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ABSTRACT
Machine learning (ML) has demonstrated its potential usefulness for the development of density functional theory methods. In this work,
we construct an ML model to correct the density functional approximations, which adopts semilocal descriptors of electron density and
density derivative and is trained by accurate reference data of relative and absolute energies. The resulting ML-corrected functional is tested
on a comprehensive dataset including various types of energetic properties. Particularly, the ML-corrected Becke’s three parameters and the
Lee–Yang–Parr correlation (B3LYP) functional achieves a substantial improvement over the original B3LYP on the prediction of total energies
of atoms and molecules and atomization energies, and a marginal improvement on the prediction of ionization potentials, electron affinities,
and bond dissociation energies; whereas, it preserves the same level of accuracy for isomerization energies and reaction barrier heights. The
ML-corrected functional allows for fully self-consistent-field calculation with similar efficiency to the parent functional. This study highlights
the progress of building an ML correction toward achieving a functional that performs uniformly better than B3LYP.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0148438

I. INTRODUCTION

Density functional theory (DFT) has become one of the
most promising branches of quantum chemistry and has facil-
itated the development of various disciplines in natural science
and engineering.1–3 With a wide range of applications in molecu-
lar and bulk systems, DFT methods achieve an excellent balance
between accuracy and efficiency for general-purpose calculations.
The Kohn–Sham (KS) scheme4 enables the calculation of electron
density and energy in a self-consistent-field (SCF) manner. The suc-
cess of KS-DFT lies in the conversion of solving complex many-body
wavefunctions of real electronic systems to the solution of effec-
tive noninteracting systems, given the exchange-correlation (XC)
functional. Over the years, there have been many efforts of various
density functional approximations (DFAs) seeking better formula-
tions of the XC functional with increasing accuracy. Despite the
success of DFAs designed by analytic derivation subject to physical

constraints5,6 or fitting with semi-empirical parameters,7–9 a uni-
versally accurate and computationally efficient DFA remains to be
found. One way to achieve this, as is described by “Jacob’s ladder,”10

is to incorporate more sophisticated density descriptors into the
design of DFA to systematically enhance its accuracy.

Machine learning (ML) techniques11–13 have been employed
to improve existing density functional methods and to develop
new DFAs.14,15 Since the early attempt by Tozer et al.16 in which
an artificial neural network (ANN)17 was employed to fit the
Zhao–Morrison–Parr XC potential, numerous works have been
devoted to combining the DFT methods and ML techniques to
enhance the performance of DFAs toward chemical accuracy.18–64

For instance, Nagai et al. have proposed a systematic approach to
construct ANN-based DFAs by using density descriptors on each
rung of “Jacob’s ladder.”37 In a recent study, an XC functional con-
structed with a deep neural network was trained on fractional charge
and fractional spin systems to satisfy rigorous physical constraints.55
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The resulting DM21 functional has demonstrated promising per-
formance for the treatment of charge delocalization and strong
correlation. Pokharel et al. have designed a deep neural network
to de-orbitalize the strongly constrained and appropriately normed
(SCAN) functional,6 and the resulting ML functional replicates
the performance of SCAN by utilizing the information of elec-
tron density and density derivative while avoiding the use of the
orbital-dependent kinetic energy density.56 Recently, Nagai et al.
have constructed an ML-corrected SCAN functional.38 By introduc-
ing a number of asymptotic constraints as regularization for the
ML parameters, they have improved the accuracy of the ML-based
functional and extended its applicability from molecules to bulk
solids.

