
26 March 1999

Ž .Chemical Physics Letters 302 1999 495–498

Linear-scaling computation of ground state with time-domain
localized-density-matrix method

Satoshi Yokojima, DongHao Zhou, GuanHua Chen )

Department of Chemistry, The UniÕersity of Hong Kong, Pokfulam Road, Hong Kong, China

Received 27 October 1998; in final form 18 January 1999

Abstract

Ž .Recently developed time-domain localized-density-matrix LDM method for calculating the electronic excited-state
properties has been applied to calculate the electronic ground state. The computational time remains to scale linearly with the
system size. To test the method, we use it to determine the ground states of polyacetylene oligomers containing up to 20000

Ž .carbon atoms. The Pariser–Parr–Pople PPP Hamiltonian is employed for the p electrons of the systems. Comparison to
the conventional diagonalization shows the high efficiency as well as accuracy of the time-domain LDM method. q 1999
Elsevier Science B.V. All rights reserved.

Ab initio molecular orbital calculations are usu-
ally limited to small- and medium-size molecular
systems. The obstacle lies in the rapid increasing of
computational cost as the systems become larger and
more complex. The computational time is propor-
tional to a certain power of the system size, i.e.,
t AN x, where t is the computational time, N iscpu cpu

the number of electronic orbitals, and x is some
number which is usually larger than 1. For instance,
the computational time of ab initio Hartree–Fock

Ž 3.molecular orbital calculation has an O N scaling.
This obstacle has been removed in principle. Several
linear scaling methods have been developed to calcu-

w xlate electronic ground states 1–21 .
Recently a LDM method has been developed to

calculate the excited-state properties of very large
electronic systems with explicit inclusion of the elec-
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w xtron–electron Coulomb interaction 22,23 , and its
computational time scales linearly with the system
size. It has been applied successfully to evaluate
absorption spectra of polyacetylene oligomers con-
taining up to 2000 carbon atoms. This method has
also been applied to the PPP-like model based on

w xnon-orthonormal basis set 24 . Based on a similar
idea, linear-scaling computation for the ground states
of one-dimensional systems has been achieved in the

w xfrequency domain 25 . However, this frequency-do-
main linear-scaling LDM calculation is confined to
the one-dimensional systems while general physical,
chemical, and biological systems are three dimen-
sional. Time-domain LDM method does not have
such a restriction, and is applicable to two- and
three-dimensional systems.

In this work, the time-domain LDM method is
modified to determine the ground states of poly-
acetylene oligomers. The PPP Hamiltonian is em-
ployed to describe the p electrons in the systems.
The linear-scaling behavior of the computational time
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is investigated. Comparison to the conventional
Ž .Hartree–Fock diagonalization HFD , which em-

ploys the same PPP Hamiltonian, is examined.
Ž .When an external electromagnetic field EE t is

applied to a polyacetylene oligomer, its p electrons
response to the field, and optical signals may be
observed. The p electrons in the polyacetylene are

w xwell described by the PPP Hamiltonian 26–28 ,

HsH qH qH . 1Ž .SSH C ext

Ž .H is the Su–Schrieffer–Heeger SSH Hamilto-SSH

nian, which consists of the Huckel Hamiltonian plus¨
electron–phonon coupling. H represents theC

Coulomb interaction among the p electrons and
nuclei. H is the interaction between the p elec-ext

Ž .trons and an external electric field EE t . We employ
w xthe same parameters as those in Ref. 23 . The

geometry is fixed in the calculation. N carbon p-
orbitals are employed as the basis set, and m and n
represent p-orbitals at the sites m and n, respec-

w xtively. Within the TDHF approximation 29 , a closed
non-linear self-consistent equation of motion is
yielded for the reduced single-electron density ma-

Ž .trix r t ,

i" r t s h t q f t ,r t . 2Ž . Ž . Ž . Ž . Ž .˙
Ž .Here h t is the Fock matrix:

h t s t q2d Õ r t yÕ r t ,Ž . Ž . Ž .Ýnm nm n ,m nl l l nm nm
l

3Ž .

where t is the hopping matrix element between mnm

and n, and Õ is the Coulomb repulsion betweennm
Ž .two electrons at m and n, respectively. f t de-

scribes the interaction between an electron and the
Ž . w xexternal field EE t 26 .

Ž .The PPP–Hartree–Fock PPP–HF ground-state
density matrix r Ž0. may be determined by the fol-

w xlowing equation 25 ,

Ž0. Ž0.h ,r s0 , 4Ž .
together with the idempotency requirement,

r Ž0.r Ž0.sr Ž0. , 5Ž .
Ž0. Ž .where h is the Fock matrix when EE t s0.

Ž .The TDHF Eq. 2 is usually used to simulate the
electronic response to the external field. In this work
it is modified to determine the PPP–HF ground state

Ž . Ž .by setting EE t s0 or f t s0. Starting from an
Ž .initial guess of the density matrix r ts t at time0

ts t , we follow its time evolution by integrating the0

following equation

d
i " qg t r t s h t ,r t . 6Ž . Ž . Ž . Ž . Ž .

d t

Ž .g t is a phenomenological dephasing parameter. It
is time dependent and approaches zero over the time.
It is introduced to improve the calculation efficiency

Ž . Ž0.and ensure the eventual convergence r t to r .
Ž .g t may be of different forms, and we chose the

following expression in our calculation,

1
g t sg , 7Ž . Ž .0 1q ty t rtŽ .0

where t is the initial time and g is the dephasing0 0

parameter at ts t . t is the time constant which is0

approximately the simulation time. Since r Ž0. is real,
Ž .we retain only the real part of r t as the current

approximate density matrix after each integration
Ž .step of Eq. 6 over a time interval D t. This acceler-

ates the elimination of the excited-state components
Ž . Ž .in r t , which can be seen by expanding r t in

terms of the eigenvectors r of the Liouville opera-n

w xtor 26,30,31 :

Ž0.r t ,c r q c exp yiv ty d t g t r ,Ž . Ž .Ý H0 n n n

n

8Ž .

where v is the frequency for the eigenvector r andn n

Ž . Ž0.we assume that the difference between r t and r

w Ž .xis small. Retaining only Re r t as the approximate
density matrix reduces thus the excited-state compo-

Ž . Ž .nents in r t by extra factor cos v t . The idempo-n

tency is then imposed by the following equation
w x5,32 :

2 3X
r s3 r y2 r . 9Ž . Ž . Ž .

