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ABSTRACT: We apply the machine learning (ML) tool to
calculate the Gibbs free energy (ΔG) of reaction intermediates
rapidly and accurately as a guide for designing porphyrin- and
graphene-supported single-atom catalysts (SACs) toward electro-
chemical reactions. Based on the 2105 DFT calculation data from
the literature, we trained a support vector machine (SVR)
algorithm. The hyperparameters were optimized using Bayesian
optimization along with 10-fold cross-validation to avoid over-
fitting. Based on the Shapley Additive exPlanation (SHAP) and
permutation methods, the feature importance analysis suggests that
the most important parameters are the number of pyridinic
nitrogen (Npy), the number of d electrons (θd), and the number of
valence electrons of reaction intermediates. Inspired by this feature importance analysis and the Pearson correlation coefficient, we
found a linear dependent, simple, and general descriptor (φ) to describe ΔG of reaction intermediates (e.g., ΔGOH* = 0.020φ −
2.190). Using the trained SVR algorithm, ΔGOH*, ΔGO*, ΔGOOH*, ΔGOO*, ΔGH*, ΔGCOOH*, ΔGCO*, and ΔGN2* intermediates are
predicted for the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER),
and the CO2 reduction reaction (CO2RR). The SVR model predicts an ORR overpotential of 0.51 V and an HER overpotential of
0.22 V for FeN4-SAC. Moreover, we used the SVR algorithm for high-throughput screening of SACs, suggesting new SACs with low
ORR overpotentials. This strategy provides a data-driven catalyst design method that significantly reduces the costs of DFT
calculations while providing the means for designing SACs for electrocatalysis and beyond.

■ INTRODUCTION
Single-atom catalysts (SACs) are extensively applied for
various electrochemical reactions to produce value-added
chemicals1−3 due to their high atom utilization efficiency
along with their unique properties.4−6 According to their
widespread applications, the rational design of SACs has
received a lot of interest in improving the feasibility and
efficiency of optimizing the desired products.7,8 Density
functional theory (DFT) calculations are mostly applied for
the rational design of SACs with a focus on high activities and
selectivities.9 However, DFT calculations are computationally
expensive and time-consuming10,11 due to the fact that the
complexity of structure−activity relationships requires a huge
number of nontrivial DFT calculations in a vast dimensional
space, such as environmental coordination, SAC type, and
reactants.12 In addition, designing advanced SACs requires
fundamental understanding and deep analysis of the DFT-
calculated data through data analysis. To address these issues,
machine learning (ML), as a data-intensive tool, provides
researchers the ability to accelerate time-consuming DFT
calculations to predict the catalytic activity in a large parameter
space of SACs.13,14 For example, the DFT-predicted data along

with input features are previously applied to train ML
algorithms.15 Trained ML algorithms can then be used for
predicting the optimal SAC with high activity and also for
performing feature importance analysis and introducing new
descriptors.16,17 Subsequently, optimized SACs can be used for
the desired electrochemical reaction for metal−air batteries
and for producing valuable chemicals and fuels. Although ML
has recently been used to predict the properties of SACs,18−21

it is still in an early stage.22 Here, ML aims to guide and reduce
the number of DFT calculations in the search for the ideal
catalysts.23,24 However, major issues for applying ML in SAC
design are the lack of a universal ML algorithm, a consistent
database, and appropriate descriptors and input features.25

Herein, we propose the use of support vector machine
(SVR) method as a supervised ML algorithm for predicting
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Gibbs free energies of different reaction intermediates on
graphene- and porphyrin-supported SACs. We use the trained
ML algorithm to predict free energy, feature−feature
correlation coefficients, and Pearson coefficients, introduce a
new descriptor, perform feature importance analysis, and
perform high-throughput screening. Moreover, for the first
time, the properties of reaction intermediates are successfully
applied as the input features. Our findings on the input features
and their impact on the model output are evaluated using
Shapley Additive exPlanation (SHAP) and permutation
methods, indicating that the most important and informative
parameters are the number of pyridinic nitrogen (Npy), the
number of d electrons of the metal center (θd), and the
number of valence electrons of the reaction intermediate.
Inspired by this result, we introduced a new descriptor to
describe the adsorption energy of various intermediates.
Subsequently, we applied the SVR model to several examples
including the oxygen reduction reaction (ORR), the oxygen
evolution reaction (OER), the CO2 reduction reaction
(CO2RR), and the hydrogen evolution reaction (HER) to
show the potential application of our proposed ML model for
the rapid design and discovery of SACs toward electrochemical
reactions. Ultimately, the SVR algorithm is used for the high-
throughput screening of SACs for ORR overpotential,
suggesting some new catalysts with high performance.

