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ABSTRACT
Density functional theory has been widely used in quantum mechanical simulations, but the search for a universal exchange-correlation (XC)
functional has been elusive. Over the last two decades, machine-learning techniques have been introduced to approximate the XC functional
or potential, and recent advances in deep learning have renewed interest in this approach. In this article, we review early efforts to use machine
learning to approximate the XC functional, with a focus on the challenge of transferring knowledge from small molecules to larger systems.
Recently, the transferability problem has been addressed through the use of quasi-local density-based descriptors, which are rooted in the
holographic electron density theorem. We also discuss recent developments using deep-learning techniques that target high-level ab initio
molecular energy and electron density for training. These efforts can be unified under a general framework, which will also be discussed from
this perspective. Additionally, we explore the use of auxiliary machine-learning models for van der Waals interactions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0150587

I. INTRODUCTION

In 1964, Hohenberg and Kohn proved the unique mapping
between the ground state electron density and local potential,
besides an overall constant.1 This insight led to the Kohn–Sham for-
mulation of density functional theory and the notion of exchange-
correlation (XC) energy functional, introduced by Kohn and Sham
in 1965.2 The Kohn–Sham approach provides a way to transform
the many-electron problem into an equivalent one-electron problem
with an effective potential. The search for the universal XC func-
tional has resulted in a variety of approximate XC functionals since
then. However, the universal XC energy functional has remained
elusive. Although a universal analytical form for the XC functional
is believed to be impractical, the search for a universal XC functional
remains an active area of research. For the state-of-the-art of DFT,
we refer to the reader to Ref. 3.

Machine learning (ML) has been applied to construct the XC
functional in DFT since 1996 when Handy et al. proposed a machine
learning approach to map the local electron density to the local
XC potential.4 In 2004, Zheng et al. independently used a neural

network to construct an improved XC energy functional based on
the functional form of B3LYP.5 With the success of deep learn-
ing in computer vision,6 natural language processing,7 and other
fields,8,9 there is growing interest in using deep learning algorithms,
such as convolution neural networks (CNNs),10 graph neural net-
works (GNNs),11 and transformers,12 to approximate the universal
XC functional.

Specifically, efforts to develop machine-learning based (MLB)
XC functional or potential can be categorized into several types:
(i) MLB XC potential,13,14 (ii) MLB XC energy functional,5,15–27

(iii) MLB XC energy density,16 and (iv) MLB XC energies of
fragments.27–39 In addition to the XC functional or potential, other
aspects of the DFT framework can also benefit from ML techniques.
For instance, the kinetic energy functional has been proposed.40–48

Furthermore, ML has been extensively used to fit or construct
potential energy surfaces,49 where DFT is frequently used as a
training target or benchmark for the ML algorithms. Besides the
above-mentioned works on MLB XC functionals, researchers have
employed other data-driven techniques rather than deep learn-
ing (such as genetic algorithms) to seek accurate forms of XC
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functionals.50,51 For example, in Ref. 50, the authors have proposed
a Symbolic Functional Evolutionary search to construct accurate XC
functionals in the symbolic form.

In this perspective, we focus on the construction of MLB XC
functional or potential and review various methodologies, from the
early approaches to the latest developments.52 It is important to note
that our goal in this article is not to be exhaustive. Rather, we aim to
explore specifically how machine learning techniques can be used to
construct XC functionals or potentials and answer the question of
whether the universal functional can be accurately obtained via deep
learning.

II. EXCHANGE-CORRELATION FUNCTIONAL
AND POTENTIAL

Our discussion begins with an introduction to the fundamental
concepts of the DFT framework that will be referenced throughout
the subsequent sections. The Hohenberg–Kohn theorem1 forms the
basis for predicting the quantum mechanical properties of a many-
electron system from its electron density, implying that the ground
state energy is a unique functional of the electron density (denoted
as ρ(r)). By introducing a non-interacting reference system, Kohn
and Sham2 expressed the ground state energy functional E[ρ(r)] as
follows:

E[ρ(r)] = Ts[ρ(r)] + Eext[ρ(r)] + EH[ρ(r)] + EXC[ρ(r)],

= −
1
2

occ

∑
i=1
⟨ϕi∣∇

2
∣ϕi⟩ + ∫ drρ(r)vext(r)

+
1
2 ∫

drdr′
ρ(r)ρ(r′)
∣r − r′∣

+ Exc[ρ(r)], (1)

and

Exc[ρ(r)] = T[ρ(r)] − Ts[ρ(r)] + Eee[ρ(r)] − EH[n]. (2)

Here, Ts, Eext, EH, and Exc stand for the Single-Slater kinetic energy
with a set of orbitals {ϕi}, the external energy, the Hartree energy,
and the exchange correlation energy, respectively. The terms T and
Eee are the exact kinetic energy and the Coulomb energy for the
many-electron interacting system, respectively. Minimizing the total
energy constrained by normalized orbitals leads to the following
Kohn–Sham (KS) equations:

(−
1
2
∇

2
+ vext(r) + ∫ dr′

ρ(r′)
∣r − r′∣

+ vxc(r))ϕi(r) = εiϕi(r), (3)

where vxc is called the exchange-correlation potential, which is
the functional derivative of the exchange-correlation energy with
respect to the electron density,

vxc(r) =
δExc[ρ(r)]
δρ(r)

.

The left-hand side of the Kohn–Sham Eq. (3) includes the electron
density ρ (depending on the orbitals ϕi’s), and thus, it is a nonlinear
eigenvalue problem. To solve this problem, an initial density ρ0 must
be provided, and the solution must be updated until convergence is
reached, a process known as self-consistent field (SCF) calculation.53

A key starting point for using ML techniques within DFT is
to parameterize the XC energy functional (or potential, or even the
corresponding energy density) using various ML architectures, such
as neural networks,54 and train the model with carefully designed
descriptors for input and training data. This is referred to as the
ML-DFT method, and the ML architecture is termed the ML-DFT
model in this perspective. Descriptors should be the functions or
functionals of electron density. Below, we review the existing ML-
DFT methodologies based on different types of descriptors used in
modeling.

III. EARLY WORKS ON XC MODELS
Prior to the recent research to construct XC functional or

potential via ML, two research groups employed neural networks to
search for the XC functional and potential, and the two pioneering
publications4,5 were published in 1996 and 2004, respectively. The
electron density was used for the descriptors, and the output was the
XC potential or functional.

A. Neural network-based B3LYP functional
As one of the most popular hybrid functionals, the B3LYP func-

tional55 includes five pure functional terms: (i) the Slater exchange
functional ESlater

X [ρ];56 (ii) the Hartree–Fock exchange functional
EHF

X [ρ];57 (iii) the difference between the Becke88 exchange58 and
the Slater functionals, denoted as ΔEBecker

X [ρ] = EB88
X [ρ] − ESlater

X [ρ];
(iv) the Lee–Yang–Parr correlation functional ELYP

C ;55 and (v) the
Vosko–Wilk–Nusair correlation functional EVWN

C .59 The B3LYP
functional is tuned by three coefficients: a0, aX , and aC; it reads as
follows:

EB3LYP
xc [ρ] = a0ESlater

X [ρ] + (1 − a0)EHF
X [ρ] + aXΔEBecker

X [ρ]

+ aCELYP
C [ρ] + (1 − aC)EVWN

C [ρ]. (4)

In hybrid functionals like B3LYP, the coefficients are typically
determined by fitting to experimental data or accurate calculations,
and once obtained, they are treated as constants. In B3LYP, the
values are a0 = 0.8, aX = 0.72, and aC = 0.81, based on fitting a set
of atomization energies and ionization potential.58 See also Ref. 60
for calibration and selection of hybrid density functionals using
Bayesian optimization techniques.