It is practically more appealing to design a functional correc-
tion than to build a whole new DFA from scratch, provided that
the correction does not break appreciably the physical constraints
intended by the original DFA. In their early work,16 Tozer et al. pro-
posed the construction of a local correction to the XC potential with
ANN. They have also discussed the challenges of building an XC
potential with ANN directly from electron density and density gra-
dient. In our previous work, we have constructed an ML correction
to the Perdew–Burke–Ernzerhof (PBE) functional65 by establishing
a semilocal mapping from the electron density and reducing the
gradient to a correction to the XC energy density.33 The resulting
ML-corrected PBE is directly applicable to any molecular system and
yields significantly improved heats of formation (HOF) while main-
taining the accuracy of PBE for other thermochemical and kinetic
properties. However, our previous attempt has several limitations.
The first limitation lies in the preparation of reference data. For a
molecular species, the error of calculated thermochemical energy
is determined by comparing it to the highly accurate experimental
data and then assigned to each point in the r-space. Ideally, every r-
point contributes an independent data entry to the construction of
the semilocal mapping. However, the pointwise errors originating
from the same global error are not mutually independent. More-
over, to facilitate the training of the ML model, we attributed the
errors of the calculated HOF to the molecules alone but consid-
ered the atomic energies to be constants. It is certainly desirable to
treat the molecular and atomic species on the same footing. The sec-
ond limitation is that the resulting ML correction works only in a
post-SCF manner.

In this work, we aim to develop an accurate and efficient
semilocal ML correction to DFAs, which is implemented in an SCF
manner, and thus remove the above two limitations. The hybrid
functional with Becke’s three parameters and the Lee–Yang–Parr
correlation (B3LYP)66–68 achieves an outstanding trade-off between
accuracy and efficiency and sets a milestone for DFAs. While there
are DFAs that belong to higher rungs of the “Jacob’s ladder” and
hence are much more accurate than the B3LYP functional, e.g.,
the doubly hybrid functionals,69–73 we choose to focus on com-
putationally less demanding DFAs, with the hope that the ML-
corrected DFAs are immediately applicable to general chemical
systems. Thus, the goal of this work is to address the apparent
challenge “to develop a functional that performs uniformly better
than B3LYP.”74

The remainder of this paper is organized as follows: Section II
describes the construction of the ML model for correcting the
DFAs. Section III exhibits the numerical performance of the

ML-DFA across a variety of test sets along with an in-depth analysis
of the numerical outcomes. Concluding remarks are finally given in
Sec. IV.

II. METHODOLOGY
A. General design of the ML-corrected DFA

Instead of building a superior DFA entirely from scratch, we
propose to design a semilocal correction term, ΔϵML

XC(r), represented
by an ML model, to the XC energy functional, EDFA

XC . The resulting
ML-corrected DFA is abbreviated as ML-DFA and expressed as

EML−DFA
XC = EDFA

XC + ∫ drρ(r)ΔϵML
XC(r). (1)

For simplicity, the density descriptors of common generalized gra-
dient approximation (GGA) functionals are adopted as the features
of the ML model,33 resulting in a semilocal mapping that eventually
completes the KS mapping of the parent functional,

{rs, ζ, s}↦ ΔϵML
XC(r). (2)

Here, the Wigner–Seitz radius rs = (4π/3)−1/3ρ−1/3, the relative
spin polarization ζ = (ρ

↑
− ρ
↓
)/ρ, and the reduced density gradient

s = ∣∇ρ∣/[2(3π2
)

1/3ρ4/3
] represent the electron density and density

gradient.65 In principle, the semilocal ML correction can be applied
to any DFA.

To enable an SCF implementation of the ML-DFA, the XC
potential of the ML-corrected functional is calculated as follows:

vML−DFA
XC;σ ≡

δEML−DFA
XC [ρ]

δρσ
= vDFA

XC;σ + ΔvML
XC;σ , (3)

with σ =↑, ↓ and

ΔvML
XC;σ(r) =

∂ f ML

∂ρσ
−∇ ⋅

∂ f ML

∂∇ρσ

=
∂ f ML

∂rs
(−

4π
9
)r4

s +
∂ f ML

∂s
(−

s
πr3

s
)

+
∂ f ML

∂ζ
(

4π
3
)r3

s [sgn (σ) − ζ]

+∇ ⋅ (
∂ f ML

∂s
314/3s3

16π5/3r12
s
∇rs), (4)

where f ML
= ρΔϵML

XC ; see the Appendix for the detailed derivation of
Eq. (4). The challenge then is to find a proper form of ML-DFA so
that the corrected XC functional yields the most accurate prediction
for thermochemical properties.