■ METHODS
Input Data Collection. The data used for the training of

our ML model is composed of DFT-calculated data collected

from the literature. To consider the data consistency for ML
applications, all of the DFT data are calculated using the
Vienna ab initio simulation package (VASP) with the Perdew−
Burke−Ernzerhof (PBE) functional. In addition, the duplicated
and outlier data, which are significantly different from other
data points in the data set, are deleted. The data contains 2105
data points for the Gibbs free energy (ΔG) of reaction
intermediates such as OH*, O*, OOH*, O2*, H*, CO2*,
COOH*, CO*, and N2* (please see the excel file in the
Supporting Information for more details). The data is based on
the 3d, 4d, and 5d transition metals on graphene and
porphyrin supports. The data is sorted in an Excel file in
such a way that the input features, the SAC structure, and the
Gibbs free energies are provided for the training of our ML
algorithm (see the Supporting Information). Figure 1a shows
the violin plot of Gibbs free energy distribution for H*, N2*,
OH*, O*, OOH*, CO*, and COOH* reaction intermediates.
The violin plot also displays the number of data points for each
reaction intermediates, leading to a total of 2105 input data.
This indicates a fair balanced data distribution among the
reaction intermediates, suggesting the quality and consistency
of the input data. The Gibbs free energy is distributed from −4
to +7 eV. More specifically, the Gibbs free energy of the
OOH* intermediate is between 0 and +7 eV with an average of
around +4 eV and a median of around +5.5 eV. Figure 1b
displays the histogram for the variation of Gibbs free energies,
indicating the average, standard deviation (std), and skewness
of 0.48 eV, 1.66 eV, and 0.99, respectively.
Input Feature Selection. In order to have high-quality

data analysis and an interpretable ML algorithm, we need

Figure 1. Input data analysis for machine learning (ML). (a) Violin plot of input data distribution for H*, N2*, OH*, O*, OOH*, CO*, and
COOH* reaction intermediates, indicating a total of 2105 input data. (b) The histogram of variation of Gibbs free energies (ΔG) indicates a
standard deviation (std) and an average of 1.66 eV and 0.48 eV. (c) Principal component analysis (PCA) and clustering for the training data (90%,
blue unfilled circles) and test data (10%, red solid square) projected onto the PC1−PC2 plane. PC1 and PC2 stand for the first and second
principal components, respectively. The k-means clustering method suggests two main clusters in the PC1−PC2 plane, with the centers shown in
the green solid up triangle. (d) The parity plot of ML-predicted versus DFT-calculated Gibbs free energy of reaction intermediates such as H*,
OH*, O*, OOH*, CO*, and COOH* for single-atom catalysts (SACs). The support vector regression (SVR) algorithm shows satisfactory MSE
and R2 values for both training and test data without any signs of underfitting.
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reasonable input feature selection.26 Recent works have utilized
several input features including the enthalpy of vaporization, d-
band center, Bader charge, electron affinity, ionization energy,
covalent radius, the number of electrons in d orbitals,
formation energy, and oxide formation enthalpy to describe
the reactivity of SACs.19,20,26−32 Unfortunately, one of the
major limitations of applying ML in the design of SACs is the
lack of suitable input features. A suitable input feature requires
simultaneously high simplicity, reasonable feature importance
value, and physical interpretation.26 For example, the black-box
nature of ML algorithms sometimes makes a physical
interpretation of input features, including the d-band center
and enthalpy of vaporization, impossible.33 For example, the d-
band center is normally used as an input feature with a high
feature importance value to describe the activity of SACs.
Nevertheless, the d levels of atomically dispersed SACs on
graphene and porphyrin substrates might not form a band,
making the evaluation of the position of the d-band center not
possible. In addition, the simplicity of input features requires
using the properties of metal atoms and substrates, which are
easily available without requiring expensive DFT calculations.
In contrast to the density of states and Bader charge, input
features including the ionization energy, number of electrons in
the d orbital, atomic number, and coordination number of
metal atoms satisfy the simplicity requirement. Scheme 1b
shows the top view and lateral view of the structure of a typical
SAC along with the list of input features including the intrinsic
properties of the metal atom (M) along with the properties of
substrate and reaction intermediates. In fact, to the best of our
knowledge, for the first time in this work, the use of properties
of reaction intermediates is successfully shown as the input
feature, which enables us to generalize the ML model for
several electrochemical reactions. Therefore, the input features
composed of atomic number (AN), number of d electrons (θd)
atomic radius (AR), electronegativity (ENM), enthalpy of

