Li₄Ti₅O₁₂ Nanoshell on TiO₂ Nanofibers as a Durable Anode for Li-Ion **Battery Energy Storage**

Ching-Kit Ho, Chi-Ying Vanessa Li,[∗] Changzhong Liao,[∥] Yee-Yan Tay,[∥] Ka-Ming Leung,[∥] Chi-Kin Jenkin Tsui, GuanHua Chen, and Kwong-Yu Chan*

KEYWORDS: *lithium titanate, titania nanofibers, titania hybrid electrode, lithium-ion batteries, initial irreversible capacity loss, nanoshell,* energy storage, SEI mitigation

INTRODUCTION

 TiO_2 polymorphs, including anatase, rutile, and $TiO_2(B)$ (bronze), have been extensively studied for lithium-ion batteries (LIBs) as titanium anode alternatives to the commercialized Li₄Ti₅O₁₂ (LTO).¹ These TiO₂ polymorphs exhibit theoretical capacity [335 mA h g^{-1} for TiO₂(B); 168 mA h g^{-1} for anatase and rutile] and lithiation/delithiation potential (1.4-1.8 V vs Li⁺/Li) comparable to that of LTO (175 mA h g^{-1} , 1.55 V vs Li⁺/Li), which is sufficient to provide a high energy density without causing safety concern related to lithium dendrite formation. However, these TiO₂ polymorphs still have drawbacks. In general, TiO₂ suffers from the initial irreversible capacity loss (ICL), due to the facile solidelectrolyte interphase (SEI) formation by electrolyte reduction on the TiO₂ surface.^{2,3} Such an electrically insulating SEI layer limits the high-rate performance of TiO_2 . $TiO_2(B)$ in particular can have significant ICL as high as 20-40%,⁴⁻⁶ while for anatase and rutile TiO_2 is around 10%. In contrast, $Li_4Ti_5O_{12}$ (LTO) has high stability toward the electrolyte, resulting in minimal SEI formation and negligible initial ICL.⁷ Although LTO has a lower theoretical capacity (175 mA h g^{-1}), it provides excellent cyclability and delivers a flat voltage plateau with negligible volume expansion (0.2%) during lithiation/ delithiation (cf. 4% for TiO_2).⁸

eliminate the initial irreversible capacity loss of other electrodes.

One of the main applications of lithium-ion batteries (LIBs) is grid energy storage, which demands not only high energy density but also safe and stable cycling with little capacity depreciation over long-term operation. High power density (related to fast charge/discharge ratio) is a relatively less significant consideration for grid energy storage. Although graphite anode can offer higher theoretical energy density than typical TiO₂ and LTO anodes, its extremely low lithiation/ delithiation potential can cause excessive lithium plating and uncontrollable growth of lithium dendrite during repeated cycling and in turn increase the risk of fatal internal short circuit and explosion. In comparison with graphite, TiO₂ and LTO anodes have much higher lithiation/delithiation potential with longer calendar life and cycle life and thus are more suitable candidates as LIB electrode materials for grid-energy storage application.

To address the demands for high-performance and stable TiO₂ and LTO anodes, there are increasing efforts to develop TiO₂-based multiphase nanostructures with low-energy barrier interfaces for charge transport.⁹ Dual-phase Li₄Ti₅O₁₂/anatase TiO₂,¹⁰⁻¹³ Li₄Ti₅O₁₂/rutile TiO₂,¹⁴⁻¹⁶ TiO₂(B)/anatase TiO₂,¹⁷⁻¹⁹ and anatase/rutile TiO₂ nanostructures⁴ have been reported for enhanced performance. However, no

May 19, 2023 Received: **Revised:** October 25, 2023 Accepted: October 25, 2023 Published: November 13, 2023

nanofibers

Figure 1. Synthesis and formation mechanism of the $Li_4Ti_5O_{12}$ nanoshell on TiO_2 nanofibers (LTO-TiO_2).

previous reports utilize the SEI-free property of LTO by coating it on TiO₂ to eliminate SEI formation. Either phase separation between LTO and $TiO_2^{10-13,16}$ or TiO_2 coating on LTO particles^{14,15,20} are reported. In our previous study,²¹ the $TiO_2(B)/Li_4Ti_5O_{12}$ nanofiber (denoted as TB/LTO) is synthesized via one-step hydrothermal lithiation of pristine $TiO_2(B)$ nanofibers. As for TB/LTO, $Li_4Ti_5O_{12}$ (LTO) is only preferentially grown at the both ends of $TiO_2(B)$ nanofibers, resulting in dumbbell-like morphology; due to the preferred lattice commensurability between the (020) plane of $TiO_2(B)$ and $Li_4Ti_5O_{12}$.²¹ To further reduce the SEI formation of TiO_{24} it would be desirable to cover the pristine TiO₂ fibers fully with $Li_4Ti_5O_{12}$. Herein, for the first time, we develop a new strategy to construct a $Li_4Ti_5O_{12}$ nanoshell that fully covers TiO_2 nanofibers. This will mitigate SEI formation and thereby increase its stability and long-term capacity of TiO₂. The LTO nanoshell structure, the core TiO₂ nanofiber, and the interface between them are analyzed, and electrochemical contributions of each region are discussed.

RESULTS AND DISCUSSION

Li₄Ti₅O₁₂ nanoshell on TiO₂ nanofibers (LTO–TiO₂) is fabricated via a two-step postsynthesis of TiO₂ nanofibers (TiO₂) consisting of mainly TiO₂(B). As illustrated in Figure 1, it first involves synthesizing an amorphous TiO₂ (a-TiO₂) layer entirely around TiO₂ nanofibers, followed by hydrothermal lithiation of the a-TiO₂ layer to form the Li₄Ti₅O₁₂ (LTO) nanoshell on TiO₂ nanofibers. Details of the synthesis can be found in the Experimental Section.