In 2004, Zheng et al.5 proposed to project the exact XC func-
tional onto the B3LYP functional and pointed out that a0, aX , and
aC should, in theory, be system-dependent or functional of electron
density. By making these coefficients as functionals of density, the
exact XC functional can be expressed as

EExact
xc [ρ] = a0[ρ]ESlater

X [ρ] + (1 − a0[ρ])EHF
X [ρ]

+ aX[ρ]ΔEBecker
X [ρ] + aC[ρ]ELYP

C [ρ]

+ (1 − aC[ρ])EVWN
C [ρ], (5)

and the resulting coefficients become clearly system-dependent, with
different values for different density inputs. Thus, learning the den-
sity functional coefficients is essential for determining the exact
density functional. In an effort to learn such XC functional, Zheng
et al.5 proposed a neural network with five descriptors as inputs a
single hidden layer. The outputs of the ML model are the coefficients
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a0[ρ], aX[ρ], and aC[ρ]. The resulting XC functional is used in the
KS-SCF calculations. Next, we briefly discuss the computation of the

XC potential used in the SCF calculation. The exact XC potential
reads as follows:

vExact
xc =

δEB3LYP
xc

δρ(r)
= a0[ρ]

δESlater
X

δρ(r)
+ (1 − a0[ρ])

δEHF
X

δρ(r)
+ aX[ρ]

δΔEBecker
X

δρ(r)
+ aC[ρ]

δELYP
C

δρ(r)
+ (1 − aC[ρ])

δEVWN
C

δρ(r)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

terms containing derivatives w.r.t. energy functionals

+
δa0[ρ]
δρ(r)

ESlater
X −

δa0[ρ]
δρ(r)

EHF
X +

δaX[ρ]
δρ(r)

ΔEBecker
X +

δaC[ρ]
δρ(r)

ELYP
C −

δaC[ρ]
δρ(r)

EVWN
C

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
terms containing derivatives w.r.t. coefficients

. (6)

When one assumes that those coefficients do not depend on ρ too
much, that is,

δa0[ρ]
δρ(r)

≈
δaX[ρ]
δρ(r)

≈
δaC[ρ]
δρ(r)

≈ 0,

the potential can be (approximately) written as follows:

vxc ≈ a0[ρ]
δESlater

X

δρ(r)
+ (1 − a0[ρ])

δEHF
X

δρ(r)
+ aX[ρ]

δΔEBecker
X

δρ(r)

+ aC[ρ]
δELYP

C

δρ(r)
+ (1 − aC[ρ])

δEVWN
C

δρ(r)
. (7)

With the above approximation in Formula (7), the machine-learned
XC potential was trained and tested in SCF calculations for 116 small
molecules, yielding improvements over the original B3LYP func-
tional. Using the basis set of 6-311+G(3df,2p), the RMS errors in
overall energies using the conventional B3LYP is 4.7 kcal mol−1,
while the NN-based functional gives 2.9 kcal mol−1 (see Table I
below). However, the resulting MLB XC functional is not as accu-
rate due to the above approximation that the functional derivatives
of a0, aX , and aC are zero.

TABLE I. Performance of the ML functional. Reprinted with permission from Zheng
et al., Chem. Phys. Lett. 390(1–3), 186–192 (2004). Copyright (2004) Elsevier. AE:
Atomization Energy; IP: Ionization Potential; PA: Proton Affinity; and TAE: Total Atomic
Energy.

RMS errors (all data are in the units of kcal mol−1)

Properties AE IP PA TAE Overall

Number of samples 56 42 8 10 116

Aa 2.9 3.9 1.9 4.1 3.4
DFT-1b 3.0 4.9 1.6 10.3 4.7
DFT-NNc 2.4 3.7 1.6 2.7 2.9
aBecke’s work.
bConventional B3LYP/6-311+G(3df, 2p).
cNeural-Networks-based B3LYP/6-311+G(3df, 2p).

B. Neural network-based XC potential model
In 1996, Tozer et al.4 proposed a neural network architecture

that mapped local electron density to the corresponding local XC
potential. The method is classified as local descriptor-based due to its
single density input. It is expected to achieve improvements if the
information from higher order derivatives of densities is employed.
In Ref. 4, the input densities were calculated at the CCSD level (with
Brueckner coupled cluster method61) and the model consisted of one
fully connected layer with eight hidden neurons; while the target
XC potentials were computed by the Zhao–Morrison–Parr (ZMP)
method.62 Trainings were performed on (ρ, vxc) pairs from either
one molecule or multiple atoms/molecules. The ML-DFT model
was used to perform KS-SCF calculations, resulting in significant
improvements over LDA (see the column of CNN in Table II for
the numerical performance of the method). These improvements
can be enhanced further by including more information from the
neighboring area of the local point, for instance, by adding first and

TABLE II. The calculated ionization potentials are compared with that of LDA as
well as experimental values. Remark: CNN stands for Computational Neural Network
instead of the Convolution Neural Network. Reproduced with permission from Tozer
et al., J. Chem. Phys. 105, 9200–9213 (1996). Copyright 1996 AIP Publishing LLC.

LDA CNN −I

Nea
−0.492 −0.660 −0.792

HFa
−0.350 −0.525 −0.590

Na
2 −0.380 −0.560 −0.573

H2Oa
−0.261 −0.441 −0.463

Ha
2 −0.369 −0.550 −0.567

CO −0.333 −0.519 −0.515
F2 −0.347 −0.516 −0.577
CH4 −0.346 −0.535 −0.460
NH3 −0.222 −0.404 −0.373
C2H2 −0.270 −0.461 −0.419
O3 −0.293 −0.468 −0.457
LiH −0.159 −0.422 −0.283
Li2 −0.120 −0.394 −0.188
aIn the training set.
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higher-order derivatives of electron density in the descriptors, as
pointed out by Tozer et al. in Ref. 4.

To summarize, the approach developed in Ref. 5 pioneers the
research direction on constructing the XC functional using machine
learning while the approach developed in Ref. 4 is the first work
targeting directly the XC potential. The method in Ref. 4 uses infor-
mation from local electron densities as the descriptor and we term it
as the local descriptor-based method,63 and obviously, it is only an
approximation. The numerical scheme constructed in Ref. 5 intends
to use the entire electron density of a molecule as the descriptors,
and we term it as the global descriptor-based method. The global
descriptor-based method can be, in principle, exact. In Sec. IV, we
review, first, the recent studies on global descriptor-based methods
utilizing more advanced machine-learning architectures.

IV. RECENT WORKS ON GLOBAL
DESCRIPTOR-BASED XC MODELS
A. Deep neural networks for XC potential

The work by Nagai et al.13 investigated the idea of incorpo-
rating a neural-network trained XC potential model in the KS-SCF
calculation. Specifically, this approach makes use of a fixed grid
with 100 consecutive and equally spaced points to feed the entire
density as a vector to a fully connected neural network with two
300-neuron hidden layers, mapping the entire electron density to the

target XC potential [see Fig. 1 (left) for the algorithmic procedure of
the numerical scheme]. Once the XC potential model is trained and
established, one can solve the Kohn–Sham equation, and the initial
XC potential is produced via the neural-network trained XC poten-
tial model with the initial electron density as the descriptor. The total
energy can also be evaluated.