vaporization (EV), first ionization energy (IE), electron affinity
(EA), number of C atoms of substrate per one transition metal
(C/TM), number of C atoms bonded to transition metal
(NC), number of pyrrolic nitrogen bonded to transition metal
(Npy), number of pyridinic nitrogen bonded to transition
metal (Npr), number of intermediate atoms in the 1st ring
(NA1), sum of atomic number of intermediate atoms in the 1st
ring (AT1), valence electron of intermediate atoms in the 1st
ring (VE1), number of intermediate atoms in the 2nd ring
(NA2), sum of atomic number of intermediate atoms in the
2nd ring (AT2), and sum of atomic number of intermediate
atoms in the 3rd ring (AT3).
Machine Learning (ML) Implementation. We use SVR

as a supervised machine learning (ML) algorithm34 to calculate
the Gibbs free energy of different intermediates using data
from the DFT calculations. We use Scikit-learn, NumPy,
Matplotlib, SHAP, Pickle, and SciPy libraries in Python 3.6 to
read and process the data, train and save the ML algorithm,
and perform feature importance analysis. The data is
normalized to ensure that the range of values is consistent
across all columns in the data set to keep the consistency of
input data. This step is important if the ML algorithm being
used is sensitive to the range of values. We applied the
normalized input data along with the input features for the
construction of the ML model and then we used the mean-
squared error (MSE) and R2 value to evaluate the performance
of the SVR model as follows34

=
=

n
G GMSE

1
( )

n

i

i i

1

DFT, ML,
2

(1)

where ΔGDFT,i and ΔGML,i are the DFT- and ML-predicted
Gibbs free energies, respectively, for intermediate i, and n is the
number of instances in the training and test data sets.

Scheme 1. Construction of ML for the Design of Single-Atom Catalysta

a(a) Flowchart for the automated hyperparameter tuning of the support vector regression (SVR) model using Bayesian optimization along with a
10-fold cross-validation. (b) Top view and lateral view of the structure of single-atom catalysts (SACs) along with the input features including the
properties of transition metal, substrate, and intermediates.
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Feature Importance Analysis. Based on the trained SVR
model, several methods such as SHAP,35,36 permutation,37 and
Pearson correlation coefficient38 have been applied to screen
the impact of each input feature on the model output. The
SHAP technique is a good feature attribution algorithm with
the ability to screen the impact of each data point on the
model output.39 This method assigns equal weights to feature
coalitions of all sizes.35 Permutation method is another way to
perform feature importance analysis. As a model inspection
technique, permutation can be applied to any fitted estimator,
especially the nonlinear ones, once the data is tabular.37 The
permutation feature importance breaks the relationship
between a single feature and the model output by randomly
shuffling the feature value and defining how much the feature
affects the model output. This method has the advantage of
being model agnostic, which can be evaluated several times
with various permutations of the features. Moreover, we use
the Pearson correlation coefficient to quantify the linear
dependencies between pairs of variables such as input features
and model output. The Pearson correlation defines the
direction and strength of the linear relationship between two
features by giving a number between −1 and 1.38