B. The ANN correction to XC energy density
According to Eq. (4), the ML correction to the XC potential

requires the calculation of the derivatives ∂ΔϵML
XC /∂rs, ∂ΔϵML

XC /∂s,
and ∂ΔϵML

XC /∂ζ, which means that the ML model has to be differ-
entiable. Albeit highly accurate and flexible, the XGBoost platform75

employed in our previous work is non-differentiable and thus is not
applicable for modeling ΔϵML

XC . Instead, ANN is completely differen-
tiable with continuous activation functions and is chosen as the ML
model in this work.
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The ML correction to the XC energy density, ΔϵML
XC(r), is mod-

eled by an ANN that is integrated with the parent DFA to perform
SCF calculations. The ANN model is defined locally at each r-point
of the numerical integration grids set up for the density functional
calculations. The weights of the ANN are determined via a non-
gradient optimization algorithm instead of the gradient descent
algorithm in conventional ML.

Throughout this work, the ANN model is implemented by
using PyTorch,76 an open source machine learning framework.
The automatic differentiation mechanism of PyTorch is convenient
for computing the functional derivatives required for ΔvML

XC;σ . The
activation function is chosen as the sigmoid function,17 which is
differentiable on its domain R. The network structure is chosen to
be 3 × 20 × 20 × 20 × 1 with three input neurons holding the GGA-
level density descriptors {rs, ζ, s}, one output neuron giving the
ΔϵML

XC(r), and three fully connected hidden layers with 20 neurons
in each layer encoding the complex semilocal mapping. The num-
ber of hidden layers of ANN in this work was not pre-determined
but discovered gradually by trial and error. It is found that a one- or
two-layer network often makes the SCF calculation hard to converge
due to extreme values of the functional derivatives, while a network
deeper than five layers is difficult to be optimized to give an effec-
tive correction to the original DFA. The number of hidden layers is
finally set to three for the ANN model.

C. Training of the ANN model
To determine the optimal weights of the ANN, the gradient-

based algorithms for conventional supervised ML require a direct
label of each sample defined at the r-points for the optimization.
Usually, highly accurate thermochemical energies obtained from
experimental measurements or high-level quantum chemistry cal-
culations are adopted as reference data. However, reference energy
data do not correspond to a single r-point but involve a large number
of r-points associated with a chemical species.

As mentioned in Sec. I, it is rather difficult to decompose the
error associated with the energetic data of a species into pointwise
contributions. Consequently, it is difficult to apply the commonly
used back propagation strategy and gradient-based algorithms for
optimizing the weights of ANN straightforwardly. Another factor
that hinders the back propagation of errors is that the ML-corrected
KS mapping still involves an SCF procedure so the loss function
(see below) has an implicit dependence on the density descriptors.
With the current architecture of the ML-corrected functional, the
error can only propagate forwardly through the ANN model. Thus,
a gradient-free optimization algorithm, the particle swarm optimiza-
tion (PSO) algorithm,77,78 is employed to determine the weights w of
the ML model.

The PSO algorithm focuses on a single quantity, the loss func-
tion Ω, to optimize the weights of the ANN. The training samples are
defined locally at the integration r-points of the training species as
the data entry with input features of {rs, ζ, s} and output of ΔϵML

XC(r),
but the target values for ΔϵML

XC(r) are not explicitly given. Instead, the
goal of learning is to adjust the weights so that the integration of the
ANN outputs for all the r-points associated with a species is as close
as possible to the reference energy of that species. The training pro-
ceeds as follows. Given a specific set of weights w, SCF calculations
are carried out with the ML-corrected DFA to obtain the energy data

of the chemical species in the training set. These energy data are then
evaluated by comparing them with the reference energies to provide
a global loss Ω(w). The PSO algorithm takes the global loss as the
feedback to update the w directly, without calculating the gradients
of Ω(w).

