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Abstract

Cyclometalated Pt(II) complexes are popular phosphorescent emitters with color-

tunable emissions. To render their practical applications as organic light-emitting

diodes emitters, it is required to develop Pt(II) complexes with high radiative decay

rate constant and photoluminescence (PL) quantum yield. Here, a general protocol is

developed for accurate predictions of emission wavelength, radiative decay rate con-

stant, and PL quantum yield based on the combination of first-principles quantum

mechanical method, machine learning, and experimental calibration. A new dataset

concerning phosphorescent Pt(II) emitters is constructed, with more than 200 samples

collected from the literature. Features containing pertinent electronic properties of

the complexes are chosen and ensemble learning models combined with stacking-

based approaches exhibit the best performance, where the values of squared correla-

tion coefficients are 0.96, 0.81, and 0.67 for the predictions of emission wavelength,

PL quantum yield and radiative decay rate constant, respectively. The accuracy of the

protocol is further confirmed using 24 recently reported Pt(II) complexes, which dem-

onstrates its reliability for a broad palette of Pt(II) emitters.
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1 | INTRODUCTION

Organic light-emitting diodes (OLEDs) are sustainable light sources

emergingly used in displays and many other fields.1 While the first-

generation fluorescence-based OLEDs are limited to 25% internal

quantum efficiency (IQE) as the ratio of singlet and triplet excitons is

in 1:3 according to spin statistics,2 one can overcome this limit by uti-

lizing triplet excitons via phosphorescent heavy metal-based emitters.

Heavy metal atoms such as iridium and platinum can induce strong

spin-orbit coupling (SOC) to facilitate the intersystem crossing process

from the singlet to triplet excited states, and to promote radiative

deactivation from the triplet excited state through phosphorescence.3

Thus, the second-generation phosphorescent OLEDs (PhOLEDs)

based on iridium/platinum emitters can achieve IQE up to 100%. Over

the last decade, the research on platinum-based PhOLEDs has steadily

increased in popularity and the device performances have been

improved with the introduction of tetradentate cyclometalating

ligands.4–8 In fact, however, it would require substantial cost and

efforts to develop high-performance PhOLED emitters experimen-

tally, as the relationship between molecular structures and photophy-

sical properties with interest is complicated and has not been

elucidated adequately.

Theoretically, density functional theory9 (DFT) and time-

dependent density-functional theory10 (TDDFT) are the widely-used

tools to predict material properties. It enables the simulations of

photophysical properties of phosphorescent emitters with reasonable

balance between accuracy and efficiency. However, the results

obtained from DFT or TDDFT calculations on phosphorescent emit-

ters are still not accurate enough compared to the experimental

ones.11 To tackle this issue, machine learning (ML) algorithms, which

map the complex relationship between properties and structures,

could be applied.12–14 Simplified molecular-input line-entry system

(SMILES)15 is a common tool to represent each molecule as a one-

to-one string. However, it is not applicable for organometallic com-

plexes due to the metal–ligand coordination bonds. Hence, common

fingerprints/descriptors obtained via SMILES are no longer available

as usual, and this poses difficulties in developing ML model for organ-

ometallic complexes. Instead, the structural parameters together with

the properties based on the first-principles results are employed as

features or descriptors in this work. We demonstrate that the

obtained ML models improve the accuracy of predictions and thus

provide an efficient tool to design novel OLED materials.16

Over the last decade, there were studies applying ML to predict

OLED-related properties via SMILES. Alán et al.17 used linear regres-

sion method to predict emission energies based on absorption ener-

gies for thermally activated delayed fluorescence (TADF) molecules.

Woon et al.18 established a random forest model for efficiency predic-

tions of blue OLEDs. Lu et al.19 set up light gradient boosting machine

(LightGBM) models for glass transition temperature (Tg) and decompo-

sition temperature (Td) prediction for pure organic OLED materials. In

this work, we choose features based on first-principles simulations to

set up ML models. In particular, ensemble learning algorithms such as

random forest20 (RF), adaptive boosting21 (Adaboost), light gradient

boosting machine22 (LightGBM), and extreme gradient boosting23

(XGB) are considered and compared with conventional ML algorithms.