■ RESULTS AND DISCUSSION
We apply SVR model to establish the structure−activity
relationship for the prediction of Gibbs free energy. Scheme 1a
shows the flowchart for the construction of our SVR model for
SACs. Scheme 1b displays the top view and lateral view of the
structure of a typical SAC. According to Scheme 1a, first, the
input data was randomly partitioned into the train set (90%,

1894 data points) and test set (10%, 211 data points). The
input features, as shown in Scheme 1b, were then normalized
by the MinMaxScaler function of Sklearn, and the initial guess
for the hyperparameters of the SVR algorithm (C and gamma)
was given to the model. After that, the optimized value for the
hyperparameters was obtained using Bayesian optimization by
minimizing the MSE of the test set as the activation function.
To avoid overfitting, a 10-fold cross-validation loop was
applied inside the Bayesian optimization loop, in which the
training data was randomly split into 10 groups. Subsequently,
the ML model was trained and validated for each group and
the optimized ML model was saved for further predictions and
feature importance analysis.
Figure 1a displays the violin plot of input data distribution,

and Figure 1b displays the histogram for variations of Gibbs
free energies. A standard deviation of 1.66 eV indicates that the
data is spread out and not clustered around the mean (0.48
eV). The positive value of skewness (0.99) in Figure 1b
suggests the deviation of Gibbs free energy values from the
average toward the positive values and the curve is longer
toward the right trail.38 As shown in Figure S1, we found the
natural log expression of ln(ΔG+4.36) leading to a minimized
skewness of 0.00 with a rather symmetrical distribution. It is
worth mentioning that we used the bare value of ΔG for the
training of our ML model due to the higher accuracy. To shed
more light on the input data visualization and find out the
distribution of test data among the training data, we perform
principal component analysis (PCA). PCA, which is a
statistical method, provides the reduction in the dimensionality
of the system by linearly transforming the data set into a new

Figure 2. Feature importance analysis. (a) The heatmap of SHAP values of input feature for the whole 2105 data instances in the order of feature
importance. The black horizontal bar plot displays the average of SHAP values for each input feature across the data instances, indicating the
number of d electrons (θd) as the most important parameter. (b) The influence of each input feature on the model output for the whole 2105 data
instances using SHAP value in the order of feature importance, colored based on the features’ values. (c) Feature importance analysis on the Gibbs
free energy (ΔG) of reaction intermediates based on the permutation method and the corresponding Pearson correlation coefficients (solid red
circle). This indicates the number of pyridinic nitrogens (Npy) and the number of d electrons (θd) as the most important parameters.
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coordinate system while preserving most of the variation in the
data and giving more insight into the data analysis and
visualization. Here, we applied PCA to reduce the dimension-
ality of the data set from 17 dimensions down to 2 dimensions.
The first and second principal components, PC1 and PC2,
respectively, were chosen for the projection, retaining 38% of
the variation in the data. Figure 1c shows the PCA analysis for
the training and test data projected onto the PC1−PC2 plane,
suggesting two main regions for the input data with the centers
shown in green triangles. The training and test data are shown
to be randomly distributed inside both regions.
After data analysis and visualization, all 2105 data points

were used to make the final SVR model. Figure 1d shows the
parity plot of ML- versus DFT-predicted Gibbs free energy of
reaction intermediates for SACs. The SVR algorithm shows
satisfactory MSE values of 0.26 and 0.29 eV2 and R2 values of
0.907 and 0.889, respectively, for the training and test data,
with no signs of underfitting and overfitting. According to
Figure 1c, as the test data is randomly distributed along the
whole data, the MSEtest measures the interpolative prediction
ability of the trained SVR model.
In addition to establishing a deep structure−activity

relationship for the prediction of Gibbs free energies, more
information can be extracted from the trained SVR model such
as feature importance analysis, introduction of new descrip-
tors,34,40 and high-throughput screening,41 which can be of
great help for the rational design of SACs.42