The reference energies in the training set consist of two parts,
relative energies involving several species and absolute energies of
individual species. The relative energies are taken as the atomiza-
tion energies (AEs) of a number of molecules chosen from the
G2/97 test set,79 which are calculated by the explicitly correlated
coupled-cluster theory with iterative single, double and perturbative
triple excitations, CCSD(T)(F12), using the frozen-core approach
and augmented with higher-order corrections for core/core-valence
correlation and higher-excitation effects.80 We also include the total
energies (TEs) of these molecules at their equilibrium geometries
and the TEs of their constituent atoms calculated at the same level
as the reference energies.

While the performance of some DFAs relies heavily on the
cancellation of errors between species,74,81 it is more favorable if
the superior accuracy originates from the correct KS mapping. For
the latter, it has been demonstrated that the explicit consideration
of absolute energies in the development of DFAs can improve the
prediction of both TEs and relative energies, leading to enhanced
applicability to more species and properties.68,74,82 In this work, the
including of absolute energies during training is expected to pro-
mote the accuracy of ML-DFA by serving as a regularization for the
optimization of the weights.

Given the training set, the loss function Ω is defined as

Ω(w) =
1
M

M

∑
m=1
∣
(AE)ML−DFA

m − (AE)ref
m

(AE)DFA
(H2O)

∣

+
α
N

N

∑
n=1
∣
EML−DFA

tot,n − Eref
tot,n

EDFA
tot (H2O)

∣, (5)

with

(AE)ML−DFA
m =∑

a∈m
EML−DFA

tot,a − EML−DFA
tot,m (6)

and

EML−DFA
XC = EDFA

XC + ∫ dr ρ(r)ΔϵML
XC(r; w). (7)

Here, M is the number of AEs in the training set, N is the number
of TEs of related molecules and constituent atoms,∑a∈m denotes the
summation over all the constituent atoms of a molecule, and (AE)ref

m

and Eref
tot,n are the reference values of AEs and TEs. The errors of the

AEs and TEs are scaled to be dimensionless by the corresponding
values of the H2O molecule calculated with the original DFA. To
assess training errors, the XC energy density of ML-DFA is first inte-
grated over r-space to obtain TEs of the training species, and then,
the related AEs are calculated and compared to the corresponding
reference energies to generate the global loss.

The ratio of the absolute energy to the relative energy is
adjusted by the hyperparameter α in the loss function. The ratio
plays a critical role in the optimization as it balances the correction of
the model to the energy difference and to the absolute energy predic-
tion itself, eventually extending the applicability of ML-DFA to the
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prediction of a wider range of chemical species. Despite its impor-
tance, it requires extra effort to find the optimal value of the ratio,
since there is no prior knowledge available. The initial value of α is
determined by performing sample statistics for the G2/97 set, i.e.,
the ratio is set to ΣM

m Δ(AE)DFA
m /ΣM

m ΔEDFA
tot,m, which is 0.16. Δ(AE)DFA

m
and ΔEDFA

tot,m are the errors of AEs and TEs associated with the origi-
nal DFA, respectively, for species in the G2/97 set. The value of α is
then adjusted to minimize the validation error.

Figure 1 illustrates the workflow for constructing the ML-
corrected DFA. The training protocol of ML-DFA can be generally
described as a two-stage nested global optimization of weights w.
The initial set of weights, denoted as w0, is chosen to be 0 since the
starting point of ML-DFA is the original DFA. At the ith step of the
optimization, the following two stages are accessed iteratively.

1. Given the set of weights wi from the last step, do KS SCF cal-
culations with a maximum of 50 cycles over all the species in
the training set. The calculations yield the XC energy density
{ϵ(i+1)

XC (r; wi)} by ML-DFA for the ith step.
2. Integrate {ϵ(i+1)

XC (r; wi)} over r-space for all the species and
calculate the global loss Ω(wi) by Eq. (5). If the global loss is
within the pre-defined threshold e1 and all the residual devi-
ations of KS SCF calculations have reached the convergence
threshold e2, i.e., Ω(wi) ≤ e1 and e(i+1)

SCF ≤ e2, the weights wi
are deemed optimal, and the training process is completed. If
the former e1 criteria are not satisfied, the optimization algo-
rithm updates the weights of ANN to wi+1 by minimizing
the current loss Ω(wi) and then returns to stage 1 with the
updated weights wi+1 and repeats the process until the two
convergence criteria are met. Specifically, if the latter e2 cri-
teria are not satisfied, which indicates a failure in converging
the SCF calculations, the current weight wi is discarded, and
the optimization continues to the next step.