Successful integration of LTO into TiO₂ is evidenced by high-resolution XRD (HR-XRD) and microscopy results. With the LTO coverage on TiO_2 (i.e., LTO- TiO_2), the major XRD diffraction peaks of spinel Li₄Ti₅O₁₂ (JCPDS no. 49-0207) clearly appear along with the monoclinic $TiO_2(B)$ peaks (JCPDS no. 46-1238) and anatase TiO₂ peaks (JCPDS no. 75-1537) as demonstrated in the Rietveld refinement (goodnessof-fit: 1.5), as shown in Figure 2a. The composition of LTO-TiO₂ derived from Figure 2a is determined to be 27.1 wt % $Li_4Ti_5O_{12}$, 38.4 wt % $TiO_2(B)$, and 34.5 wt % anatase TiO_2 using quantitative Rietveld refinement method (Table 1). The lattice parameters and crystallite size with respect to $TiO_2(B)$, LTO, and anatase TiO_2 are also calculated using the Scherrer equation, and summarized in Table 1. The LTO-TiO2 composite shows only negligible change in lattice parameters (a, b, c) of $TiO_2(B)$, suggesting $Li_4Ti_5O_{12}$ is formed outside the TiO₂ fibers without disturbing the entire lattice of $TiO_2(B)$. However, there is still an increase in the crystallite size of TiO₂ from its pristine form to LTO-TiO₂, which can be attributed to the crystal growth of TiO₂ fibers during the hydrothermal lithiation under elevated temperature. The intermediate amorphous TiO₂-coated TiO₂ nanofibers (a-

nanofibers

Figure 2. (a) HR-XRD patterns of Li₄Ti₅O₁₂ nanoshell on TiO₂ nanofibers (LTO–TiO₂) with Rietveld refinement (goodness-of-fit: 1.5), and the corresponding peak decomposition into Li₄Ti₅O₁₂, TiO₂(B), and anatase TiO₂. (b) HR-XRD patterns of Li₄Ti₅O₁₂ nanoshell on TiO₂ nanofibers (LTO–TiO₂), the intermediate phase of amorphous TiO₂-coated TiO₂ nanofibers (a-TiO₂), and pristine TiO₂ (TiO₂).

 TiO_2) have similar XRD patterns of $TiO_2(B)$ and anatase as that of pristine TiO_2 nanofibers (Figure 2b).

As shown by SEM images in Figure 3a,b, $LTO-TiO_2$ retains the nanofiber morphology of pristine TiO_2 (Figure S1), but with a larger fiber diameter of 200–350 nm (cf. 20–200 nm for pristine TiO_2) and a rugged surface due to the LTO nanoshell. From the HRTEM analysis in Figure 3c, LTO- TiO_2 nanofibers are uniformly covered by jagged-shaped nanocrystals with a thickness of 60 nm, forming a pseudocore/

Table 1. Summary of the wt % Composition, Lattice Parameter (Å), and Crystallite Size (nm) of the Samples Calculated Using Rietveld Refinement from HR-XRD

			$\begin{array}{c} \text{Li}_{4}\text{Ti}_{5}\text{O}_{12} \text{ nanoshell on } \text{TiO}_{2} \\ (\text{LTO-TiO}_{2}) \end{array}$	amorphous TiO_2 on TiO_2 (intermediate phase, $a-TiO_2$)	pristine TiO ₂ (TiO ₂)
composition (wt %) TiO ₂ (B)		38.4	83.3	86.2	
	Li ₄ Ti ₅ O ₁₂ anatase TiO ₂		27.1	0	0
			34.5	16.7	13.8
lattice parameter (Å)	$TiO_2(B)$	а	12.204	12.195	12.203
		Ь	3.757	3.760	3.763
		с	6.523	6.524	6.521
	$\mathrm{Li}_4\mathrm{Ti}_5\mathrm{O}_{12}$	a = b = c	8.364	n/a	n/a
	anatase TiO_2	a = b	3.788	3.786	3.778
		с	9.509	9.518	9.497
crystallite size (nm)	ite size (nm) TiO ₂ (B)		8.7	7.3	5.6
Li ₄ Ti ₅ O ₁₂		O ₁₂	11.9	n/a	n/a
	anatase	TiO ₂	17.0	9.6	8.7

Figure 3. SEM images of (a) $LTO-TiO_2$ and (b) the respective enlarged region highlighted in yellow box in (a). (c) TEM image of $LTO-TiO_2$ showing the core of TiO_2 uniformly covered by $Li_4Ti_5O_{12}$ nanoshell, and (d) HRTEM image of the enlarged yellow square region in (c), showing the jagged-shaped nanocrystals on $LTO-TiO_2$ nanofibers, with the respective FFT images taken on the region of (e) $Li_4Ti_5O_{12}$ nanocrystals and (f) TiO_2 nanofibers from figure (d).