Although the feature importance analysis has previously
been reported for a specific reaction with a small data set,26

there is a strong need for such analysis to be conducted across
a wide range of electrochemical reactions with a large data set.
To perform feature importance analysis, one can utilize the
SHAP method, which calculates the contribution of each
feature to the predicted outcome for a given data point in a
data set. Figure 2a shows the heatmap of SHAP values of each
input feature for the whole 2105 data instances in the order of
feature importance. Besides, the heatmap indicates the normal
distribution of SHAP values along the data sets for each input

feature, suggesting appropriate distributions of data for the
training and test data. The black horizontal bar plot displays
the average of SHAP values for each input feature across the
data instances, indicating the number of d electrons (θd) as the
most important parameter, in agreement with the previous
reports.13,18,43−45 Indeed, by increasing the d electrons of the
active metal site, the charge transfer and adsorption strength of
reaction intermediates can be directly affected. Figure 2b
displays the influence of each input feature on the model
output for the whole 2105 data points using the SHAP value in
the order of feature importance, colored based on the features’
values. This indicates that the higher values of θd, Npr, AT3,
Npy, and ENM possess higher SHAP values with a higher
impact on the model output. In contrast, the lower values of
NA2 and EV possess higher SHAP values with a higher impact
on the model output. This can be interpreted based on the fact
that higher θd, Npr, Npy, and ENM provide more electrons to
the metal center, which can have more impact on the
adsorption of reaction intermediates.
In addition to the SHAP method, there exist alternative

methods for assessing feature importance. Figure 2c illustrates
the permutation-based feature importance analysis, indicating
that all of the input features possess a reasonable value for
feature importance. More specifically, the number of pyridinic
nitrogen (Npy), the number of d electrons (θd), and the
number of valence electrons of reaction intermediates (VE1)
are the most important, informative, and interpretable
parameters, in agreement with the SHAP feature importance
analysis. The obtained feature importance can be also
physically interpreted. For example, as the number of nitrogen
increases, the number of charges and electronic properties of
active metal sites highly change, which can hugely affect the
adsorption energy of reaction intermediates. Moreover, by
changing the valence electrons of reaction intermediates, the
hybridization of p orbitals in the reaction intermediate with the
d orbital in the active metal site is strongly affected.
Moreover, in order to find whether the relationship between

the Gibbs free energies and the input features is linear or not,

Figure 3. Correlation heatmap. (a) The heatmap for Pearson coefficient weights in the polynomial, exponential, and logarithmic forms for the most
important parameters. (b) Feature−feature correlation map of the input features. This indicates that there is a linear relationship inside each group,
namely, atomic, structural, and intermediate properties. However, there is no linear relationship between atomic properties with structural and
intermediate properties.
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the Pearson correlation coefficients were calculated. Based on
this, θd has the most coefficient weight with higher linear
dependency on the model output (Figure 2c). Therefore, θd is
the only feature with both high feature importance and high
linear dependency. However, the results indicate that the
relationship between the Gibbs free energies and the other
input features is not necessarily linear, in spite of their high
feature importance.43 It indicates that most portion of their
feature importance is not linear. Therefore, we established a
hypothesis space by using linear, exponential, natural
logarithm, and polynomial forms of the primary descriptors
(θd, ENM, NC, Npy, Npr, and VE1) to find the linear
relationships with the secondary descriptors. The mathematical
form of the model is composed of 54 secondary descriptors
(xi=1,···,54) as follows (see Table S1 of the Supporting
Information for more details)34

=
=

G x
i

m

i i
1 (2)

The magnitude of the Pearson correlation coefficient weights
(β) is displayed in the heatmap demonstrated in Figure 3a. As
such, the linear term of θd, ENM, NC, Npy, and Npr and the
exponential term of VE1 are the most weighted and
informative secondary descriptors. Taking into account the
above results, a general descriptor (φ) is proposed as follows