The proposed method was tested in a 1-D model sys-
tem consisting of two interacting spinless fermions with vari-
ous random Gaussian external potentials. The target potential
was set to be the total Coulomb potential vHxc = vH + vxc with
vH = −A exp(−x2

/B2
) being the Hartree potential with two para-

meters A and B; the corresponding density was calculated using
exact diagonalization.

In Fig. 1 (right), the two columns show (as color maps) the out-
of-training error in density and total energy derived from the KS
scheme with the trained potentials. The horizontal and vertical axes
represent the ranges of the parameters A and B, respectively. Overall,
the trained neural network model demonstrated good generalizabil-
ity in out-of-sample tests with unseen external potentials within the
simple setup.

B. Projection-based XC potential and energy model
To simplify and standardize the density descriptor in real-

istic systems, a projection method may be chosen. In a recent

FIG. 1. Left: structure of the ML-DFT model developed in Ref. 13. Right: prediction error. Δn and ΔE represent the errors of SCF density and total energy with respect to the
exact reference, respectively. Reproduced with permission from Nagai et al., J. Chem. Phys. 148, 241737 (2018). Copyright 2018 AIP Publishing LLC.
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study, Bogojeski et al.28 employed a machine learning method
to predict the DFT or CCSD energies (or the correction to a
standard DFT calculation) from DFT densities. In principle, they
utilized a periodic Fourier basis set comprising 12 500 functions
to perform a projection and represent each molecular density as
follows:

ρ[v](r) =
L

∑
ℓ=1

u(ℓ)[v]ϕℓ(r).

Here, u(ℓ) and ϕℓ are the ℓth projection coefficient and ℓth basis func-
tion, respectively. The term v denotes the external nuclear potential,
which was approximated by a sum of Gaussians as in Ref. 28. The
projection coefficient vector u = (u(ℓ))L

ℓ=1 is then mapped to the
target energy through the kernel ridge regression (KRR) model.64

See Fig. 2(a) for its algorithmic procedure. The target energy was
selected to be either the DFT energy obtained using the PBE func-
tional, the CCSD(T) energy, or the difference between the two,
which captures the exchange-correlation contribution at varying
levels of accuracy.

The basic idea behind a KRR model is that when presented with
a new density, the algorithm performs an interpolation based on
known target energies from densities in the training set. The output
of the model is written as

EML[ρ] =
N

∑
i=1

αik(u[v], u[vi]), (8)

where k(⋅, ⋅) is a Gaussian kernel measuring the similarity between
any two projected density descriptor vectors,

k(u, u′) = exp(−
∣u − u′∣2

2σ2 ),

with σ being a hyper-parameter determined by cross-validation.65 In
Eq. (8), the model EML stands for the fitted energy; u[v] denotes the
projection coefficient vector for the external potential v; and vi is the
ith external potential in the training set. Predictions for new den-
sities are generated by a summation of parameters weighted by the

FIG. 2. (a) The KRR model constructed to represent the density functional, mapping the electron to either the DFT/CCSD(T) energy or their energy difference; another
KRR ML model (ML-HK) was used to map the external potential to the density. (b) Energies (dark blue for CCSD(T) and dark orange for DFT (PBE)) of different water
geometries in the training set. (c) Test set (other water geometries than the training set) MAE improves when the training set size increases. (d) The learned DFT
(top), CCSD(T) (middle), and energy difference (bottom) surfaces, respectively. In (b) and (d), diamond scatter represents minimum energy geometries. Reproduced with
permission from Bogojeski et al., Nat. Commun. 11, 5223 (2020). Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 International License:
http://creativecommons.org/licenses/by/4.0/.28
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kernel function, effectively representing unknown densities by inter-
polating known densities, with the interpolation parameters learned
by the model.

To broaden the scope of their approach, the authors also built
a separate KRR model mapping external potential to density. By
combining this with the model that maps density to energy, all
the density functionals can be expressed as functionals of external
potential. This effectively blurs the line between machine learning
methods based on density functional theory and those that directly
learn from molecular geometry.

C. Kohn–Sham regularizer
Previous efforts have been made to construct XC potential

models for SCF calculations. However, in those efforts, the train-
ing procedure and the SCF calculations were independent of each
other. In contrast, in the work by Li et al.,21 the ML model was
programmed in a fully differentiable way with the aid of auto-
matic differentiation,66–70 allowing error to backpropagate through
multiple iterations of the SCF calculation. In general, automatic
differentiation allows efficiently computing the derivatives of any
functions in the computer program, and this technique can be
used, for instance, to minimize the Hartree–Fock energy (or any
other objective functionals) to avoid eigenvalue calculation in an
orbital-free setting.68

The scheme developed by Li et al.21 effectively included more
information about the functional mapping from the density to the
XC energy, and the scheme was named the Kohn–Sham regularizer

FIG. 3. The structure of ML XC energy model by Li et al.21 that includes KS
SCF in the training. The forward and backward propagations pass in SCF dur-
ing training are depicted in (a) as black solid and red dashed lines, respectively.
(b) The details of one iteration of SCF with the parameterized neural network.
The structure that utilizes the quasi-local information of the density to produce the
XC energy density is depicted in (c). Instead of ρ, the symbol n is used for den-
sity, which is consistent with the symbol used in the original work. Reproduced
with permission from Li et al., Phys. Rev. Lett. 126, 036401 (2021). Copyright
2021 Author(s), licensed under a Creative Commons Attribution 4.0 International
License: http://creativecommons.org/licenses/by/4.0/.21

(KSR) due to its generalization (preventing overfitting) capabil-
ity (see also Ref. 71 for a spin-adapted version of KSR model).
Figure 3(a) depicts the computational procedure of the KSR model,
which uses the electron density of the molecule as the model input.
Then, the model consists of a fixed number of times (denoted K as
the total number of iterations) of SCF iterations [see Fig. 3(b) for
the internal process of the SCF iteration], where each SCF iteration
is parameterized by a neural network model, whose architecture is
sketched in Fig. 3(c), outputting a series of energies {Ek}

K
k=1 and

{ρk}
K
k=1. The loss function includes both energy and density loss

terms. All the terms Ek’s are used to form the energy loss func-
tion while only the last term ρK in the charge density sequence
will be used to form the density loss function. In other words, the
former loss had contributions from multiple iterations, with decay
weights for earlier iterations, while the latter only contains the root
mean squared error between the last iteration’s output and the
target.

The KSR model has shown the generalizability for a simple
one-dimensional H2 model system, with only two training exam-
ples needed to determine the whole dissociation curve reasonably
well. However, as the work was developed for 1D model systems,
it still falls under the category of proof-of-concept. Moreover, the
energy loss term contains the contributions of all produced energies
Ek’s from the previous SCF iterations, and this training mecha-
nism enforces that the output energy of the model should converge
more or less exactly in the way the training labels did, which is
generally not practical in the conventional SCF calculations. Extend-
ing it to realistic 3D systems will require extra effort due to the
computational complexity.

V. MODEL TRANSFERABILITY AND HOLOGRAPHIC
ELECTRON DENSITY THEOREM

Although the application of high precision quantum chemistry
methods, such as CCSD72 and quantum Monte Carlo,73,74 facili-
tates the acquisition of large amounts of data on small molecules,
obtaining such an accurate dataset for large molecules from ab initio
methods is not practical. The lack of such data for larger molecules
poses a key problem to the transferability of machine-learning-based
XC functionals of complex molecules. Since most of the existing
ML-DFT models are trained only with the datasets of small
molecules, the model’s transferability, from simple and small
molecules to complicated and large ones, may pose a challenge
in constructing a universal XC functional. To address this issue,
the density descriptors must be carefully designed to ensure the
transferability of the ML-DFT model from small molecules to large
ones.

