ELSEVIER

26 March 1999

Chemical Physics Letters 302 (1999) 495-498

CHEMICAL
PHYSICS
LETTERS

Linear-scaling computation of ground state with time-domain
|ocalized-density-matrix method

Satoshi Y okojima, DongHao Zhou, GuanHua Chen *

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China

Received 27 October 1998; in fina form 18 January 1999

Abstract

Recently developed time-domain localized-density-matrix (LDM) method for calculating the electronic excited-state
properties has been applied to calculate the electronic ground state. The computational time remains to scale linearly with the
system size. To test the method, we use it to determine the ground states of polyacetylene oligomers containing up to 20000
carbon atoms. The Pariser—Parr—Pople (PPP) Hamiltonian is employed for the m electrons of the systems. Comparison to
the conventional diagonalization shows the high efficiency as well as accuracy of the time-domain LDM method. © 1999

Elsevier Science B.V. All rights reserved.

Ab initio molecular orbital calculations are usu-
aly limited to small- and medium-size molecular
systems. The obstacle lies in the rapid increasing of
computational cost as the systems become larger and
more complex. The computational time is propor-
tional to a certain power of the system size, i.e,
teou @ N, where t,,, is the computational time, N is
the number of electronic orbitals, and X is some
number which is usually larger than 1. For instance,
the computational time of ab initio Hartree—Fock
molecular orbital calculation has an O(N?) scaling.
This obstacle has been removed in principle. Several
linear scaling methods have been developed to calcu-
late electronic ground states [1-21].

Recently a LDM method has been developed to
caculate the excited-state properties of very large
electronic systems with explicit inclusion of the elec-
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tron—electron Coulomb interaction [22,23], and its
computational time scales linearly with the system
size. It has been applied successfully to evaluate
absorption spectra of polyacetylene oligomers con-
taining up to 2000 carbon atoms. This method has
also been applied to the PPP-like model based on
non-orthonormal basis set [24]. Based on a similar
idea, linear-scaling computation for the ground states
of one-dimensional systems has been achieved in the
frequency domain [25]. However, this frequency-do-
main linear-scaling LDM calculation is confined to
the one-dimensional systems while general physical,
chemical, and biological systems are three dimen-
sional. Time-domain LDM method does not have
such a restriction, and is applicable to two- and
three-dimensional systems.

In this work, the time-domain LDM method is
modified to determine the ground states of poly-
acetylene oligomers. The PPP Hamiltonian is em-
ployed to describe the m electrons in the systems.
The linear-scaling behavior of the computational time

0009-2614,/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.

Pll: S0009-2614(99)00167-0



496 S Yokojima et al. / Chemical Physics Letters 302 (1999) 495-498

is investigated. Comparison to the conventiona
Hartree—Fock diagonalization (HFD), which em-
ploys the same PPP Hamiltonian, is examined.
When an externa electromagnetic field &(t) is
applied to a polyacetylene oligomer, its w €electrons
response to the field, and optical signals may be
observed. The m electrons in the polyacetylene are
well described by the PPP Hamiltonian [26—28],

H=H$SH+HC+Hext' (1)

Hsgy is the Su—Schrieffer—Heeger (SSH) Hamilto-
nian, which consists of the Huckel Hamiltonian plus
electron—phonon coupling. H represents the
Coulomb interaction among the w electrons and
nuclei. H,,, is the interaction between the w elec-
trons and an external electric field £(t). We employ
the same parameters as those in Ref. [23]. The
geometry is fixed in the calculation. N carbon -
orbitals are employed as the basis set, and m and n
represent mr-orbitals at the sites m and n, respec-
tively. Within the TDHF approximation [29], a closed
non-linear self-consistent equation of motion is
yielded for the reduced single-electron density ma-
trix p(t),

(1) = [h(t) + (), p(1)] 2)

Here h(t) is the Fock matrix:
hnm(t) =timt 26n,m Z Un| pll(t) ~ Unm pnm(t) )
|

(3)

where t,,, is the hopping matrix element between m
and n, and v, is the Coulomb repulsion between
two electrons a8 m and n, respectively. f(t) de-
scribes the interaction between an electron and the
external field £(t) [26].

The PPP-Hartree—Fock (PPP-HF) ground-state
density matrix p©@ may be determined by the fol-
lowing equation [25],

[h<0),p<0)] =0, (4)
together with the idempotency requirement,
p@p© = p© (5)

where h© is the Fock matrix when &(t) = 0.