Figure 4. (a) HRTEM image of the interface between the TiO_2 core and $Li_4Ti_5O_{12}$ nanoshell of the LTO- TiO_2 nanofiber, and the respective FFT images taken on the region of the (b-d) core: (b) isolated $TiO_2(B)$, (c) isolated anatase TiO_2 , (d) overall, and (e) $Li_4Ti_5O_{12}$ nanoshell.

shell nanostructure. These jagged-shaped nanocrystals are composed of LTO, as indicated by the LTO(111) and (311) lattice fringes in HRTEM (Figure 3d) and the corresponding diffraction spots in the fast Fourier transform (FFT) image (Figure 3e). The core of the nanofiber remains as TiO₂, as identified by the TiO₂(B)(200) lattice fringes (Figure 3d) and diffraction spots (Figure 3f) of TiO₂. Further SAED analysis is performed to identify anatase TiO₂ and TiO₂(B) in the nanofiber of LTO-TiO₂. As shown in the SAED of the LTO-TiO₂ in Figure S2, clearly there is no overlap of the diffraction spots of TiO₂(B) and anatase TiO₂, corresponding to *d*spacing of (200), (101) TiO₂(B) planes, and (101) anatase TiO₂ plane in agreement to HR-XRD results.

Additional HRTEM analysis is performed on the interface between the jagged-shaped LTO nanoshell and the nanofiber core. As observed in Figure 4a, there is a clear boundary between the Li₄Ti₅O₁₂ nanoshell and the TiO₂ core. From the lower region of Figure 4a, the LTO nanoshell on the TiO_2 core is composed purely of LTO with d-spacing of 0.16 and 0.26 nm, corresponding to the (333) and (311) lattice fringes, respectively, and their respective diffraction spots can be clearly observed in Figure 4e. Meanwhile, the nanofiber core (upper section of Figure 4a) consists of both $TiO_2(B)$ and anatase TiO₂, as confirmed by their corresponding lattice fringes and diffraction spots (Figure 4d)—(110) and (200) for $TiO_2(B)$, and (101) for anatase TiO₂. This overall FFT image of the TiO_2 core (Figure 4d) is further isolated into individual components as $TiO_2(B)$ (Figure 4b), and anatase TiO_2 (Figure 4c). Again, anatase TiO_2 and $TiO_2(B)$ show different specific patterns of diffraction spots that do not overlap. Thus, anatase TiO_2 and $TiO_2(B)$ can be distinguished. Anatase TiO_2 is not detected in the nanoshell, but is present in the core of the nanofibers locally adjacent to $TiO_2(B)$ particles. Such a zigzag pattern of TiO₂(B) and anatase TiO₂ is commonly observed in the $TiO_2(B)$ nanofiber because of the perfect lattice matching between certain lattice planes of $TiO_2(B)$ and anatase TiO₂.²² As evident from Figure 4a, zigzag interfaces between the planes of $TiO_2(B)_{(110)}$ and anatase $TiO_{2(101)}$ are mainly observed in the TiO₂ core. By calculating the lattice mismatch of $TiO_2(B)(110)$ and anatase $TiO_2(101)$ between these two planes using the general definition given by $(d_{TB}$ $d_{\rm TA}/d_{\rm TB}$, where d is the interplanar spacing (nm) of the corresponding plane], the lattice mismatch is small (mere 3.1% from Table 2a). This is in agreement with literature results.

The mechanism leading to the formation of a preferential LTO-TiO₂ core-shell morphology is proposed. During synthesis, the TiO_2 core are uniformly covered by an amorphous TiO₂ layer, as an intermediate step, prior to the formation of LTO-TiO₂ (Figure 1). The major (020), (200), and (001) lattice planes of the TiO_2 core observed in XRD are not exposed. Instead, the amorphous TiO₂ buffer layer prevents the preferential growth of LTO on the (020) lattice plane of $TiO_2(B)$. LTO is converted via lithiation from the amorphous TiO_2 coating, leading to a core/shell $TiO_2/$ Li₄Ti₅O₁₂ configuration, as demonstrated by the interface (i) between Li₄Ti₅O₁₂₍₃₁₁₎ and anatase TiO₂₍₁₀₁₎ planes and (ii) $Li_4Ti_5O_{12(333)}$ and $TiO_2(B)_{(110)}$ planes (observed in the HRTEM image in Figure 4a). The corresponding lattice mismatch between $Li_4Ti_5O_{12(311)}$ and anatase $TiO_{2(101)}$ is calculated to be 27.7% (Table 2b). This lattice mismatch is significantly lower than that of the anatase $TiO_2(101)$ plane intersecting with other individual planes of Li₄Ti₅O₁₂ [i.e., (333), and (111) as demonstrated in Table 2b and thus

Table 2. (a) Summary of Lattice Mismatches of $TiO_2(B)/A$ natase TiO_2 Interfaces in the Core of $LTO-TiO_2$ Nanofibers; (b) Summary of Lattice Mismatches of Anatase $TiO_2/Li_4Ti_5O_{12}$, and $TiO_2(B)/Li_4Ti_5O_{12}$ Interfaces of $LTO-TiO_2^{a}$

(a)	Lattice mis	match w.r.t.	TiO ₂ anatase					
	TiO (۹	₂ (B) %)	(101) <i>/ 0.34</i> 7	(200) / 0.189	(211) / 0.167	(004) / 0.238		
	TiO (P)	(110) / 0.358	3.1	47.2	53.3	33.5		
	11O ₂ (B)	(200) / 0.583	40.5	67.6	71.4	51.5		

(b)	Lattice n	nismatch	Li ₄ Ti ₅ O ₁₂		
	w.r.t. ٦ (%	ΓiΟ₂(B) %)	(333) (311) /0.16 /0.251 53.9 27.7		
	TiO₂ anatase	(101) / 0.347	53.9	27.7	
	TiO ₂ (B)	(110) / 0.358	55.3	29.9	
	TiO ₂ (B)	(200) / 0.583	72.6	56.9	

^aThe interplanar spacing (unit in nm) is shown in italics underneath the corresponding lattice planes. The green-shaded boxes are the major interfaces detected in $LTO-TiO_2$ using HRTEM analysis, while the green italic fonts represent planes observed in Figure 4a.