To further improve our ML models, stacking-based techniques24 are

employed to enhance the generality of ML models. Finally, the predic-

tion performances of our models were further verified by comparing

to recently reported experimental data, which demonstrates reason-

ably good agreement and thus confirms the robustness of the models.

We expect that this protocol will be beneficial for the evaluation and

discovery of new PhOLED emitters efficiently and accurately.

2 | METHODOLOGIES

2.1 | Dataset construction and division

In this work, we mainly focus on cyclometalated Pt(II) complexes with

tridentate or tetradentate ligands. Photophysical data of 206 phospho-

rescent Pt complexes reported in the literature are collected, including

emission wavelength, photoluminescence (PL) quantum yield, and

radiative decay rate constant kr. They are mostly measured in

degassed solutions5 under ambient conditions and their photophysical

properties distributions are shown in Figure 1 and Section S1. For

molecules with structured emission band and multiple emission

maxima,25 we select the lowest emission wavelength. The details of

data preprocessing can be found in Section S2 and Table S3. The

emission wavelengths span a range from 430 to 661 nm, with a mean

value of 526 nm. Figure 1 shows that the values of the reported com-

pounds distribute evenly. Similarly, the PL quantum yields of the

compounds distribute evenly with a mean value of 0.421. On the

other hand, kr values span over three orders of magnitude. The major-

ity of kr values are around 1.00 � 105 s�1 with a mean value

of 1.20 � 105 s�1. This poses a great difficulty in constructing ML

models for kr prediction. To remedy this situation, care has to be taken

in the data division. To maintain a balance between training and

F IGURE 1 Photophysical properties distributions for PhOLED
emitters.
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testing sets within the limited data, an improved Kennard Stone

algorithm,26 which partitions the sample set based on maximum-

minimum X-Y distance (SPXY),27 is adopted,

dxy p,qð Þ¼ dx p,qð Þ
maxp,q � 1,N½ �dx p,qð Þþ

dy p,qð Þ
maxp,q � 1,N½ �dx p,qð Þ p,q� 1,N½ �ð Þ ð1Þ

where x and y represent the features and the target properties,

respectively. p and q denote pth and qth samples in the whole dataset

with N samples.

2.2 | Features for ML

The common descriptors/fingerprints computed through SMILES are

not applicable, due to their poor descriptions of coordinate bonds in

organometallic complexes. Instead, in addition to structural features,

first-principles simulations are employed to calculate the photophysical

properties of complexes to generate molecular features in the dataset.

Overall, we choose the features that are associated with the metal coor-

dination, together with those related to the photophysical properties of

these complexes, for training the ML models. As shown in Equation (2),

the rate constant is determined by the emission energy and oscillator

strength of the phosphorescence transition. This is in turn highly related

to the frontier orbitals of the organometallic complex. In addition, for

spin-flip transition, SOCs are essential for the transition to occur. In a

Pt-emitter, the metal ion and its surrounding atoms play key roles in the

phosphorescence process, thus average electron densities of these

atoms are taken as features or descriptors. Besides, the coordinate

bond type and coordinate bond length are considered as well. Table 1

lists all the descriptors utilized in the ML models. Details of each fea-

ture/descriptor can be found in Section S3.