D. Dataset and computational details
The dataset adopted for training, validation, and prediction

involves absolute energies and relative energies. Specifically, the

latter include AEs, HOF, ionization potentials (IPs), electronic
affinities (EAs), isomerization energies (IEs), bond dissociation
energies (BDEs), and reaction barriers.

The composition of the training set is an essential factor that
affects the optimization of the ANN model. Although incorporating
more species in the training set is likely to yield a more accu-
rate model in terms of test performance, the size and number of
species in the training set are limited by the computational resources
available under the non-gradient optimization protocol, since the
optimization involves hundreds of iterations of full SCF calculations
on the entire training set. For a larger training set, it also requires a
more sophisticated design and tuning of the loss function in Eq. (5)
to achieve better training performance. This is because, otherwise,
the contribution of the species with small errors in AE or TE will
be flooded by those with significant errors during the optimization.
We choose three molecules {H2O, C2H2, SO2} from the G2/97 set
and adopt the AEs and TEs of these molecules along with the TEs
of their constituent atoms {H, C, O, S} that occur most frequently
in the original set to form the training set. We assess the train-
ing samples at r-points with the NCI-plot83 in comparison to the
data points of the G2/97 set; see the supplementary material for
details. According to the distributions of the r-points, the training
set has covered a large fraction of the space (ρ, s) for species in the
G2/97 set.

The three training species are taken from the 148 AEs of the
G2/97 test set,79 and the remaining 145 AEs form the validation
set, designated as G2-AE. The reference energies in the original
G2/97 test set were given as HOF from experimental records. To
avoid introducing any unnecessary systematic errors from the ther-
mal correction for the HOF calculation, the reference energies for
the AEs in both the training and validation sets along with the
reference TEs for the corresponding 148 molecules and the con-
stituent atoms are calculated by a high-level wavefunction method.80

According to the original research,80,84 the average error associated
with this computational protocol is expected to be 0.1 kJ/mol per
valence electron, and 95% of the AEs in the G2-AE set were predicted
with an error smaller than 2.1 kJ/mol (within the chemical accu-
racy of 1 kcal/mol) with respect to the active thermochemical tables

FIG. 1. Schematic diagram for the
construction of the ML-corrected DFA.
Details about the training process are
elaborated in Sec. II C. The total error
is evaluated via the loss function Ω, and
eSCF is the residual error of the SCF cal-
culations, where e1 and e2 are the pre-
defined thresholds for the corresponding
errors.
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(ATcT).85 The TEs of the species in the G2-AE set are designated
as the G2-TE test set, and the remaining 14 atoms from the first
three rows of the main group elements form the TAE (total atomic
energy) set.

To evaluate the performance of the ML-corrected DFA, we
choose to examine a number of established datasets in the literature.
These include a set of six AEs of platonic hydrocarbon cages CnHn
(n = 4, 6, 8, 10, 12, 20) taken from the PlatonicTAE6 subset of the
MGCDB84 set86 (denoted as P6-AE) and a set of 19 AEs of alkanes
(n = 1 . . . 8) taken from the AlkAtom19 subset of the MGCDB84
set (denoted as Alk-AE). Due to the absence of accurate reference
data for AEs in the G3-3 test set,75,87 HOF of the G3-3 set are directly
taken to form the G3-HOF test set. 84 IPs and 58 EAs are taken
from the IP and EA subsets of the G2/97 set88 to form the G2-IP
and G2-EA test sets, respectively. 42 randomly selected BDEs form
the BDE42 test set with the reference energies taken from experi-
ments89 and high precision calculations.90 99 BDEs are taken from
the BDE99nonMR subset of the MGCDB84 set (denoted as BDE99)
to further evaluate the performance on bond energy calculations. For
the test of IE, 20 IEs are taken from the ISOMERIZATION20 subset
of the MGCDB84 set to form the ISO20 test set, and another 8 IEs
from the C20C24 subset of the MGCDB84 set form the ISO-C test
set. In addition to thermochemical properties, we also evaluate the
predictive power of ML-DFA on kinetic energies related to chemi-
cal reactions. 38 hydrogen transfer reaction barrier heights and 38
non-hydrogen transfer reaction barrier heights are taken from the
HTBH38/08 and NHTBH38/08 sets82,91,92 to form the HTBH and
NHTBH test sets, respectively.