thermodynamically favors the nucleation and crystal growth of LTO from the (101) anatase TiO_2 lattice plane. As a result, the (311) plane of LTO tends to preferentially grow from the (101) anatase plane, while the interface between $Li_4Ti_5O_{12(333)}$ and $TiO_2(B)_{(110)}$ demonstrates preferential growth of the (333) plane of LTO from the (110) $TiO_2(B)$ plane (as evident in Figure 4a). The LTO product is of high crystallinity with a well-defined morphology. The (111) plane of $Li_4Ti_5O_{12}$ is not observed at the interface between the TiO_2 core and $Li_4Ti_5O_{12}$ nanoshell, but rather at the outer diameter of the LTO nanoshell (as shown in Figure 3d). Since the (200) $TiO_2(B)$ plane is perpendicular to the interface boundary, it is not a preferred direction to grow LTO, as evidenced from the larger lattice mismatch with $Li_4Ti_5O_{12}$, as shown in Table 2b.

The Li₄Ti₅O₁₂ nanoshell on the TiO₂ nanofiber (LTO–TiO₂) demonstrates superior performance as an anode for lithium-ion batteries, and its performance is summarized (Table 3) and compared to that of pristine TiO₂ (TiO₂) and bulk Li₄Ti₅O₁₂ (LTO). Bulk LTO is synthesized by conventional solid-state method. The cyclic voltammetry (CV) curve of LTO–TiO₂ (Figure 5a) shows a major reversible redox peak at 1.53/1.62 V versus Li⁺/Li, corresponding to a combined peak of Li₄Ti₅O₁₂ and TiO₂(B). Another minor redox peak at 1.74/2.00 V versus Li⁺/Li, corresponding to anatase TiO₂. The overall lithiation/delithiation process of LTO–TiO₂ nanofiber can be described as

Anatase
$$\text{TiO}_2 + 0.5\text{Li}^+ + 0.5\text{e}^-$$

 $\stackrel{\text{discharge}}{\longleftrightarrow} \text{Li}_{0.5}\text{TiO}_2 \quad E_p: 1.74 \text{ V}/2.00 \text{ V}$
(1)

$$\underset{\text{charge}}{\text{Li}_{4}\text{Ti}_{5}\text{O}_{12} + \text{Ti}\text{O}_{2}(\text{B}) + 4\text{Li}^{+} + 4\text{e}^{-} \\ \underset{\text{charge}}{\overset{\text{discharge}}{\longleftarrow}} \text{Li}_{7}\text{Ti}_{5}\text{O}_{12} + \text{Li}\text{Ti}\text{O}_{2} \quad E_{p}:1.53 \text{ V}/1.63 \text{ V}$$

$$(2)$$

www.acsaem.org

•	100	
- A	гис	le.

Fable 3. Summary	y of the Electrochemical 1	Performance of LTO	-TiO ₂ and Pristine TiO ₂	
ubic 5. Summu	y of the Diethoenenneur		110) und 1 listine 110)	2

Samples	Discharge capacity (mAhg ^{.1})		First-cycle irreversible capacity loss		Discharge capacity retention after 1000 cycles (Wh kg ⁻¹)	SEI resistance (R _{SEI}) (Ω)	Charge transfer resistance (R _{cT})	Capacitance (C _d) (F)	Li-ion diffusion coefficient (cm² s⁻¹)	
	0.175 Ag ⁻¹	1.75 Ag ⁻¹	0.035 Ag ⁻¹	1.75 Ag ⁻¹	1.75 Ag ⁻¹		. ,	(12)		
LTO-TiO ₂	188	152	3 %	4 %	96 %	380	0	100 – 107	9.4×10 ⁻⁴	2.6×10 ⁻⁸ - 2.8×10 ⁻⁸
TiO ₂	169	123	15 %	17%	75 %	263	98 – 120	103 – 128	7.1×10 ⁻³	1.0×10 ⁻¹⁰ – 2.8×10 ⁻¹⁰

Figure 5. (a) CV curves of LTO–TiO₂, pristine TiO₂, and bulk LTO. (b) Discharge curves of LTO–TiO₂ and TiO₂ at different current densities from 35, 175, and 1750 mA g⁻¹. (c) Discharge rate capability performance of LTO–TiO₂, TiO₂, and bulk LTO, (d) long cycling performance of LTO–TiO₂ and TiO₂ in terms of discharge capacity retention, conducted at 1.75 A g⁻¹ over 1000 cycles. Inset: initial irreversible discharge capacity loss (ICL) of LTO–TiO₂ and TiO₂ at 35 mA g⁻¹ and 1.75 A g⁻¹ at the first cycle. (e) Discharge capacity retention of LTO–TiO₂ and pristine TiO₂ nanofiber at a constant current charge/discharge of 35 mA g⁻¹ (filled symbol) and 1.75 A g⁻¹ (unfilled symbol) for the initial first five cycles.

As observed from the cyclic voltammograms in Figure 5a, $LTO-TiO_2$ has sharper redox peaks and higher peak current density than that of pristine TiO_2 . This can be attributed to the reduced pesudocapacitive contribution from $TiO_2(B)$ due to the $Li_4Ti_5O_{12}$ coverage on the TiO_2 core. As a result, the integrated peak area of $LTO-TiO_2$ is larger, suggesting a higher lithium storage capacity of $LTO-TiO_2$. The redox peak

potential separation observed for the major peak (1.53/1.62 V) is 0.09 V for LTO–TiO₂, which is smaller than that of pristine TiO₂ (0.17 V) and bulk LTO (0.18 V) and hence lower polarization for LTO–TiO₂.