2.3 | Machine learning algorithms

Ensemble learning strategies are employed to construct comprehen-

sive models, including RF,20 Adaboost,21 LightGBM,22 and XGB.23 In

contrast to single weak ML, ensemble learning can construct faster

and more accurate ML models with limited data. To assess their per-

formance, these ensemble learning models are compared with three

types of conventional ML algorithms, including support vector

machines34 (SVM), k-nearest neighbors35 (KNN), and kernel ridge

regression36 (KRR). In addition, stacking techniques are adopted to

enhance the generality of ML models.24 After SPXY data division,

80% of the dataset was selected for model training, and the remaining

20% was used as an independent test set. Ten-fold cross-validation

was adopted to improve the stability of the obtained ML models. The

hyperparameters are tuned by python library hyperopt.37 Details of

the hyperparameter optimization can be found in Section S4. Perfor-

mances on the models were evaluated based on the squared correla-

tion coefficient (R2), the root mean square error (RMSE), and mean

absolute error (MAE). Feature importance analysis for the optimal

models with RF and LightGBM is conducted by utilizing their built-in

attributes and averaging the results from 10 models obtained through

cross-validation, as explained in Section S4.

2.4 | First-principles simulations

Gaussian16 program package38 was utilized for all geometry optimiza-

tions, and ADF2021 package39 was employed to calculate the phos-

phorescence of the Pt(II) complexes. The optimized geometries of

ground state (S0) and excited states (T1) were calculated by DFT and

TABLE 1 Features for machine learning models.

Features Description

ν Emission energy from the T1 state to the

S0 state

coor_bond_length (N) Coordinate bond lengths for complexes,

the shortest one to longest

corresponds with N from 1 to 4

coor_bond_type (N) Types of coordination (Pt-C, Pt-N, Pt-O,

and Pt-Cl)

The order of this series of features is

correlated to coor_bond_length (N)

ρPt Average electron density at Pt atom

ρ_coor (N) Average electron density at the four

coordination atoms

H_T1_S0 Spin-orbit coupling constant between T1
state and S0 state

H_T1_S1 Spin-orbit coupling constant between T1
state and S1 state

R_EH_excited statea/b Charge-transfer descriptor interpreted in

terms of the electron–hole distance in a

given excitation. “a” means calculation

based on literatures,28–31 “b” means

calculation based on reference.32 Small

value indicates short-range excitations.

LAMBDA_excited state Charge-transfer descriptor measures the

spatial overlap in a given excitation.33

Small value signifies a long-range

excitation

CT_excited state Charge-transfer character,28–31 1 for

completely charge-separated states; 0

for locally excited excitonic states

HOMO Highest occupied molecular orbital

energy

LUMO Lowest unoccupied molecular orbital

energy

μ Molecular dipole moment

f Oscillator strength of radiative transition

from T1 state to S0 state

Calc_λ/kr Calculated emission wavelength/radiative

decay rate constant

Refractive index Refractive index to reflect the experiment

testing condition
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TDDFT, respectively, with B3LYP functional.40 Relativistic effects

were considered for Pt atom using the Stuttgart basis set41 and pseu-

dopotential. 6-31G* atomic basis set42,43 was used for all other atoms.

Solvation effects were taken into account using polarizable continuum

model (PCM).44 With the optimized structures, emission properties

were calculated using the ADF2021 package.39 For phosphorescence

transitions, SOC was treated as a perturbation based on the scalar rel-

ativistic orbitals.45 Triple-zeta polarized Slater-type basis set for all

atoms and PBE0 functional were used in the TDDFT calculations.46 In

addition, matrix effects were considered using the COSMO contin-

uum solvation model in relevant experimental testing medium.47 With

the emission energy and oscillator strength obtained, kr can be calcu-

lated as follows.

kr ¼2πv2e2

ε0mc3
f ð2Þ

where ν is the emission energy from the lowest triplet state (T1) to the

ground state (S0); e denotes the elementary electric charge; ε0 is

the vacuum permittivity; m represents the mass of electrons; c is the

speed of light, and f is the oscillator strength of T1 ! S0 transition.