Riess and Münch75 posited in 1981 that the electron density
distribution of a molecular system is determined by an arbitrary
finite volume of the ground state electron density, based on the
hypothesis that electron density functions of atomic and molecular
species are real analytic in real space excluding nuclei. The valid-
ity of this hypothesis, however, was not rigorously proven until
Fournais et al. demonstrated the real analyticity of electron den-
sity of arbitrary atomic and molecular eigenstate of the Schrödinger
Equation.76,77 Another proof of real analyticity of electron density
has been given by Jecko.78 The ground state holographic electron
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density theorem (GS-HEDT) named by Mezey79 is thought to be
linked to the concept of quantum similarity measures in DFT.80,81

In the case of an atomic and molecular system, the external
potential v(r) acting on each electron is real analytic (mathemati-
cally defined) except at the nuclei. The electron density is real ana-
lytic everywhere except for isolated points where the nuclei’s point
charges cause non-analyticities. Analytic functions, such as Gaussian
orbitals and plane waves, are often used as basis sets for quantum
mechanical calculations, resulting in real analytic electron densities.
The values within a subregion is sufficient to determine values every-
where in the physical space, and this can be shown by the analytic
continuation of real analytic functions, as demonstrated in Ref. 82.
Zheng et al. have provided a simple proof for the holographic prop-
erty of real analytic density in three-dimensional physical space and
proposed the time-dependent holographic electron density theorem
for open electronic systems, which has been applied to the study
of time-dependent quantum transport problems.83–86 Moreover, the
nearsightedness principle proposed by Kohn87 (see also Ref. 88) sug-
gests that local electronic properties, such as the electron density,
depend mostly on the external potential in the nearby regions. This
principle shares the same foundation with the GS-HEDT, which also
highlights the local nature of ground state electrons.

Based on the GS-HEDT, the electron density within a finite vol-
ume is sufficient to determine the global density distribution of a
real atomic or molecular system. While many modern density func-
tional approximations utilize nonlocal information for improved
accuracy,89 it may be possible to achieve an accurate quasi-local KS
mapping through the use of advanced machine learning techniques,

vxc[ρ](r) = vxc[ρ(r′ : ∣r − r′∣⟨δ,∀δ⟩0)](r). (9)

To create an ML-DFT model for quasi-local electron density, a
direct mapping of the electron density to the XC potential for use in
the SCF calculations can be used as a starting point. We may write

vML−XC(r) =Mθ[ρ(r
′
)∣r′∈B(r)], (10)

where Mθ denotes the ML-DFT model with its optimized parameters
denoted as θ, and B(r) denotes a neighborhood of r. The ML XC
potential vML-XC(r) is dependent on the electron density ρ at r and
its neighborhood. After training, the resulting ML-DFT model for
vML-XC(r) can be used in SCF calculations. As dictated by the GS-
HEDT, the neighborhood could be arbitrarily small in principle.
However, in practice, the quasi-local region surrounding the spatial
point should be of a certain finite size to ensure the numerically fea-
sible KS mapping. In Ref. 14, a cube centered at each position with
sampling points arranged along their spatial directions is a viable
neighborhood choice. For instance, for a given window half-length
h > 0, the sampling points range from the cube,

B(r) = [rx − h, rx + h] × [ry − h, ry + h] × [rz − h, rz + h],

where r = (rx, ry, rz) with a certain step length (the smaller the step,
the more points are sampled given a fixed h). The output of the
ML-DFT model is the value of XC potential at r, and, therefore,
once trained, the model predicts the XC potential at position r of
the center of the sampling neighborhood. The entire XC potential is
obtained by sweeping the model across the grid, and the output is

used in the KS equation within the SCF procedure to calculate a new
density.

The above ML-DFT model that uses the quasi-local electron
density as the descriptors is termed the quasi-local descriptor-based
XC model. In the next session, we review three different types of
quasi-local descriptor-based ML-DFT models.

VI. QUASI-LOCAL DESCRIPTOR-BASED XC MODELS
Compared to the local descriptor-based ML-DFT model such

as the one proposed in Ref. 5, the quasi-local descriptor-based model
can, in principle, be exact and, in practice, is certainly more accurate.
This is justified by the HEDT, which states that the ground state elec-
tron density uniquely determines the ground state properties of any
subdomain and of the total domain of the system. The quasi-local
descriptor-based ML-DFT methods are promising.

A. Quasi-local XC potential model
In Ref. 14, Zhou et al. proved the rigorous foundation of

the quasi-local descriptor-based ML-DFT method and, in addi-
tion, developed and implemented its ML-DFT and subsequent
KS-SCF algorithm. Quasi-local densities (input or descriptors) and
XC potentials (labeled data) were discretized on a grid whose points
coincide with the set of quadrature points for potential integration.
A convolution neural network (CNN)90 architecture was employed
with the input being a cube of sampled density, and the final output
of the model is a scalar value of the XC potential at the respective
quadrature point. The resultant ML XC potential is integrated and
used for SCF calculations later on.

The ML-DFT model is a 3D CNN neural network, as depicted
in Fig. 4. It was tested on H2 and HeH+ and trained on a dataset
of 50 H2 molecules and 50 HeH+ ions (with bond lengths ranging
from 0.504 to 0.896 Å). The ground state electron density is used as
the input or descriptor and was calculated by employing CCSD(T).
The target or output is the XC potential, which was calculated using
Wu-Yang method91,92 (see Appendix B for a brief introduction).

This ML-DFT model outperforms traditional DFT using
B3LYP in terms of electron density accuracy by at least one order
of magnitude, as demonstrated by benchmarking with the reference
CCSD electron density. When integrated into the SCF procedure,
the ML XC potential achieves impressive performance on the elec-

FIG. 4. Structure of the 3D CNN model for molecules discretized on grid points.
Adapted with permission from Zhou et al., J. Phys. Chem. Lett. 10(22), 7264–7269
(2019). Copyright (2019) American Chemical Society.
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tron density, surpassing B3LYP by up to two orders of magnitude.
In Fig. 5(a), HeH+ electron density calculated with the ML-DFT
method is compared with B3LYP, and the reference data are the
CCSD(T) electron density. With the predicted electron density, an
atomic force can be calculated using Hellman–Feynman theorem93

and basis set correction.94 The accuracy is significantly better than
that of B3LYP.

Figure 5(b) shows that the same model was tested on HeH+

ions with He–H distances up to values much larger than those in
the training set. The model’s out-of-sample performance, as mea-
sured by the density difference to CCSD, remained much smaller
than that of B3LYP even at bond distances around 3 Å for HeH+.
Furthermore, the density performance of the ML-DFT model out-
performed that of B3LYP even in more complex systems (such as
He–H–H–He2+) with different numbers of electrons and nuclei than
molecules in the training set, and Figs. 5(c) and 5(d) show the com-
parison of two different structures, respectively. The use of quasi-
local electron density as input has yielded exceptional transferability
of the ML-DFT model.

B. Quasi-local XC energy density model
An alternative approach is to build an ML-DFT model that

directly targets the XC energy density εxc defined as follows:

Exc[ρ] = ∫ dr εxc(r)ρ(r) = ∫ dr εxc[r, ρ(r), B(r)]ρ(r),

vxc(r, [ρ]) =
δExc

δρ(r)
= εxc(r) + ∫ dr′

δεxc(r′, ρ(r′), B(r))
δρ(r)

ρ(r′).