=
=

i
k
jjjjj

y
{
zzzzz

N EN
EN

exp
VE1
VEd

i M,C,N

i i i

C C (3)

where α is a constant that depends on the environments of the
metal center (α = 1 for pyridinic and α = 1.25 for pyrrolic
nitrogen). Ni is the number of atoms bonded to the metal
center, ENi is the electronegativity of atom i, i stands for the C,
N, and metal (M) atoms, ENC is the electronegativity of
carbon (=2.55), VEC is the valence electron of carbon (=4),
VE1 is the valence electron of intermediate atoms in the 1st

ring, and θd is the number of d electrons of the metal center.
The descriptor considers simultaneously the intrinsic proper-
ties of the metal atom along with the structural and
intermediate properties, which can be simplified as

= k ed
0.25 VE1 (4)

where k is the electronegativity coefficient (=0.5ENM+1.5Npy
+1.2Npr+NC). The simplified descriptor bears physical
meaning. For instance, with an increase in the number of
nitrogens, electrons in the d orbital, and valence electrons in
the intermediate’s first ring, the likelihood of electron sharing
between the metal and intermediate enhances. This gives rise
to an increase in the descriptor value that could lead to a direct
impact on the adsorption energy of the reaction intermediate.
Figure 3b shows the feature−feature correlation map of the
input features. This indicates that atomic properties are likely
related to each other. Similarly, structural and intermediate
properties are likely related, while there is no linear
relationship between atomic properties with structural and
intermediate properties.
Figures 4a and S4 display the ORR overpotential (ηORR eV)

along with Gibbs free energy of OH* OOH*, O*, and H*
intermediates (ΔGOH*, ΔGOOH*, ΔGO*, and ΔGH*) versus the
new descriptor for the MN4-SAC structure, in which M stands
for all of the 3d, 4d, and 5d transition metals (see Figure S3 of
the Supporting Information for more details on the MN4-SAC
structure). It suggests that the new descriptor defines
satisfactory linear relationships, for instance, ΔGOH* =
0.020φ − 2.190 with an R2 value of 0.883. This linear
relationship indicates that an increase in φ corresponds to a
change in adsorption energy and can be explained by the
electronic structure of the active metal center bonded with the
OH* intermediate.7 Moreover, a large value for φ suggests that
the metal center possesses more valence electrons in its d
orbital after charge redistribution.7 In other words, SACs with
higher work function possess more valence electrons in their d

Figure 4. Prediction performance. (a) Gibbs free energy of OH* intermediate (ΔGOH*) versus the new descriptor (φ), suggesting that the new
descriptor satisfactorily defines the linear relationship with the ΔG of reaction intermediates for SACs. Free-energy diagram predicted for (b) ORR,
(c) CO2RR, and (d) HER for FeN4-SAC.
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orbital, leading to a higher value for φ and higher adsorption
energy for OH*.7
The prediction performance of the trained SVR model is

evaluated for FeN4-SAC, a well-known SAC, through Figure
4b−d which shows the free-energy diagram predicted for ORR,
CO2RR, and HER. Figure 4b displays an overpotential of 0.51
V for ORR, which agrees with the theoretically obtained ORR
overpotential of 0.59 V from the first-principles DFT
calculations.46 As for CO2RR, Figure 4c shows rather a high
adsorption energy of FeN4-SAC for the CO intermediate
(−1.15 eV), which makes it more efficient at producing CH4
and multicarbon products instead of just CO. This is because
the CO intermediate can remain stable on the catalyst,
allowing for proton transfers to occur and create more complex
products.47 This is a promising aspect of the catalyst for
CO2RR, as multicarbon products have the potential to be more
useful and valuable than simpler products like CO or CH4. In
addition, based on our results, introducing one N vacancy in
FeN3-SAC (see Figure S3 of the Supporting Information for
more details on the MN3-SAC structure) lowers the Gibbs free
energy of COOH* and CO* intermediates, which agrees with
recent findings.48 It is worth mentioning that the data for
vacancy defects is not in the training data set, suggesting that
the proposed ML algorithm is applicable for extrapolative
predictions as well.
As for HER, an overpotential of 0.22 V is predicted for

FeN4-SAC (Figure 4d), which agrees with the HER over-
potential of 0.25 V obtained from DFT calculations.10 This
suggests a good performance for FeN4-SAC in HER, which is
consistent with its good experimental HER performance.10,46