The TDHF Eq. (2) is usualy used to simulate the
electronic response to the external field. In this work
it is modified to determine the PPP—HF ground state

by setting &(t)=0 or f(t)=0. Starting from an
initial guess of the density matrix p(t=t,) a time
t = t,, we follow its time evolution by integrating the
following equation

d
i[ﬁa+v(t)]p(t)=[h(t).p(t)]- (6)
v(t) is a phenomenological dephasing parameter. It
is time dependent and approaches zero over the time.
It is introduced to improve the calculation efficiency
and ensure the eventual convergence p(t) to p©.
v(t) may be of different forms, and we chose the
following expression in our calculation,

1

y(1) Y01+ (t—t,) /1 )
where t, is the initial time and v, is the dephasing
parameter at t=t,. t is the time constant which is
approximately the simulation time. Since p© isreal,
we retain only the real part of p(t) as the current
approximate density matrix after each integration
step of Eq. (6) over atime interval At. This acceler-
ates the elimination of the excited-state components
in p(t), which can be seen by expanding p(t) in
terms of the eigenvectors p, of the Liouville opera-
tor [26,30,31]:

(7)

(1) =0+ Do it - [ dtr(t)] .

(8)

where w, isthe frequency for the eigenvector p, and
we assume that the difference between p(t) and p©
is small. Retaining only Rel p(t)] as the approximate
density matrix reduces thus the excited-state compo-
nents in p(t) by extra factor co w,t). The idempo-
tency is then imposed by the following equation
[5,32]:

p'=3(p)"—2(p)*. (9)

Eg. (9) is repeated severa timestill a convergenceis
reached. The resulting p’ is taken as the new ap-
proximate density matrix. The above process, which
includes the integration of Eq. (6) over At, retaining
of Re p(1)] and imposing idempotency, is employed
iteratively until the density matrix p(t) is converged.
Note that the initial guess is preferably close enough
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Fig. 1. Comparison between HFD and LDM CPU time on SGI
Origin 200 workstation. (A) LDM: « =80 and «, = 30; and (B)
LDM: o =50 and o = 20.

to the real ground state density matrix p©; other-
wise a divergence may occur.

To achieve the linear-scaling computation of
ground state, we adopt similar approximations as the
linear-scaling LDM calculation for the excited states
[22,23]. First, we set p; ;(t) to O for |i —j|>a or
rij>1, (where r;; is the distance between atoms i
and j and |, is the critical length for the first
induced density matrix [22,23]). The critical length
I, isused instead of |, (which isthe critical length of
the ground-state reduced density matrix as defined in
Ref. [22,23]) to ensure the convergence [25]. This is
because that p(t) contains contributions from the
excited states. Secondly, we employ the same trunca
tion as Refs. [22,25] to evaluate an €lectron—electron
interaction contribution to the right-hand-side (rhs)
of Eq. (6), namely 2, (v;  — v, ) p; | Pik 1S @pproxi-
mated by

2 X (Ui,k_vj,k)pi,jpkk’ (10)
ko< k<ky

where k, and k, are given, respectively, by k,=
max[1,min(i — a.,j — «.)] and k, = min[1,max(i +
a.,j+ aJl «, is the number of atomic orbitals
within another critical length I, which isless than |,
for polyacetylene oligomers [22,24].

In our calculation, the convergence criteria for
Eq. (6) is given by

> Z(hikpkj_pikhkj) /N<R, (11)

il ok

and for Eq. (9)
2o = pijl/N<R,. (12)
ij

t,=—0.05fs y,=10"° eV, t=10fs, and At=
0.138 fs have been employed.

The CPU time comparison between HFD and
LDM methods is given in Fig. 1. Two LDM calcula
tions are examined: (A) a =80, a, =30, R, =10"°
eV,and R,=10"°(B) « =50, @, =20, R, =103
eV and R,=10"° For HFD we use the conver-
gence criteria R, =10"° eV. The simulation times
for (A) and (B) are ~ 3 and ~ 0.5 fs, respectively.
Linear-scaling of CPU time is demonstrated for both
(A) and (B). A drastic saving of CPU timeis achieved
for the LDM method compared to the HFD. When N
is small, the HFD method requires less time because
a relatively large overhead is required for the LDM
method. The crossover in CPU time appears at N =
500 and less than 200 for (A) and (B), respectively
(see the insert of Fig. 1).

To assess the accuracy of our LDM calculation,
we compare the ground-state energies of LDM with
that of the HFD method. The relative energy error is
expressed as;
r= Euro ~ Eom ’ (13)

Evrp
and is shown in Fig. 2. R, =102 eV is employed
here for HFD. This figure shows that the LDM
ground-state energies is in an excellent agreement
with those of the HFD for any oligomer with N =
100 ~ 2000. Note that the small energy difference
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Fig. 2. Relative energy errors of two LDM calculations (A) and
(B). Filled squares are for (A), and filled circles for (B).
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between two sets of LDM parameters (A) and (B).
We emphasize that (B) requires much less computa
tional effort while the same high accuracy is achieved
compared to (A).