(11)

Although targeting the energy densities shares similarities with
the previous ML-DFT models for the XC potential, the model

output is different, and careful consideration should be taken. Sim-
ilar to the previous ML-DFT models, this model requires data in
the form of XC potential or electron density at each grid point,
and a sensible strategy is training targets for the entire grid. Unfor-
tunately, unlike the XC potential, there is no procedure like the
WY method91,92 to produce the energy density. Furthermore, the
calculation of parameters requires second order derivatives, which
can be computationally intensive. Nevertheless, automatic differ-
entiation techniques and packages are now available to handle
such calculations. Implementing the model involves saving the first
derivative graph and including other numerical burdens in the
backpropagation process to calculate second order derivatives. The
XC energy and potential can be obtained via numerical manip-
ulation from the XC energy density. To generate the total XC
energy, the XC energy density can be integrated weighted by electron
density.

Below, we present the ML-DFT model for the XC energy den-
sity developed by Nagai et al.,24 which employs a fully-connected
neural network model trained with different electron density
descriptors as inputs and the XC energy density as output. However,
the XC energy density is not directly used for training loss func-
tion (only losses in total energy and electron density are employed).
The electron density descriptors used in the model include various
combinations of the following density-related quantities:

ρ(r), ζ(r) =
ρ↓(r) − ρ↑(r)

ρ(r)
, s(r) =

∣ρ(r)∣
2(3π2

)
1/3ρ4/3

(r)
,

τ(r) =
1
2

occ

∑
i=1
∣∇φi(r)∣2,

R(r) = ∫ dr′ ρ(r′) exp(−
∣r − r′∣
σ
).

(12)

FIG. 5. Performance of the ML XC Potential model (the KS-DFT/NN model in Ref. 14) on HeH+ and He–H–H–He2+. (a) Density difference of HeH+; (b) relative energy of
HeH+. The lowest energy is shifted to zero for comparison; (c) density difference of linear H+3 ; and (d) density difference of He–H–H–He2+. Adapted with permission from
Zhou et al., J. Phys. Chem. Lett. 10(22), 7264–7269 (2019). Copyright (2019) American Chemical Society.
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Denote g the overall input vector concatenating all necessary
input descriptors. Then, the XC energy density is parameterized as

εxc[ρ](g) = −ρ1/3
(
(1 + ζ)4/3

+ (1 − ζ)4/3

2
)GNN

xc (g).

Here, GNN
xc is the model’s output, which is constructed using a

four-layer fully-connected neural network. The descriptors defined
in Eq. (12) include a set of five quantities, which form a
near region approximation (NRA) in DFT. Depending on which
terms are included, the formulation unifies various levels of detail
about the local or quasi-local electron density. If all five descriptors
are included, the ML-DFT model is referred to as NRA-type func-
tional. To compute the XC potential from the XC energy density, a
Monte Carlo method was used instead of backpropagation, avoiding
complications from both the backpropagation through the inverse
KS problem and the second-order derivative problem.

The resulting ML XC energy density model with local density
descriptors shows a reasonable performance (see Fig. 4 in Ref. 24).
However, the performance only becomes comparable to traditional
hybrid functionals when the coarse-grained quasi-local density is
included through the fifth descriptor (the NRA shown in the original
paper). CCSD(T) and G295 results are used as the reference data.

C. XC fragment energy model
The HEDT guarantees the representability of the XC poten-

tial and XC energy (or energy density) by the quasi-local density.
This one-to-one mapping between the local XC potential and quasi-
local electron density can be utilized in several different ways. A
slightly different approach from previous models is to divide the
XC energy into contributions from naturally meaningful fractions
(e.g., atoms).

As shown in Fig. 6, the electron density of a system is divided
into four fragments, each with a unique mapping to the system’s
properties. When the mapping ρfrag,i ↦ Ei for any i ∈ {1, 2, 3, 4} for
each fragment’s XC energy contribution Exc = ∑iEi is specified, it

uniquely determines a quasi-local XC functional Ei = Exc[ρfrag,i].
This mapping is relatively straightforward to find with atomic divi-
sion. The total XC energy of a molecule can be equated to the
summation of XC energy contributions from constituent atoms, and
a machine learning model can read and interpret quasi-local densi-
ties around each nucleus to output the corresponding atomic XC
energy contribution.

It should be noted that even though the XC energy can be
expressed as the summary of the contribution from individual
atoms, even higher-order interactions among two or more atoms
can still be partitioned into the single-atom contribution because
the quasi-local density around each nucleus contains information
from all orders. However, it is the machine learning model’s capa-
bility to determine how the energy contribution is split among the
participating atoms. For instance, for a C=O bond in a specific envi-
ronment, the XC energy correction attributable to the bond can be
apportioned to both the carbon and oxygen atoms.

Atomic contributions to molecular potential energy surfaces
(PES) have been constructed prior to the widespread use of deep
learning models, as demonstrated in the work of Behler and Par-
rinello.49 However, to construct a truly universal XC functional that
requires no additional information beyond the density itself, higher
complexity models are necessary. Every aspect of the XC energy or
potential arises from the subtle variations in the shape of the quasi-
local density. Recent advancements in deep learning have made it
possible to construct such models.

Dick and Fernandez-Serra16 successfully demonstrated promis-
ing accuracy in small molecules using an XC energy fragment model
based on atomic contributions. The model constructs specific neu-
ral networks for each atom type and samples the electron density
surrounding each nucleus using Gaussian-orbital-like projectors.
Symmetrized projected values serve as the input for the neural net-
works, with the output representing energy contribution from each
atom. The total XC energy is calculated by summing the outputs of
all atomic neural networks. Functional derivatives are needed with
respect to density for SCF calculation. Figure 7 depicts the archi-
tecture of the ML-DFT model. Noticeably, the derivatives assume

FIG. 6. The concept of the XC energy by fragments. In practice, the fragments are usually chemically meaningful parts like electron density around each nucleus (atom) in a
molecule. From Wu et al., Quantum Chemistry in the Age of Machine Learning (pp. 531–558). Copyright (2023) Elsevier. Reprinted with permission Elsevier.
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FIG. 7. The structure of the ML XC fragment energy model. Quasi-local electron density around each nucleus is described by projectors. Descriptors are then symmetrized
and fed to the neural networks. Atoms of the same type share the same neural network parameters. Their respective outputs play the role of fragmental contributions, which
are summed up to produce the total XC energy. Reproduced with permission from Dick and Fernandez-Serra, Nat. Commun. 11, 3509 (2020) Author(s), licensed under a
Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0/.16

a rather simple transformation from density descriptors to density
itself,

vML[ρ(r)] =∑
β

∂EML

∂cβ
δcβ[ρ]
δρ(r)

=∑
β

∂EML

∂cβ
ψβ(r), (13)

where β is the index for different projectors, cβ is the projected
value of the density of the projector, and ψβ(r) is the shape of the
projector.

While the model developed by Dick et al. has shown promising
accuracy for small molecules, it is not yet universal. The model relies
on different neural networks and projectors for each type of atom,
and different models were trained for different datasets. Specifically,
the researchers developed three distinct models for three different
datasets.

VII. IMPROVING ML DFT MODEL PERFORMANCE
In this section, we will review existing approaches to improve

the performance of ML DFT models. These include the use of
different training strategies, designing specific loss functions, and
imposing physical constraints that density functionals should sat-
isfy. By implementing these methods, we can improve the accuracy
of DFT calculations and enhance.