The proposed SVR model also indicates the potential to
perform high-throughput screening for new SACs.45,49−52

Figure 5 shows the high-throughput screening for the
overpotential of ORR (ηORR), indicating some catalysts with
low overpotentials. More specifically, FeN4-SAC (0.51 V),
CoN4-SAC (0.49 V), NiN3N1-SAC (0.49 V), NiC4-SAC
(0.38 V), ZnN3C1-SAC (0.48 V), ZnN3-SAC (0.22 V),
ZnN2-SAC (0.22 V), RhN3C1-SAC (0.45 V), PdN2C2-SAC
(0.33 V), PdN3-SAC (0.33 V), PdN2-SAC (0.33 V), AgN2C2-
SAC (0.31 V), AgN1C3-SAC (0.44 V), CdN2C2-SAC (0.48
V), CdN1C3-SAC (0.49 V), PtN4-SAC (0.36 V), AuN3C1-
SAC (0.39 V), HgN2C2-SAC (0.32 V), HgN1C3-SAC (0.23
V), HgN3-SAC (0.49 V), HgN2-SAC (0.49 V), and HgC3-
SAC (0.43 V) lead to low overpotentials, which can be
applicable for metal−air battery and fuel cell applications.
Besides, the lower overpotential obtained for CoN4-SAC in
comparison with that of FeN4-SAC indicates its better ORR
performance, which is interestingly in agreement with
experimental results reported in the literature.46 As mentioned,

FeN4-SAC led to a low overpotential of 0.51 V, while the
FeC2-SAC structure led to a high overpotential of 2.7 V,
suggesting that the coordination environment has a significant
effect on the activity of these SACs for ORR.12,53 Moreover,
the study found that certain metals (Sc, Ti, V, Y, Zr, Nb, La,
Hf, Ta, W, Re, and Os) led to a high ORR overpotential in the
examined catalyst structures with a poor ORR activity due to
their strong binding of the OH* intermediate. Recently, it has
been shown that YN4-SAC can be activated toward ORR by
an axial chlorine ligand due to the weakening of the binding
energy of the OH* intermediate.54

■ CONCLUSIONS
In our study, we utilized the support vector machine (SVR)
algorithm to design single-atom catalysts (SACs) supported by
both porphyrin and graphene by calculating the Gibbs free
energy (ΔG) of reaction intermediates toward electrochemical
reactions. Bayesian optimization, coupled with 10-fold cross-
validation, was used to optimize the hyperparameters of our
SVR model trained with 2105 DFT-calculated data points from
the relevant literature. Through the use of SHAP and
permutation methods, we determined the number of pyridinic
nitrogens (Npy), the number of d electrons (θd), and the
number of valence electrons of the reaction intermediate as the
most significant factors via feature importance analysis.
Inspired by the feature importance analysis and the Pearson
correlation coefficient, we represented ΔG of reaction
intermediates using a general and linear dependent descriptor
(φ). Our trained SVR algorithm enabled us to calculate ΔG of
OH*, O*, OOH*, H*, COOH*, CO*, and N2* intermediates
for the purpose of ORR, OER, HER, and CO2RR. More
specifically, we applied the ML algorithm for high-throughput
screening of SACs for ORR overpotential, proposing several
new candidates such as ZnN3-SAC, ZnN2-SAC, and
HgN1C3-SAC with the ORR overpotential of below 0.30 V.
This strategy proposes a data-driven method for catalyst design
that can remarkably lower the DFT calculation time while
providing the means for designing SACs for electrochemical
reactions.
ML Code Availability. The ML algorithm is available free

of charge at https://github.com/MohsenTamtaji/PySACs.
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Figure 5. High-throughput screening. High-throughput screening for the overpotential of ORR, indicating low overpotential of, for example, 0.33 V
for PdN2C2-SAC (see Figure S3 of the Supporting Information for more details on N4, N3C1, N2C2, N1C3, C4, N3, N2, C2, and C3 structures).
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