}\right)$.

Overall, electronic wavefunction is

$$
\psi_{n l m}(\vec{r})=R_{n l}(r) Y_{l m}(\theta, \phi)
$$

It depends on three quantum numbers,

- Principal quantum number: $n=1,2,3, \ldots$.
- Azimuthal quantum number: $l=0,1,2, \ldots, n-1$.
- Magnetic quantum number: $m=0, \pm 1, \pm 2, \ldots, \pm l$.

But its energy levels $E_{n}=-\frac{1}{n^{2}} \frac{e^{2}}{2 a}$ only depend on principal quantum number n. For ground state, $n=1, l=0, m=0$, it is non-degenerate. For first excited state it is 4 -fold degenerated.

$$
n=2,\left\{\begin{array}{l}
l=0, m=0 \\
l=1,\left\{\begin{array}{l}
m=0 \\
m= \pm 1
\end{array}\right.
\end{array}\right.
$$

First few electronic wavefunctions are listed below

$$
\begin{aligned}
& \psi_{1 s}=\psi_{100}=\frac{1}{\sqrt{\pi a^{3}}} e^{-\frac{r}{a}} \\
& \psi_{2 s}=\psi_{200}=\frac{1}{\sqrt{8 \pi a^{3}}}\left(1-\frac{r}{2 a}\right) e^{-\frac{r}{2 a}} \\
& \psi_{2 p_{z}}=\psi_{210}=\frac{1}{4 \sqrt{2 \pi a^{5}}} r e^{-\frac{r}{2 a}} \cos \theta \\
& \psi_{2 p_{x}}=\frac{\psi_{211}+\psi_{21-1}}{\sqrt{2}}=\frac{1}{4 \sqrt{2 \pi a^{5}}} r e^{-\frac{r}{2 a}} \sin \theta \cos \phi \\
& \psi_{2 p_{y}}=\frac{\psi_{211}-\psi_{21-1}}{i \sqrt{2}}=\frac{1}{4 \sqrt{2 \pi a^{5}}} r e^{-\frac{r}{2 a}} \sin \theta \sin \phi
\end{aligned}
$$