A. Fully differentiable training with SCF calculations
To build a ML-DFT model that accurately represents the uni-

versal XC functional, the trained model with a fixed set of parameters
should be applicable to any atoms, molecules, and materials. How-
ever, optimizing parameters during the training phase can be highly
complicated due to the tangled relationship between the ML model
and the SCF calculations. The parameters in the model should be

optimized in a way that aids the SCF procedure in converging to the
correct density. If the same model is invoked during each SCF calcu-
lation, one may isolate the SCF procedure from the model training.
This problem has been solved by implementing the KS equation
with differential programming,96–98 which is an emerging program-
ming paradigm allowing one to take the derivative of an output of
an arbitrary code snippet with respect to its input using automatic
differentiation techniques.66

One can combine the SCF calculation within the optimization
procedure to better train a ML-DFT model. This idea has been first
demonstrated in a simple 1D system by Li et al.21 Later on, Kasim
and Vinko19 and Dick and Fernandez-Serra99 also implemented a
neural network model for the three-dimensional molecules, where
the derivatives can be computed by backpropagating through the
SCF iterations. However, this approach requires a large amount of
memory and may result in numerical instability when computing
the derivatives, which makes it difficult to train on large dataset.
One can apply the technique of implicit differentiation69 to reduce
the computational complexity and memory footprint of the actual
implementation.

B. Designing loss functions
In supervised learning, the ML-DFT model is optimized by

minimizing loss functions defined by the difference between the out-
put values and those reference data. To train the model, it is common
to use the following electron density loss:

Lρ = Etrain[∫ ∣ρML−KS(r) − ρtarget(r)∣2dr],

where ρML-KS is the electron density after KS-SCF calculation with
the ML-DFT model for the XC functional or potential, ρtarget is
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the target or reference electron density, and Etrain[⋅] indicates the
averaging operation over the training set.

If the ML-DFT model is constructed to output the XC potential,
one may skip solving the KS equations during training and impose
the loss function in XC potential as

LV = Etrain[∫ ∣v
ML
xc (r) − vtarget

xc (r)∣2dr],

where vML
xc is the ML XC potential, and vtarget

xc is the target or ref-
erence XC potential. In this case, the target potential should be
pre-computed in the data preparation phase, and the model does
not involve any SCF calculation during training. If the model output
is the XC energy Exc (or the XC energy density εxc), in addition to
reproducing the electron density, the loss function in energy,

LE = Etrain[EML
xc − Etarget

xc ]
2
,

can also be added. This could be combined with other loss functions
weighted by some hyper-parameters.

To construct an accurate ML-DFT model, it is important that
the ML-DFT model not only reproduces the target energy but also
reproduces the target electron density. The target electron density is
often obtained from expensive ab initio methods. Gradient descent,
or its variants, is commonly used for optimization during train-
ing. Automatic differentiation during backpropagation allows for
effective computation of the gradient with respect to model para-
meters. If the density loss is included and the model is coupled
with KS equations, backpropagation requires the inverse eigen-
value problem in the KS equations to be solved before parameter
updates. This requires numerical techniques to access the network
for parameter updates. Alternatively, reproducing the target den-
sity can be enforced by using the potential loss only as shown
in Ref. 14.

C. Physical constraints for ML-DFT models
Although ML techniques have been widely employed for find-

ing the exact form of universal XC functionals, these MLB XC
functionals are seen as black boxes and may not satisfy the physi-
cal constraints that the XC functional should obey in principle. For
instance, the exchange-energy density of any finite many-electron
system satisfies the exact 1/r asymptotic behavior.58 This theoretical
insight may be useful when designing parameterizations of new MLB
XC functionals. Moreover, other physical constraints, such as spin-
scaling100 for the exchange energy and the Lieb–Oxford bound101

for the exchange-correlation energy, are derived from fundamen-
tal principles of DFT and, thus, can also be used to guide the ML
modeling.

Recent efforts of designing MLB XC functionals satisfying cer-
tain physical constraints have been made to address this issue by
integrating ML modeling and exact-constraint satisfaction.102,103

This approach has shown promise in producing ML constructed XC
functionals that satisfy physical constraints and exhibit improved
transferability and accuracy over traditional approximations.

VIII. OUTLOOK
A. General quasi-local descriptor formalism

The quasi-local electron density, which contains enough intrin-
sic information about the molecular system as dictated by the HEDT,
is clearly a more suitable descriptor for training a better ML-DFT
model compared to that of using either the local electron density or
the global one. With the quasi-local electron density descriptors, one
can parameterize the mapping from electron density to XC quantity
with sufficiently many features to capture the details of the mapping.
Once the electron density is given, the XC quantities are uniquely
determined.

The general workflow of a quasi-local ML-DFT model is
depicted in Fig. 8. The quasi-local electron density distribution
ρin(r; r0) around r0 is inputted as the descriptors to the ML-DFT
model; it outputs the intermediate XC potential vxc(r0) or XC energy
density εxc(r0) at r0 that can be used in the subsequent KS solver.
The input electron density function may be obtained by CCSD,
the quantum Monte Carlo method, or other high-precision quan-
tum chemistry methods. After the KS solver, a new charge density
function ρnew and other physical properties such as the total energy
are obtained, and these can be used to form the loss function to
train the ML model by comparing with the high-precision elec-
tron density and/or other quantities such as high-precision energy.
Once the training is complete, the resulting ML-DFT model can be
employed in the SCF calculation to calculate highly accurate physical
properties such as electron density and total energy of the system.

Alternatively, ρin can be calculated via the conventional DFT
methods, such as B3LYP, as the B3LYP version of ρin has a one-
to-one correspondence to the higher-precision ρin (for instance,
CCSD). The advantage is that no SCF calculation is required to cal-
culate the molecular properties, once the ML-DFT model is built,
and the input ρin can be obtained by employing the conventional
DFT calculation.

One may extend the NN-based B3LYP functional developed in
Ref. 5 into a quasi-local descriptor-based ML-DFT model. In this
case, the ML-DFT model outputs a set of space-dependent coeffi-
cients {a0, aX , aC}, which calibrates the original B3LYP functional.
We remark that an additional correction term ΔE of the energy
functional can also be added to enhance the model’s capability to
calculate the absolute energy. Besides the approach of outputting the
space-dependent coefficients and the correction term, one may also
directly target an energy density104 of the underlying energy func-
tional as an intermediate output. Adding energy density within the
ML-DFT model might be useful to obtain either the XC potential

FIG. 8. A general quasi-local ML-DFT modeling workflow. The ML-DFT model
takes the quasi-local electron density (or other descriptors) ρin(r; r0) and out-
puts an intermediate XC quantity (either vxc or εxc); IM/EX simply means whether
there are labels of the targeted quantity in the training steps. Then, the produced
XC quantity is used in the KS solve to generate a new electron density ρnew and
thus the total energy Etot (or any other quantities of interest).

J. Chem. Phys. 159, 090901 (2023); doi: 10.1063/5.0150587 159, 090901-11

Published under an exclusive license by AIP Publishing

 07 Septem
ber 2023 02:07:24

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics PERSPECTIVE pubs.aip.org/aip/jcp

(by automatic differentiation) or the XC functional (by numerical
integration105).

Recently, a new work based on the quasi-local electron density
formulation of the ML-DFT model was published.106 This is a quasi-
local version of the electron density formulation of the NN-based
ML-DFT model reported in Ref. 5. Instead of learning the mapping
ρquasi-local → vXC from scratch, the model learns the space-dependent
coefficients combining three existing functionals as follows:

EMLP
xc [ρ] = ∫ dr fθ(r) ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

εLDA
X (r)
εHF

X (r)
εωHF

X (r)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14)

In Eq. (14), fθ is a row vector of 3 elements outputted by the machine
learning model, while εLDA

X (r), εHF
(r), and εωHF

(r) are the local
LDA,56 local Hartree–Fock, and local range-separated Hartree–Fock
energy densities (see Ref. 107), respectively. An extra D3108 correc-
tion was added to the ML functional EMLP

XC to produce the final XC
energy prediction.