Ž .Eq. 9 is repeated several times till a convergence is
reached. The resulting r

X is taken as the new ap-
proximate density matrix. The above process, which

Ž .includes the integration of Eq. 6 over D t, retaining
w Ž .xof Re r t and imposing idempotency, is employed

Ž .iteratively until the density matrix r t is converged.
Note that the initial guess is preferably close enough
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Fig. 1. Comparison between HFD and LDM CPU time on SGI
Ž . Ž .Origin 200 workstation. A LDM: a s80 and a s30; and Bc

LDM: a s50 and a s20.c

to the real ground state density matrix r Ž0.; other-
wise a divergence may occur.

To achieve the linear-scaling computation of
ground state, we adopt similar approximations as the
linear-scaling LDM calculation for the excited states
w x Ž . < <22,23 . First, we set r t to 0 for iy j )a ori, j

Žr ) l where r is the distance between atoms ii j 1 i j

and j and l is the critical length for the first1
w x.induced density matrix 22,23 . The critical length

Žl is used instead of l which is the critical length of1 0

the ground-state reduced density matrix as defined in
w x. w xRef. 22,23 to ensure the convergence 25 . This is

Ž .because that r t contains contributions from the
excited states. Secondly, we employ the same trunca-

w xtion as Refs. 22,25 to evaluate an electron–electron
Ž .interaction contribution to the right-hand-side rhs

Ž . Ž .of Eq. 6 , namely 2Ý Õ yÕ r r is approxi-k i,k j,k i, j k k

mated by

2 Õ yÕ r r , 10Ž . Ž .Ý i ,k j ,k i , j k k
k (k(k0 1

where k and k are given, respectively, by k s0 1 0
w Ž .x w Žmax 1,min iya , jya and k smin 1,max iqc c 1

.xa , jqa . a is the number of atomic orbitalsc c c

within another critical length l which is less than lc 1
w xfor polyacetylene oligomers 22,24 .

In our calculation, the convergence criteria for
Ž .Eq. 6 is given by

h r yr h rN-R , 11Ž .Ž .Ý Ý i k k j i k k j 1
ij k

Ž .and for Eq. 9

< X <r yr rN-R . 12Ž .Ý i j i j 2
ij

y6t sy0.05 fs, g s10 eV, ts10 fs, and D ts0 0

0.138 fs have been employed.
The CPU time comparison between HFD and

LDM methods is given in Fig. 1. Two LDM calcula-
Ž . y6tions are examined: A as80, a s30, R s10c 1

y9 Ž . y3eV, and R s10 , B as50, a s20, R s102 c 1

eV and R s10y9. For HFD we use the conver-2

gence criteria R s10y6 eV. The simulation times1
Ž . Ž .for A and B are ;3 and ;0.5 fs, respectively.

Linear-scaling of CPU time is demonstrated for both
Ž . Ž .A and B . A drastic saving of CPU time is achieved
for the LDM method compared to the HFD. When N
is small, the HFD method requires less time because
a relatively large overhead is required for the LDM
method. The crossover in CPU time appears at Ns

Ž . Ž .500 and less than 200 for A and B , respectively
Ž .see the insert of Fig. 1 .

To assess the accuracy of our LDM calculation,
we compare the ground-state energies of LDM with
that of the HFD method. The relative energy error is
expressed as:

E yEHFD LDM
rs , 13Ž .

EHFD

and is shown in Fig. 2. R s10y8 eV is employed1

here for HFD. This figure shows that the LDM
ground-state energies is in an excellent agreement
with those of the HFD for any oligomer with Ns
100;2000. Note that the small energy difference

Ž .Fig. 2. Relative energy errors of two LDM calculations A and
Ž . Ž . Ž .B . Filled squares are for A , and filled circles for B .
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Ž . Ž .between two sets of LDM parameters A and B .
Ž .We emphasize that B requires much less computa-

tional effort while the same high accuracy is achieved
Ž .compared to A .

Ž .The second approximation Eq. 10 has been
shown to be an extremely good one for polyacety-

w xlene 24 , and our current result provides the further
Ž .evidence see Fig. 2 . The justification of the approx-

imation comes mainly from the cancellation which is
w xcaused by the charge conservation 24 . The fast

Ž .multiple method FMM has been used to calculate
w xthe summation of Coulomb interaction 17,33,34 ,

and its computational timescales linearly with the
w xsystem size 17,34 . It may be an alternative way to

w xreplace the second approximation 35 . As we have
w x Ž .pointed out in Ref. 25 , Eq. 4 have to be satisfied

for calculating the excited-state properties within the
TDHF approximation. The time-domain LDM
method clearly satisfies this condition with the re-
quired accuracy. Resulted ground state density ma-
trix and Fock matrix may be thus used for the

w xexcited-state TDHF calculation 35 .
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