3 | RESULTS AND DISCUSSION

ML models are constructed using different algorithms, including RF,20

AdaBoost,21 LightGBM,22 XGB,23 SVM,34 KNN,35 and KRR.36 The

performance of each model regarding emission wavelength predic-

tions after 10-fold cross-validation can be found in Table 2. Appar-

ently, LightGBM gives the best performance in terms of both

correlation coefficient and errors. Basically, LightGBM improves the

efficiency and scalability of gradient boosting (GB) algorithm without

sacrificing its inherited effective performance, which is suitable for

rapid assessment of the dataset. See details of the performance of

each ML algorithm in Tables S4–S6.

We further analyze the importance of each feature as listed in

Figure 2. It can be seen that the calculated emission wavelength

shows the most remarkable contribution in determining the target

property. In addition, LUMO/HOMO energy, oscillator strength and

SOC constant contribute significantly to the model as well. Others are

primarily transition-related features. For instance, the charge-transfer

features28–31 (CT series in Figure 2) at the transitions from the third

triplet state and first singlet state to the ground state both contribute

to the optimal model.

Different stacking strategies with a two-layer architecture are

used to further improve the generality and stability of the emission

wavelength model. One involves concatenating the initial features

with a superior prediction result to use as the features for stacking,

while the other solely selects several best prediction results as the

features. See stacking details in Table S7. The optimal stacking archi-

tecture is shown in Figure 3 where the wavelength predicted by

LightGBM model is concatenated with all the features utilized in the

base-learner layer. Utilizing the new features, four different types of

meta-learners are tested and the results are listed in Table 3 and

Table S10. SVM as meta-learner shows the highest correlation coeffi-

cient and lowest errors, and it is selected as the optimal meta-learner.

Finally, Figure 4 plots the performance of the stacking model in pre-

dicting emission wavelength on the independent testing set. It is clear

that the ML predicted results agree well with experiments and show

the substantial improvement over simulation results. Excellent consis-

tency between ML predicted results and experimental results with R2

of 0.96, MAE of 7.21 nm and RMSE of 13.00 nm is obtained.

Radiative decay rate constant kr of OLED emitter is another fun-

damental quantity that determines the performance of OLEDs. Emit-

ters with large kr values are preferred to avoid bimolecular quenching

processes in OLED that could lead to severe efficiency roll-off at high

luminance and material degradation. To predict the radiative decay

rate constant kr, eight models are constructed using different ML algo-

rithms whose performance are listed in Table 4. It is found that KNN,

TABLE 2 Performance of each ML algorithm on the prediction of
emission wavelength.

Independent testing seta

ML models MAE (nm) RMSE (nm) R2

KNN_Uniform 27.38 ± 1.17 40.90 ± 1.52 0.57 ± 0.04

KNN_Distance 17.15 ± 1.03 28.33 ± 2.40 0.80 ± 0.04

SVM 20.52 ± 2.12 32.00 ± 2.91 0.76 ± 0.05

KRR 22.62 ± 0.67 28.55 ± 0.80 0.82 ± 0.02

RF 7.98 ± 0.72 11.81 ± 1.15 0.97 ± 0.01

LightGBM 5.57 ± 0.63 8.73 ± 1.24 0.98 ± 0.01

Adaboost 13.28 ± 0.47 16.01 ± 0.65 0.95 ± 0.01

Abbreviations: KNN, k-nearest neighbor; KRR, kernel ridge regression; ML,

machine learning; RF, random forest; SVM, support vector machine.
aThe standard deviations are calculated by the difference in the prediction

of each fold. F IGURE 2 Ten most important features for emission wavelength
extracted from LightGBM-based machine learning model.
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F IGURE 3 Proposed stacking architecture for emission wavelength prediction.

TABLE 3 Meta-regressors comparison on emission wavelength in
stacking.