The discharge plateau for $LTO-TiO_2$ is flat and stable at all C-rates (Figure 5b). However, its capacity is not of equal contributions from anatase TiO_2 , $TiO_2(B)$, and $Li_4Ti_5O_{12}$ and

www.acsaem.org

Figure 6. Nyquist plots (symbol) of (a,c) LTO-TiO₂ and (b,d) pristine TiO₂ at 1.00 V (i.e., at the end of each discharge cycle), over the initial five discharge/charge cycles, fitted by the respective equivalent circuit model shown in inset (solid line) with minimal fitting error.

highly dependent on the current applied. Capacity contribution from anatase TiO_2 is only apparent at low current density (low C-rate), whereas the combined effect of $TiO_2(B)$ and $Li_4Ti_5O_{12}$ accounts for the major capacity contribution and stable discharge plateau at ~1.5–1.55 V.

At low C-rates (35 and 175 mA g^{-1}), two discharge plateaus corresponding to anatase TiO_2 (1.74 V), and the combined effect of $TiO_2(B)$ and LTO (1.53 V) can be observed in Figure 5b. The reverse charging plateau occurs at 1.63 V for the combined effect of $TiO_2(B)$ and LTO, and at 2 V for anatase TiO₂, respectively. With increased current density, one discharge/charge voltage plateau is observed at 1.53 V/1.63 V corresponding to the combined effect of $TiO_2(B)$ and LTO. As demonstrated by the disappearance of voltage plateau (1.74 V/2 V) corresponding to anatase TiO₂ in both charge and discharge curves of LTO-TiO₂ at high rate of 10 C (1.75 A g^{-1}) (Figure 5b), the lithiation and delithiation of anatase TiO₂ do not contribute to the capacity of the composite at high rate. Since anatase TiO₂ lithiates/delithiates through Faradic diffusion-controlled intercalation mechanism instead of the pseudocapacitive mechanism as observed for $TiO_2(B)$; most of the capacity for LTO-TiO₂ is contributed from $TiO_2(B)$ rather than anatase TiO₂, particularly at high C rates, despite the presence of anatase TiO_2 in LTO- TiO_2 .

LTO-TiO₂ shows a superior rate capability and reversibility than pristine TiO₂ and bulk LTO. As shown in Figure 5c, at low applied current density of 35 and 100 mA g⁻¹, LTO-TiO₂ has a reversible discharge capacity of 226 and 210 mA h g⁻¹, respectively, a 6 and 10% higher than pristine TiO₂. When subjected to high-rate discharge at 1.75 and 2.63 A g⁻¹, the discharge capacity of LTO-TiO₂ can reach 152 and 133 mA h g⁻¹, respectively, which leads to a significant improvement of 24 and 35% compared to pristine TiO₂ at the same discharge rates. LTO-TiO₂ clearly demonstrates superior high-rate capability and reversibility. It should be noted that at the first cycle, the capacity of $LTO-TiO_2$ is lower than that of TiO_2 , due to the lower theoretical capacity of LTO. There is a significant irreversible capacity loss observed in the first cycle of TiO_2 at 35 mA g⁻¹ (from 263 to 223 mA h g⁻¹, i.e., 15% drop).

The initial irreversible capacity loss (ICL) of pristine TiO_2 can be effectively mitigated in LTO-TiO₂, so the discharge capacity of LTO-TiO2 is consistently high. As shown in Figure 5d and inset, at 1.75 A g^{-1} , LTO-TiO₂ maintains a discharge capacity retention of 96% over 1000 cycles, equivalent to a mere 4% initial ICL (cf. 17% for TiO₂). At 35 mA g^{-1} , the initial ICL is slightly smaller at 3% (cf. 15% for TiO_2), and the discharge capacity retention of LTO- TiO_2 over 1000 cycles is 97%. This indicates that the uniform LTO coating on TiO_2 is effective in reducing the ICL to a negligible level. The initial irreversible capacity loss for the first five cycles is further studied for both $LTO-TiO_2$ and the pristine TiO_2 nanofiber (Figure 5e). When charge/discharge at a constant current of 35 mA g^{-1} and 1.75 A g^{-1} , LTO–TiO₂ shows the respective discharge capacity retention is 97 and 96% (Figure 5e), corresponding to the first cycle irreversible capacity loss of 3 and 4%. After five cycles, the capacity retention of LTO-TiO₂ is around 93% for both currents, corresponding to an initial irreversible capacity loss of 7%. Compared to the pristine TiO_2 nanofiber (TiO₂), the respective discharge capacity retention is 84 and 83% (Figure 5e) under constant charge/ discharge currents of 35 mA g^{-1} and 1.75 A g^{-1} , corresponding to the first cycle irreversible capacity loss of 16 and 17%. After five cycles, the capacity retention of TiO₂ nanofiber is around 79 and 77% under constant charge/discharge currents of 35 mA g⁻¹ and 1.75 A g⁻¹, corresponding to an initial irreversible capacity loss of 21 and 23%, respectively. Clearly, the first cycle irreversible capacity loss of LTO-TiO₂ is significantly reduced

www.acsaem.org

Figure 7. (a) Ragone plot and (b) initial irreversible capacity loss of LTO–TiO₂ (pink \blacksquare) and pristine TiO₂ (blue \checkmark), compared to those Li₄Ti₅O₁₂/TiO₂ composites and TiO₂(B) reported in literature. Among the irreversible capacity loss reported in literature, only low discharge current performance (17.5–250 mA g⁻¹) is reported for TiO₂-based materials.

to 4% at a high current density of 1.75 A g^{-1} due to the introduction of LTO coating which prevented SEI formation of TiO₂. This aligns with the results from the EIS study in the latter section.