The second approximation Eg. (10) has been
shown to be an extremely good one for polyacety-
lene [24], and our current result provides the further
evidence (see Fig. 2). The justification of the approx-
imation comes mainly from the cancellation which is
caused by the charge conservation [24]. The fast
multiple method (FMM) has been used to calculate
the summation of Coulomb interaction [17,33,34],
and its computational timescales linearly with the
system size [17,34]. It may be an dternative way to
replace the second approximation [35]. As we have
pointed out in Ref. [25], Eq. (4) have to be satisfied
for calculating the excited-state properties within the
TDHF approximation. The time-domain LDM
method clearly satisfies this condition with the re-
quired accuracy. Resulted ground state density ma-
trix and Fock matrix may be thus used for the
excited-state TDHF calculation [35].

Acknowledgements

Support from the Hong Kong Research Grant
Council (RGC) and the Committee for Research and
Conference Grants (CRCG) of the University of
Hong Kong is gratefully acknowledged.

References

[1] W. Yang, Phys. Rev. Lett. 66 (1991) 1438.
[2] P. Cortona, Phys. Rev. B 44 (1991) 8454.
[3] G. Galli, M. Parrinello, Phys. Rev. Lett. 69 (1992) 3547.

[4] S. Baroni, P. Giannozzi, Europhys. Lett. 17 (1992) 547.
[5] X.-P. Li, RW. Nunes, D. Vanderbilt, Phys. Rev. B 47 (1993)
10891.
[6] F. Mauri, G. Galli, R. Car, Phys. Rev. B 47 (1993) 9973.
[7] P. Ordejon, D.A. Drabold, M.P. Grumbach, R.M. Martin,
Phys. Rev. B 48 (1993) 14646.
[8] W. Kohn, Chem. Phys. Lett. 208 (1993) 167.
[9] D.A. Drabold, O.F. Sankey, Phys. Rev. Lett. 70 (1993) 3631.
[10] A. Gibson, R. Haydock, J.P. LaFemina, Phys. Rev. B 47
(1993) 9229.
[11] M. Aoki, Phys. Rev. Lett. 71 (1993) 3842.
[12] E.B. Stechel, A.P. Williams, P.J. Feibelman, Phys. Rev. B 49
(1994) 10088.
[13] S. Goedecker, L. Colombo, Phys. Rev. Lett. 73 (1994) 122,
[14] W. Yang, T.-S. Lee, J. Chem. Phys. 103 (1995) 5674.
[15] JP. Stewart, Int. J. Quantum Chem. 58 (1995) 133.
[16] E. Hernandez, M.J. Gillan, Phys. Rev. B 51 (1995) 10157.
[17] M.C. Strain, G.E. Scuseria, M.J. Frisch, Science 271 (1996)
51
[18] S.L. Dixon, K.M. Merz Jr., J. Chem. Phys. 104 (1996) 6643.
[19] E. Hern'andez, M.J. Gillan, C.M. Goringe, Phys. Rev. B 55
(1997) 13485.
[20] E. Schwegler, M. Challacombe, M. Head-Gordon, J. Chem.
Phys. 106 (1997) 9708.
[21] W. Yang, Phys. Rev. B 56 (1997) 9294.
[22] S. Yokojima, G.H. Chen, Chem. Phys. Lett. 292 (1998) 379.
[23] S. Yokojima, G.H. Chen, Phys. Rev. B, in press.
[24] W.Z. Liang, S. Yokojima, G.H. Chen, J. Chem. Phys. 110
(1999) 1844.
[25] S. Yokojima, G.H. Chen, Chem. Phys. Lett. 300 (1999) 540.
[26] A. Takahashi, S. Mukamel, J. Chem. Phys. 100 (1994) 2366.
[27] H. Fukutome, J. Mol. Struct. THEOCHEM 188 (1989) 337.
[28] Z.G. Soos, S. Ramesesha, D.S. Galvao, S. Etemad, Phys.
Rev. B 47 (1993) 1742.
[29] P. Ring, P. Schuck, The Nuclear Many-Body Problem,
Springer, New York, 1980.
[30] G.H. Chen, S. Mukamel, J. Am. Chem. Soc. 117 (1995)
4947,
[31] V. Chernyak, S. Mukamel, J. Chem. Phys. 104 (1996) 444.
[32] R. McWeeny, Rev. Mod. Phys. 32 (1960) 335.
[33] L. Greegard, Science 265 (1994) 909.
[34] H.-Q. Ding, N. Karasawa, W.A. Goddard 111, J. Chem. Phys.
97 (1992) 4309.
[35] W.Z. Liang, S. Yokojima, D.H. Zhou, G.H. Chen, submitted.