Independent testing seta

ML models MAE RMSE R2

KRR 13.10 ± 0.74 15.85 ± 0.78 0.94 ± 0.01

SVM 7.22 ± 0.77 13.00 ± 1.33 0.96 ± 0.01

LightGBM 12.37 ± 0.70 16.09 ± 1.13 0.94 ± 0.01

KNN_Distance 11.96 ± 1.01 17.67 ± 2.76 0.92 ± 0.03

Abbreviations: KNN, k-nearest neighbor; KRR, kernel ridge regression; ML,

machine learning; SVM, support vector machine.
aThe standard deviations are calculated by the difference in the prediction

of each fold.

F IGURE 4 Support vector machine performances of emission
wavelength calibration model on the independent testing set.

TABLE 4 Performance of each ML algorithm on the prediction of
radiative decay rate constants.

Independent testing seta

ML models MAE RMSE R2

KNN_Uniform 0.28 ± 0.01 0.32 ± 0.01 0.23 ± 0.05

KNN_Distance 0.19 ± 0.01 0.22 ± 0.01 0.74 ± 0.06

SVM 0.22 ± 0.01 0.26 ± 0.01 0.71 ± 0.08

KRR 0.22 ± 0.01 0.27 ± 0.01 0.57 ± 0.04

RF 0.16 ± 0.01 0.22 ± 0.01 0.74 ± 0.05

LightGBM 0.17 ± 0.01 0.24 ± 0.01 0.65 ± 0.06

Adaboost 0.23 ± 0.01 0.27 ± 0.02 0.63 ± 0.09

XGB 0.16 ± 0.01 0.21 ± 0.03 0.73 ± 0.07

Abbreviations: KNN, k-nearest neighbor; KRR, kernel ridge regression; ML,

machine learning; RF, random forest; SVM, support vector machine.
aThe standard deviations are calculated by the difference in the prediction

of each fold.

F IGURE 5 Ten most important features for radiative decay rate
constants extracted from random forest-based machine learning
model.
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RF, and XGB have similar correlation coefficients and errors. How-

ever, RF holds the best prediction stability when compared to the

other two models. RF is usually robust and stable for the outliers and

noises, a property that is suitable for the case of kr since the experi-

mental values span over three orders of magnitude and are not bal-

anced. Essentially, RF creates trees on the subset of the data and

combines the output of all the trees, which reduces overfitting prob-

lem in decision trees and the variance. Similarly, we analyze the

importance of different features as plotted in Figure 5. Again,

the emission energy has the highest contribution as it is one of the

key terms determining the rate constant. On the other hand, the fea-

tures about electron–hole distance28–31 from T2 and S1 to ground

state (R_EH_T2
a, R_EH_S1

a), which describe the average electron–hole

separation, have a considerable importance compared to the other

features. In contrast, the calculated rate constant ranks lower, which

indicates the relative inaccurate description of singlet–triplet transi-

tion in TDDFT. Besides, oscillator strength, bond lengths of coordina-

tion bonds, and average electron densities of the coordination atoms

are also important features in the model.

To further improve the prediction performance, stacking tech-

nique is adopted with two layers. In practice, the benefit of stacking is

that it can harness the capabilities of a range of well-performing

models on a classification or regression task and make predictions

more stable than the single model in the base-learner layer. Specially,

stacking technique will perform more robust and reliable when

changing different testing data. Stacking details for kr can be seen in

Table S8. As shown in Figure 6, the optimal stacking architecture

includes the aggregation of AdaBoost, LightGBM, RF, and XGBoost as

the base learner layer. These ensemble algorithms exhibit superior

results on the independent testing set so that their predicted kr values

are selected as the features for the subsequent training. This kind of

selection would take advantage of different algorithms to get more

stable predictions. Then four different types of meta-learners are

tested and compared. The results are shown in Table 5 and Table S11.

Meta-learner KNN_Distance, among the four algorithms, exhibits the

best performance on error items after stacking. The results with meta-

learner KNN_Distance can be seen in Figure 7. Clearly, our ML model

significantly improves the prediction of radiative decay rate constants

with MAE of 0.21, RMSE of 0.25, and R2 of 0.67.