The Li₄Ti₅O₁₂-TiO₂ core-shell structure can lead to negligible SEI formation and enhanced charge transfer, as evident from the electrochemical impedance spectroscopy (EIS) for the initial five charge/discharge cycles. As shown in Figure 6a,c, only one depressed semicircle is observed in the Nyquist plots of LTO–TiO₂ at the end of each discharge cycle over five cycles, and these impedance data can be well-fitted by equivalent circuit model (I) (shown as inset of Figure 6a,c) with Ohmic resistance (R_{ohm}) , charge transfer resistance (R_{CT}) and capacitor component (C_d) contributed from TiO₂, but no SEI impedance (R_{SEI}) component, under minimum and negligible fitting error. Hence, the R_{SEI} for LTO-TiO₂ maintains 0 Ω over the initial five cycles (Table S1), aligns with the negligible decrease in initial capacity observed in experimental charge/discharge (inset of Figure 5d). In contrast, the Nyquist plots of TiO₂ (Figure 6b,d) show two depressed semi circles, which can only be fitted by equivalent circuit model (II) (shown as inset of Figure 6b,d) with additional component ascribed to SEI. The additional semicircle observed is ascribed to the SEI formed on the electrode. The R_{SEI} for TiO₂ is 110 Ω at the end of the first cycle discharge (derived from Figure 6b), which is significantly higher than that of LTO–TiO₂ (0 Ω). Over five cycles, R_{SEI} of TiO₂ is unstable with large fluctuations (Figure 6d) (108.4 Ω \pm 10.1%); such unstable SEI on TiO₂ can be readily removed, resulting in immediate re-exposure of TiO₂ surfaces to the electrolyte for new SEI formation aggregated upon subsequent discharge, thereby larger initial capacity loss accumulated.

To further demonstrate that LTO–TiO₂ does not show any SEI resistance, we fit the Nyquist plot of LTO–TiO₂ using the equivalent circuit model (II) of TiO₂ which has an SEI component. As shown in Figure S3, the fitted line, with SEI component (red curve) does not match the corresponding impedance data of LTO–TiO₂, with an error of 26.7%, showing an additional semicircle ($R_{\text{SEI}} = 31.5 \Omega$) and the low frequency slope cannot be modeled properly. In contrast, this equivalent circuit model (II) can perfectly fit the Nyquist plot of TiO₂ with a minimum error (0.07%) (Figure 6b). We also perform extra EIS study on bare LTO. No SEI component is observed for the Nyquist plot of bare LTO and LTO–TiO₂, suggesting the LTO nanoshell does prevent the growth of SEI from TiO₂. As shown in Figure S4, the Nyquist plot of bare LTO shows one semicircle, which can only be well-fitted by equivalent circuit model without capacitor (c_d) and SEI impedance (R_{SEI}) components (fitting error: 0.04%).

In addition, over cycling, as demonstrated in Tables S1 and S2, LTO–TiO₂ has lower charge transfer resistance ($R_{\rm CT}$) (110 Ω), and more than 250 times higher lithium-ion diffusion coefficient ($D_{\rm Li}$) (2.56–2.81 × 10⁻⁸ cm² s⁻¹) than pristine TiO₂ (1.04 × 10⁻¹⁰ cm² s⁻¹) shown in Tables S1 and S3. This demonstrates that the LTO coverage can eliminate the SEI formation of TiO₂, including TiO₂(B) to a negligible level, leading to a significant reduction in ICL, thereby enhanced capacity and high-rate cyclability. Also, the presence of Li₄Ti₅O₁₂/TiO₂ interfaces in LTO–TiO₂ can serve as low-energy barriers for charge transport and hence reduces $R_{\rm CT}$. The presence of the SEI layer on TiO₂ hinders the lithium-ion transport, resulting in large $R_{\rm CT}$ and small $D_{\rm Li}$.

The electrochemical performance of LTO-TiO₂ nanofibers and pristine TiO_2 are summarized in Table 3, and their energy density, power density, and initial irreversible capacity loss are compared to the LTO-TiO₂ composites and TiO₂(B) reported in the literature^{5,6,10-16} (Figure 7). As shown in the Ragone plot in Figure 7a, LTO-TiO₂ shows the highest energy density (250-400 W h kg⁻¹) within the power density range sufficient for grid energy storage (<1000 kW g^{-1}). LTO-TiO₂ in this work can achieve the lowest initial irreversible capacity loss even at a high current density of 1.75 A g^{-1} or as low as 35 mA g^{-1} , as shown in Figure 7b. Among the irreversible capacity loss reported in literature, only low discharge current performance below 250 mA g^{-1} are reported for TiO₂-based materials. This suggests that LTO-TiO₂ can cater to the need of high-performance electrode materials for energy storage. In principle, the electrochemical performance of LTO-TiO2 can be further optimized by varying the composition ratio between Li₄Ti₅O₁₂ and TiO₂, and the thickness of the LTO nanoshell, depending on application.