For the fragment energy model, the density-weighted interac-
tion in Eq. (11) can be replaced by a summation over fragmental
contribution,

vxc(r) =
δExc

δρ(r)
= ∑

i:r∈frag,i

δEi

δρ(r)
.

As the boundaries between fragments are not always clear-cut [for
example in Eq. (13), the projector cβ has a kernel of Gaussian orbital
shape16], there can be multiple fragment energies contributing to
the potential at any given positions, allowing for a smooth transition
between fragments.

Once the ML-DFT model is trained for a specific type of XC
quantities, it can be incorporated into the SCF calculations and
subsequently used for post-processing the molecular properties of
interest, as in traditional DFT calculations. The quasi-local density
descriptor approach emerges as the mainstream approach to con-
structing the ML-DFT model. The remaining is how best to design
and represent the quasi-local electron density. Moreover, the elec-
tron density is also being used as the target, as it is the key entity
in DFT and contains the health of information. More research is
expected in this direction.

B. ML models for van der Waals interaction
An accurate description of the van der Waals (vdW) interac-

tion is challenging for traditional DFT, as it is weak and is due to
the interaction of transient atomic dipoles. While some conventional
DFT approximations have shown remarkable performance in cer-
tain systems,109 they often rely on nonlocal quantities that make
them difficult to apply in the quasi-local ML-DFT method.

Because the vdW interaction is caused by the interaction among
transient atomic dipole moments, it can be, in principle, machine-
learnt from the electron density. As the vdW is weak, a minute
change in electron density is induced. The minor changes in density
and their corresponding XC potential are both higher order effects
in a perturbative sense rather than the cause of vdW interaction. It is
thus possible to machine-learn the vdW interaction directly from the
electron density ignoring the high-order electron density changes.

Recall that the XC energy and potential can be written as
follows: for a given ρ0 with a small perturbation δρ,

Exc[ρ0 + δρ] ≈ Exc[ρ0] + ∫ dr
δExc[ρ]
δρ(r)

∣

ρ=ρ0

δρ(r),

vxc[ρ0 + δρ](r) =
δExc[ρ]
δρ(r)

∣

ρ=ρ0+δρ
≈
δExc[ρ]
δρ(r)

∣

ρ=ρ0

+ ∫
r′∈B(r)

dr′
δ

δρ(r′)
[
δExc[ρ]
δρ(r)

]∣

ρ=ρ0

δρ(r′).

(15)

It is evident from Eq. (15) that the minor density change
resulting from the vdW interaction can be mostly ignored when cal-
culating the XC potential during SCF, within reasonable accuracy
requirements. The second term, which accounts for second-order
variation in the electron density, is significantly smaller than the
first term, as the change in density for vdW interaction is mini-
mal. However, the energy shift due to vdW interaction is significant
and cannot be neglected. Therefore, including an additional correc-
tion term for vdW interaction after SCF calculation is a reasonable
approach. A separate vdW ML model can be trained using the quasi-
local electron density and added to the current ML XC model as an
extra correction term to the XC energy.

Empirical correction approaches, like the widely-used DFT-D3
method,108 are computationally efficient but limited in their effec-
tiveness due to their reliance on a few empirical parameters and their
sensitivity to specific systems. On the other hand, a customized ML
model with a large number of tunable parameters and degrees of
freedom may bring significant improvements.

Recently, Proppe et al. employed Gaussian process regres-
sion110 to correct systematic errors in DFT calculation with D3-
type dispersion corrections.111 This model is referred to as D3-GP
in the original work. The training data, consisting of 1248 sam-
ples of molecular dimers, are the differences between interaction
energies obtained from PBE-D3(BJ)108,112,113/ma-def2-QZVPP114,115

and DLPNO-CCSD(T)116,117/CBS118 calculations. Once provided
with reference data for new molecular systems, the underlying
D3-GP model can learn to adapt to these and similar systems.
The D3-GP model outperforms the existing PBE-specific correc-
tion schemes113,119,120 with respect to three different validation sets.
One may expect that with sufficient training data, an ML model for
vdW correction is likely to outperform existing empirical models
for dispersion correction. Once the ML-vdW model is trained and
validated, combining this ML model with the quasi-local ML-DFT
model is straightforward.

C. Other future research directions
The full potential of the ML-DFT model can be explored by

utilizing larger and more diverse datasets that can significantly ben-
efit the modeling of ML-DFT calculations. By incorporating diverse
molecules, chemical environments, and properties, the ML-DFT
models can capture finer details of the exchange-correlation inter-
action and thus improve the model’s generalizability. Expanding
the dataset to include molecules with various sizes, complexities,
and properties would enhance the training of ML-DFT models
and enable more accurate representations for the XC quantities.
While maintaining the efficiency of model training would become
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challenging, larger models with a higher number of parameters
may effectively capture intricate features and correlations in the
data, leading to improved accuracy and reliability in ML-DFT
models.

Recently, the notion of neural operator121 and the technique
of operator learning122 gain much attention from different scien-
tific communities. The goal of operator learning is to seek a directly
functional relation that maps elements from an infinite dimensional
space to another infinite dimensional one. One of the great features
of operator learning is that the parameterization of the mapping is
discretization invariance, i.e., the resulting mapping from ML mod-
els is independent of the resolution of input and output data, as
the operator learning model aims to learn the intrinsic structure
of the map between the abstract spaces. One may expect that this
approach could benefit the explore of XC functionals that map elec-
tron densities, which are smooth functions of spatial variables, to the
energies of the underlying quantum systems. Moreover, by incorpo-
rating domain knowledge and physical constraints, ML-DFT models
may have better representability for the exchange-correlation quan-
tities, leading to the development of more accurate and physically
meaningful XC functionals.

IX. CONCLUDING REMARKS
The explosive development in AI has catalyzed a quick turnover

of machine-learning models for density functional theory. From an
algorithmic perspective, most of the above-mentioned approaches
have focused on applying ML architectures such as artificial or
convolutional neural networks to learn the XC functionals. How-
ever, other promising candidates, such as graph neural networks
(GNN), recurrent neural networks (RNN),123 and transformers,12

are also being explored for overhauling the design of XC function-
als. GNN extends CNN toward irregular grids for electron density
or XC potential. RNN is ideal for time-dependent data and may find
profound applications in time-dependent DFT. On the other hand,
transformers and other attention-based models allow the model to
be smarter by deciding where to pay attention in the electron density
or XC potential. Given the subtlety and sensitivity of electron den-
sity data in DFT problems, attention-based models may be a good
fit.

Here, we have reviewed the machine learning approaches for
constructing XC-related quantities (such as energy functional or
potential) in DFT. The review began with a discussion of two pio-
neering works, ML-DFT models that use global descriptors and pro-
gressed toward more intuitive and transferable quasi-local models,
concluding with an additional ML term for vdW interaction. For the
quasi-local descriptor models, we introduced the holographic elec-
tron density theorem as the theoretical foundation and presented
a series of successful implementation schemes. All quasi-local ML-
DFT models (such as the ML XC potential model) share the same
fundamental design elements and have deep physical connections.
We have demonstrated successful stories for these variants,14,16,21,24

and we encourage readers to read the respective original papers, as
well as the open-source codes and examples provided. We hope that
new generations of ML-DFT models will accurately construct the
universal XC functional of DFT in the near future, revolutionizing
the field of quantum chemistry, similar to how AlphaFold124 has
transformed the field of structural biology.