PL quantum yield is defined as the ratio of the number of photons

emitted to the number of photons absorbed, which is a prominent

F IGURE 6 Proposed stacking architecture for kr prediction.

TABLE 5 Meta-regressors comparison on radiative decay rate
constants in stacking.

Independent testing seta

ML models MAE RMSE R2

KRR 0.95 ± 0.01 1.26 ± 0.01 0.77 ± 0.00

SVM 0.45 ± 0.05 0.51 ± 0.05 0.01 ± 0.01

LightGBM 0.22 ± 0.01 0.27 ± 0.01 0.53 ± 0.06

KNN_Distance 0.21 ± 0.01 0.25 ± 0.01 0.67 ± 0.04

Abbreviations: KNN, k-nearest neighbor; KRR, kernel ridge regression; ML,

machine learning; SVM, support vector machine.
aThe standard deviations are calculated by the difference in the prediction

of each fold.

F IGURE 7 k-Nearest neighbor performances of radiative decay
constant calibration model on the independent testing set.
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F IGURE 8 Ten most important features for photoluminescence
quantum yield extracted from random forest-based machine learning
model.

TABLE 6 Performance of each ML algorithm on the prediction of
PL quantum yield.

Independent testing seta

ML models MAE RMSE R2

KNN_Uniform 0.21 ± 0.01 0.26 ± 0.01 0.37 ± 0.03

KNN_Distance 0.16 ± 0.00 0.21 ± 0.01 0.59 ± 0.03

SVM 0.21 ± 0.00 0.24 ± 0.01 0.63 ± 0.04

KRR 0.19 ± 0.00 0.23 ± 0.00 0.57 ± 0.03

LightGBM 0.09 ± 0.01 0.13 ± 0.01 0.83 ± 0.04

Adaboost 0.13 ± 0.00 0.17 ± 0.01 0.74 ± 0.02

RF 0.11 ± 0.00 0.15 ± 0.01 0.81 ± 0.02

XGB 0.13 ± 0.01 0.18 ± 0.01 0.74 ± 0.04

Abbreviations: KNN, k-nearest neighbor; KRR, kernel ridge regression; ML,

machine learning; PL, photoluminescence; RF, random forest; SVM,

support vector machine.
aThe standard deviations are calculated by the difference in the prediction

of each fold.

F IGURE 9 Stacking architecture for photoluminescence quantum yield prediction.

F IGURE 10 Random forest performance of photoluminescence
quantum yield prediction model on the independent testing set.

TABLE 7 Meta-regressors comparison on quantum yield in
stacking.

Independent testing seta

ML models MAE RMSE R2

KRR 0.13 ± 0.01 0.17 ± 0.00 0.78 ± 0.01

SVM 0.15 ± 0.01 0.17 ± 0.01 0.81 ± 0.04

RF 0.11 ± 0.00 0.15 ± 0.01 0.81 ± 0.02

KNN_Distance 0.15 ± 0.01 0.19 ± 0.01 0.65 ± 0.04

Abbreviations: KNN, k-nearest neighbor; KRR, kernel ridge regression; ML,

machine learning; RF, random forest; SVM, support vector machine.
aThe standard deviations are calculated by the difference in the prediction

of each fold.
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property of OLED emitters. From the theoretical perspective, accurate

prediction of PL quantum yield of phosphorescent Pt emitters using

first-principles simulations is challenging.48 In this work, quantum

yield is therefore not chosen as one of the features. Instead, features

listed in Table 1 are used, except calculated emission wavelength and

kr. Consequently, eight models are constructed using different ML

algorithms. Table 6 illustrates the performance of each model. RF is

selected and its feature importance analysis for PL quantum yield

is shown in Figure 8. As expected, emission energy is the most impor-

tant feature, followed by average electron density of coordination

atoms, LUMO/HOMO energies, SOC constant, and other features

that are closely related to the radiative transition.