CONCLUSIONS

We have developed a synthesis strategy to achieve uniform $Li_4Ti_5O_{12}$ (LTO) coverage on TiO_2 nanofibers (LTO– TiO_2) consisting of a mixed phase of anatase TiO_2 and $TiO_2(B)$. LTO is formed by the lithiation of the amorphous TiO_2 bridge layer on pristine TiO_2 fibers. The bridge layer promotes growth of the preferential LTO plane from the respective TiO_2 planes. When applied as an anode material for Li-ion batteries, LTO– TiO_2 exhibits stable high rate capability and cyclability

with negligible initial irreversible capacity loss compared to pristine TiO₂. The uniform LTO coverage can effectively protect TiO₂ from SEI formation, leading to negligible SEI resistance. The presence of abundant $Li_4Ti_5O_{12}/TiO_2$ nano-interfaces can facilitate charge transfer. Both factors contribute to the enhanced electrochemical performance and stability, leading to a high energy density of LTO–TiO₂ nanofibers. This work demonstrates that our $Li_4Ti_5O_{12}$ nanoshell on TiO₂ nanofibers can be utilized as a viable energy storage material with superior performance and high energy density. It also gives insights into the strategy of using $Li_4Ti_5O_{12}$ coating to eliminate the initial irreversible capacity loss of other electrode materials.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.3c01213.

TEM images and HRTEM image of pristine TiO_2 nanofiber with the respective FFT image; SAED pattern of the LTO-TiO₂ nanofiber; additional Nyquist plots of LTO-TiO₂ and LTO at 1.00 V, fitted by different equivalent circuit models; summary of the charge transfer resistance and lithium-ion diffusion coefficient of LTO-TiO₂ and TiO₂; and summary of the EIS results of LTO-TiO₂ and TiO₂ for the initial five discharge/charge cycles (PDF)

AUTHOR INFORMATION

Corresponding Authors

Chi-Ying Vanessa Li – Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong; Hong Kong Quantum AI Lab Limited (HKQAI), Sha-Tin, Hong Kong; orcid.org/0000-0003-2559-9550; Email: cyvli@hku.hk

 Kwong-Yu Chan – Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong;

 orcid.org/0000-0002-4124-2562; Email: hrsccky@hku.hk

Authors

Ching-Kit Ho – Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong; Hong Kong Quantum AI Lab Limited (HKQAI), Sha-Tin, Hong Kong

Changzhong Liao – Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong

- Yee-Yan Tay School of Materials Science and Engineering, Facility for Analysis, Characterization, Testing and Simulation (FACTS), Nanyang Technological University, Singapore 639798, Singapore
- Ka-Ming Leung Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong; Hong Kong Quantum AI Lab Limited (HKQAI), Sha-Tin, Hong Kong
- **Chi-Kin Jenkin Tsui** Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong; Hong Kong Quantum AI Lab Limited (HKQAI), Sha-Tin, Hong Kong
- GuanHua Chen Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong; Hong Kong Quantum AI Lab Limited (HKQAI), Sha-Tin, Hong Kong

Complete contact information is available at: https://pubs.acs.org/10.1021/acsaem.3c01213

Author Contributions

^{II}C.L., Y.-Y.T., and K.-M.L. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by AIR@InnoHK Clusters and ITF Research Talent Hub (PiH/850/21, PiH/851/21, and InP/805/21) by the Innovation and Technology Commission of the HKSAR Government and Theme-based research grant from Research Grant Commission of the HKSAR (project no. T23-601/17-R). The authors would like to acknowledge the use of HR-XRD (operated by Dr. Shengshou Ma) in the laboratory of Prof. Kaimin Shih of Civil Engineering in The University of Hong Kong (HKU) and the use of electron microscopy in Electron Microscope Unit, HKU. We would also like to acknowledge the Facility for Analysis, Characterization, Testing and Simulation (FACTS), Nanyang Technological University, Singapore, for use of their electron microscopy (HR-TEM).

REFERENCES

(1) Chen, Z.; Belharouak, I.; Sun, Y. K.; Amine, K. Titanium-Based Anode Materials for Safe Lithium-Ion Batteries. *Adv. Funct. Mater.* **2013**, 23 (8), 959–969.

(2) Brutti, S.; Gentili, V.; Menard, H.; Scrosati, B.; Bruce, P. G. TiO_2 -(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity. *Adv. Energy Mater.* **2012**, *2*, 322–327.

(3) Dylla, A. G.; Lee, J. A.; Stevenson, K. J. Influence of Mesoporosity on Lithium-Ion Storage Capacity and Rate Performance of Nanostructured $TiO_2(B)$. Langmuir 2012, 28, 2897–2903.

(4) Tang, Y.; Zhang, Y.; Deng, J.; Wei, J.; Tam, H. L.; Chandran, B. K.; Dong, Z.; Chen, Z.; Chen, X. Mechanical Force-driven Growth of Elongated Bending TiO₂-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries. *Adv. Mater.* **2014**, *26* (35), 6111–6118.

(5) Zhang, W.; Cai, L.; Cao, S.; Qiao, L.; Zeng, Y.; Zhu, Z.; Lv, Z.; Xia, H.; Zhong, L.; Zhang, H.; Ge, X.; Wei, J.; Xi, S.; Du, Y.; Li, S.; Chen, X. Interfacial Lattice-Strain-Driven Generation of Oxygen Vacancies in an Aerobic-annealed $\text{TiO}_2(B)$ Electrode. *Adv. Mater.* **2019**, 31 (52), 1906156.

(6) Wang, S.; Qu, D.; Jiang, Y.; Xiong, W. S.; Sang, H. Q.; He, R. X.; Tai, Q.; Chen, B.; Liu, Y.; Zhao, X. Z. Three-Dimensional Branched TiO₂ Architectures in Controllable Bloom for Advanced Lithium-ion Batteries. *ACS Appl. Mater. Interfaces* **2016**, *8* (31), 20040–20047.

(7) Yan, X.; Li, Y.; Li, M.; Jin, Y.; Du, F.; Chen, G.; Wei, Y. Ultrafast Lithium Storage in TiO_2 -bronze Nanowires/N-doped Graphene Nanocomposites. J. Mater. Chem. A **2015**, 3 (8), 4180–4187.