Forward looking, the eventual ML-DFT model for the XC
functional should have the following features. First, the descriptors
should be made of the quasi-local electron density. Second, the tar-
gets should include the high precision electron density; and this
can be the explicit target, or the implicit, for instance, in Ref. 5,
the explicit target is the XC potential, which, in turn, leads to the
high precision electron density by solving the KS equation. Finally,
the XC potential and energy density can be the output or the inter-
mediate target that leads to the target electron density. An additional
machine-learning module for the vdW interaction may also be
included in the workflow to deal with the weak interaction of tran-
sient atomic dipoles. Ultimately, the ML-DFT model combined with
the vdW interaction module should be able to accurately reproduce
the target energy and the target electron density for any molecular
system.
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APPENDIX A: TUTORIAL OF THE ML-DFT XC
POTENTIAL MODEL

For a hands-on experience, the readers are encouraged to try
out our open-source package on GitHub.125 Most of the codes
were written in Python, and the ML models were built with the
open-source package PyTorch.126 For a better understanding of the
implementation details, inexperienced readers are recommended
to go through a comprehensive tutorial of PyTorch, before mak-
ing any modifications to the models we provide. As a starting
point, PyTorch provides tutorials of introductory level on their own
website.

As a simple example, we make use of our model here using
the XC potential generated by the Wu–Yang (WY) method91 as
the direct training set. For H2 molecule (see Fig. 9 for the numer-
ical results), training can be performed with the pre-calculated
XC potential for H2 for various H–H bond distances, and no
SCF calculation is needed. At the evaluation phase, full SCF cal-
culation can be performed for each structure, and it is imple-
mented with the PySCF package.127 To perform training and
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FIG. 9. (a) A typical (with a reasonable bond distance) SCF run for the trained model of the H2 example will produce density errors comparable to NN. (b) The I value will
be comparable to the corresponding value on the NN curve, which is significantly lower than the error of B3LYP. From Wu et al., Quantum Chemistry in the Age of Machine
Learning (pp. 531–558). Copyright (2023) Elsevier. Reprinted with permission Elsevier.

evaluation on this example, one may walk through the following
steps below:

1. Before getting started, make sure all the prerequisites are
installed and work properly.

2. Create and enter a new folder; download the code and dataset
by typing

$ git clone https://github.com/zhouyyc6782/oep-wy-
xcnn.git

3. Enter the example/simple_H2 directory. Create a folder
called log by typing

$ mkdir log
to store the upcoming results and logged files.

4. Start training by typing

$ python ../nn_train/main.py train.cfg
Here, all training settings and hyper-parameters are defined in

the .cfg file; to write a new .cfg file for a different configuration,
please refer to the README file provided with the GitHub repo.

5. Training will start on the provided H2 dataset; by default, the
number of epochs is 1000.

6. Perform SCF calculations on the newly trained model by
typing

$ python ../xcnn/main.py test.cfg

7. One can check the SCF performance of the model by exam-
ining the output file generated. A typical run for a small
molecule like H2 should result in an error at the level of
10−5–10−7 in terms of I value. Since only one H2 structure
is included in the simple_H2 training set, the error could
be larger. Here, the I value between two (possibly different)
densities is defined to be

I = I[ρ1, ρ2] =
∫ ∣ρ1(r) − ρ2(r)∣2 dr

∫ ∣ρ1(r)∣2 dr + ∫ ∣ρ2(r)∣2 dr
.

This tutorial is centered on a pre-built dataset from one H2
structure for both training and SCF. To reproduce the result from

the original paper,14 a modified and re-compiled version of PySCF is
needed for generating WY target data from scratch with the codes in
the folder oep-wy (while the SCF part only needs the vanilla version
of PySCF). One can refer to the README in the GitHub repo for more
details on installing a custom version of the PySCF package.

Those scripts (e.g., run_oep.py, gen_dataset.py,
run_train.py, and run_xcnn.py) in the repo provide auto-
matic scripts for generating data from WY calculation, collecting
data, training the model with the data, and testing the model with
SCF procedure, respectively. Interested readers are advised to follow
the README from the GitHub repository in step 2) for re-compiling
PySCF and additional custom implementations of the codes.

The codes provided within this tutorial constitute (i) data gen-
eration (with the WY method), (ii) training part, and (iii) SCF
computation. One can build their own codes based on this GitHub
repo for molecules or ions other than H2 in this simple example.
Depending on the format of the dataset, one needs to write their own
scripts like run_oep.py, gen_dataset.py, run_train.py, and
run_xcnn.py, for automating the whole algorithmic procedure.

APPENDIX B: OPTIMIZED EFFECTIVE POTENTIAL
AND DATA GENERATION

The electron densities that are employed to train the ML mod-
els can be obtained using highly accurate ab initio methods such
as wave-function based methods like CCSD.72 Besides the electron
density, the values of XC potential are also needed. Given a den-
sity computed from CCSD, the corresponding XC potential can be
calculated by various optimization procedures that effectively invert
the KS equations (collectively referred to as the inverse Kohn–Sham
methods; see also Ref. 128). The optimization procedure employed
in Ref. 14 to generate a training dataset is the so-called Wu–Yang
method (WY) developed in Ref. 91, which will be briefly elaborated
here.

Readers might wonder that if a numerical optimization proce-
dure can resolve XC potential from electron density, then why do
we bother training an ML model that does the exact same thing?
The answer lies in the core concept of DFT itself. What we want to
predict from the ML model is the universal XC functional that maps
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any density to its corresponding XC potential. On the other hand,
the optimization procedure only solves system-specific XC poten-
tial that is associated with a particular known electron density. The
procedure entails only the mathematics of inverting KS equations,
which does not include the physics of the many-particle system at all.
In contrast, the ML model tries to learn the intrinsic physics behind
it, which is by definition fundamental. Those values of electron den-
sities and XC potentials generated by inverse KS methods are fed to
the ML model as training data.

The solution to the inverse KS problem is not as straightfor-
ward as it first appears. An analytical solution is mostly absent and
different kinds of numerical optimization techniques are usually
employed. One of the popular potential optimization schemes was
invented by Wu and Yang in Refs. 91 and 92. For a given input den-
sity ρin, one first constructs a Lagrangian, denoted as Ws, in terms
of the total effective potential (denoted as v) and the single particle
wave functions (denoted as ϕi’s),

Ws[Ψ(v(r)), v(r)] = 2
occ

∑
i=1
⟨ϕi∣T̂∣ϕi⟩ + ∫ drv(r)(ρ(r) − ρin(r)),

(B1)
where Ψ = (N!)−1/2 det(ϕi(xj)) is Slater’s determinant function
associated with the orbitals ϕi’s, and v(r) serves as a Lagrange mul-
tiplier. When Ws is stationary with respect to v, the electron density
becomes the same as the given density ρin and

δWs[Ψ(v(r)), v(r)]
δv(r)

= ρ(r) − ρin(r) = 0. (B2)

In practice, the potential is projected onto a set of Gaussian basis
functions.129 Once the effective potential is calculated, the XC poten-
tial vxc can be easily found by subtracting the external and the
Hartree potentials.130

With the pair of density and XC potential being obtained, the
training procedure is decoupled from the KS SCF procedure, and
the resulting ML model converts its inputs ρ into the outputs vxc.
Training proceeds with a typical backpropagation procedure with an
optimizer using stochastic gradient descent (SGD)131 or the Adam
method.132 Once large enough data are accessible for various types of
molecules and quasi-local environments, the parameters in the ML
XC potential model can be better trained and yield a more accurate
and universal XC potential of real molecular systems.
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