Next, similar to the emission wavelength, the stacking approach

that involves concatenating the best-predicted result is used to fur-

ther enhance the prediction capability of the PL quantum yield model.

Different stacking strategies are compared in Table S9. Here, the

quantum yield predicted by RF model is concatenated with all other

features utilized in the base-learner layer. The best stacking architec-

ture is shown in Figure 9. With the new features, different types of

meta-learners are tested and the results are listed in Table 7 and

Table S12. RF as meta-learner shows the highest correlation coeffi-

cient and lowest errors, and it is selected as the optimal meta-learner.

Finally, Figure 10 plots the performance of the stacking model in pre-

dicting PL quantum yield on the independent testing set. Satisfactory

consistency between ML predicted results and experimental measure-

ments is achieved with R2 of 0.81, MAE of 0.11 and RMSE of 0.15.

Realizing accurate photophysical properties predictions of new

complexes prior to experimental synthesis will be of great importance

for the development of OLED materials. To assess the performance of

our optimal models, 24 recently reported complexes are collected as

external samples to evaluate the generalization capacity of the three

vital photophysical properties. More detailed information on these

Pt-based complexes can be found in Section S5. Figure 11A–C shows

respectively the prediction of the three photophysical properties. It

can be seen that the ML models satisfactorily predict the phosphores-

cence properties of these latest studied Pt-based complexes over

diverse scaffolds and therefore confirms the generalization abilities of

our models.

For the emission wavelength predictions, R2 of 0.81, RMSE of

16.58 nm and MAE of 12.94 nm are achieved. When compared with

the mean value of 526 nm, the result is accurate enough for evalua-

tion of the performance and screening of these emitters. On the other

hand, regarding radiative decay rate constant kr, MAE of 0.21 and

RMSE of 0.24 (both in log scale) are very similar to those in the testing

set and acceptable for kr predictions. For the PL quantum yield, an

outstanding performance with MAE of 0.12 and RMSE of 0.15 is real-

ized, except that there are four outliers as highlighted in Figure 11C.

Only a small proportion of samples in the training dataset are with

high PL quantum yields, exceeding 0.9. This scarcity of training data

poses a challenge for the models to effectively learn and predict tar-

get values at such a high level. Consequently, it is relatively difficult to

provide very accurate predictions for the samples with exceptionally

high experimental PL quantum yields. Prediction details of the

F IGURE 11 Performances of optimal machine learning models
for (A) emission wavelength, (B) radiative decay rate constant, and
(C) photoluminescence quantum yield on external samples.
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external samples can be seen in Table S13. Overall, the developed ML

models in this work not only give exceptional performance on the

independent testing set, but also demonstrate satisfactory results on

the external testing set. Comparison results between the optimal sin-

gle models and stacking-based models are listed in Table S14, demon-

strating a significant improvement in the robustness and stability of

the stacking-based ML techniques.

4 | CONCLUSION

In summary, a general protocol of first-principles calculations and ML

models is constructed to predict the photophysical properties of phos-

phorescent Pt(II) emitters. Ensemble ML models (XGBoost, LightGBM,

RF, and AdaBoost) are utilized based on a dataset of 206 Pt-based emit-

ters. These are compared with conventional ML models (SVM, KNN, and

KRR) to demonstrate their performance. The feature analysis reveals that

emission energy, coordination, and SOC constant show significant contri-

butions in the prediction. To further improve the performance, the stack-

ing methods are implemented. Finally, recently reported Pt-complexes

are employed as external samples to evaluate the generalization capabil-

ity of the ML models, which indicates the robustness of the protocol.

This work presents the first ML protocol for predicting and evaluating

three important photophysical properties of Pt-emitters by employing

ensemble ML algorithms. We expect the protocol would be beneficial to

scientists in designing novel Pt-emitters with superior performances and

thus help discover novel OLED materials.
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