(8) Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-Strain Insertion Material of $Li[Li_{1/3}Ti_{5/3}]O_4$ for Rechargeable Lithium Cells. J. Electrochem. Soc. **1995**, 142 (5), 1431–1435.

(9) Rahman, M. M.; Wang, J.-Z.; Hassan, M. F.; Wexler, D.; Liu, H. K.; Amorphous Carbon Coated High Grain Boundary Density Dual Phase $Li_4Ti_5O_{12}$ -TiO₂: A Nanocomposite Anode Material for Li-Ion Batteries. *Adv. Energy Mater.* **2011**, *1* (2), 212–220.

(10) Liao, J.-Y.; Chabot, V.; Gu, M.; Wang, C.; Xiao, X.; Chen, Z. Dual Phase $Li_4Ti_5O_{12}$ -Ti O_2 Nanowire Arrays as Integrated Anodes for High-rate Lithium-ion Batteries. *Nano Energy* **2014**, *9*, 383–391.

(11) Stenina, I. A.; Kulova, T. L.; Skundin, A. M.; Yaroslavtsev, A. B. High Grain Boundary Density Li₄Ti₅O₁₂/Anatase-TiO₂ Nanocomposites as Anode Material for Li-ion Batteries. *Mater. Res. Bull.* **2016**, *75*, 178–184.

(12) Jiang, Y.-M.; Wang, K.-X.; Wu, X.-Y.; Zhang, H.-J.; Bartlett, B. M.; Chen, J.-S. $\text{Li}_4\text{Ti}_5\text{O}_{12}/\text{TiO}_2$ Hollow Spheres Composed Nanoflakes with Preferentially Exposed $\text{Li}_4\text{Ti}_5\text{O}_{12}$ (011) Facets for High-Rate Lithium Ion Batteries. ACS Appl. Mater. Interfaces **2014**, 6 (22), 19791–19796.

(13) Zhao, X.; Liu, H.; Feng, Y.; Pang, L.; Ding, M.; Deng, L.; Zhu, J. In-situ Constructing of Hierarchical $Li_4Ti_5O_{12}$ -TiO₂ Microspheres Assembled by Nanosheets for Lithium-Ion Batteries. *Mater. Lett.* **2018**, 231, 130–133.

(14) Li, X.-P.; Mao, J. A $Li_4Ti_5O_{12}$ -rutile TiO_2 Nanocomposite with an Excellent High Rate Cycling Stability for Lithium Ion Batteries. *New J. Chem.* **2015**, 39 (6), 4430–4436.

(15) Yi, T.-F.; Fang, Z.-K.; Xie, Y.; Zhu, Y.-R.; Yang, S.-Y. Rapid Charge-Discharge Property of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ -TiO₂ Nanosheet and Nanotube Composites as Anode Material for Power Lithium-Ion Batteries. *ACS Appl. Mater. Interfaces* **2014**, *6* (22), 20205–20213.

(16) Wu, L.; Leng, X.; Liu, Y.; Wei, S.; Li, C.; Wang, G.; Lian, J.; Jiang, Q.; Nie, A.; Zhang, T.-Y. A Strategy for Synthesis of Nanosheets Consisting of Alternating Spinel $\text{Li}_4\text{Ti}_5\text{O}_{12}$ and Rutile TiO₂ Lamellas for High-Rate Anodes of Lithium-Ion Batteries. *ACS Appl. Mater. Interfaces* **2017**, 9 (5), 4649–4657.

(17) Wu, Q.; Xu, J.; Yang, X.; Lu, F.; He, S.; Yang, J.; Fan, H. J.; Wu, M. Ultrathin Anatase TiO_2 Nanosheets Embedded with TiO_2 -B Nanodomains for Lithium-Ion Storage: Capacity Enhancement by Phase Boundaries. *Adv. Energy Mater.* **2015**, *5* (7), 1401756.

(18) Cui, P.; Xie, B.; Li, X.; Li, M.; Li, Y.; Wang, Y.; Liu, Z.; Liu, X.; Huang, J.; Song, D.; Mbengue, J. M. Anatase/TiO₂-B Hybrid Microspheres Constructed from Ultrathin Nanosheets: Facile Synthesis and Application for Fast Lithium Ion Storage. *CrystEngComm* **2015**, *17* (41), 7930–7937.

(19) Tian, Q.; Zhang, Z.; Yang, L.; Hirano, S.-i. Morphologyengineered and $TiO_2(B)$ -Introduced Anatase TiO_2 as an Advanced Anode Material for Lithium-Ion Batteries. *J. Mater. Chem. A* **2015**, 3 (28), 14721–14730.

(20) Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L.-J. Rutile-TiO₂ Nanocoating for a High-Rate $Li_4Ti_5O_{12}$ Anode of a Lithium-Ion Battery. *J. Am. Chem. Soc.* **2012**, 134 (18), 7874–7879.

(21) Ho, C.-K.; Li, C.-Y. V.; Chan, K.-Y.; Yung, H.; Tay, Y.-Y. Interfacing $TiO_2(B)$ Nanofibers with $Li_4Ti_5O_{12}$ Towards Highly Reversible and Durable TiO_2 -based Anode for Li-Ion Batteries. *Energy Technol.* **2019**, *7*, 107–112.

(22) Li, W.; Liu, C.; Zhou, Y.; Bai, Y.; Feng, X.; Yang, Z.; Lu, L.; Lu, X.; Chan, K. Y. Enhanced Photocatalytic Activity in Anatase/ TiO_2 (B) Core-Shell Nanofiber. *J. Phys. Chem. C* **2008**, *112* (51), 20539–20545.