The density functional calculations in this work are performed,
unless otherwise noted, by using the Python-based Simulations of
Chemistry Framework (PySCF),93–95 an open-source library for elec-
tronic structure calculations. The XC functional of ML-DFA is
handled by the convenient customized interface of the XC functional
in PySCF. During each step of the KS SCF calculation, the functional
derivative of the ANN-presented functional correction can be com-
puted on-the-fly, given the input of density descriptors using the
automatic differentiation mechanism of PyTorch, and the resulting
ML-corrected XC potential and energy density are fed to PySCF to
continue the SCF calculation. Unless otherwise noted, the density
functional calculations are carried out with the Def2-TZVPD basis
set,96–99 which is an extension of the standard Def2-TZVP basis set
with the addition of diffuse functions.

The non-gradient optimization algorithm is implemented via
an open source optimization library called Nevergrad.100 Among
all available optimization algorithms, the population-based PSO
method is finally chosen because of its outstanding balance between
simplicity and productivity. During the optimization, a stopping
condition is added to implement the SCF convergence criterion
mentioned in Sec. II C. The condition is invoked to exclude the
weights of the ANN with which the SCF calculations performed by
ML-DFA do not converge on any training species within a given
number of iterations. While the condition might slow down the
optimization of the ANN model, it can effectively guarantee an SCF-
convergent model after training. The same strategy can be extended
to include exact physical constraints in the optimization of ML
models during the training of ML-DFA.

In this work, we investigate the ML correction to three DFAs:
the PBE functional65 and two types of B3LYP functional. The dif-

ference between the two types of widely used B3YLP functional lies
in the use of different versions of the Vosko-Wilk-Nusair (VWN)
correlation functional,101 as reported in previous studies.102,103 The
default B3LYP functional in PySCF, GAMESS,104 and some other
quantum chemical programs adopts the VWN5102 correlation func-
tional parameterized from the values of calculations on the correla-
tion energy of the uniform electron gas (UEG) as a basis for the fit
and is hereafter denoted B3LYP; whereas, the default B3LYP func-
tional in Gaussian105 adopts the VWN3102 correlation functional
fitted with respect to the random phase approximation (RPA) and
is hereafter denoted B3LYPG. The accuracy of the predictions by the
two functionals has a small difference in relative energies but a rela-
tively large difference in absolute energies. For the sake of clarity, the
ML-corrected PBE functional will be referred to as ML-PBE, and the
ML-corrected versions of the B3LYP and B3LYPG functional will be
referred to as ML-B3LYP and ML-B3LYPG, respectively.

III. RESULTS AND DISCUSSION
A. Numerical performance of the ML-corrected
functional

We first implement the ML correction on the PBE functional.
Several trained models are selected as potential candidates, and their
predictive power is evaluated on the test sets. It is found that these
ML corrections provide only a marginal improvement in terms of
accuracy over the original PBE functional for the prediction of var-
ious thermochemical and kinetic properties. In particular, given
the hyperparameters experimented with, the ML-corrected PBE can
only predict accurate AEs or TEs but cannot improve both simul-
taneously. This suggests that a more sophisticated parent DFA is
probably needed to capture the main ingredients of the KS map-
ping so that the remaining contribution can be well described by
ML-based correction.

We then impose the ML correction on the B3LYP and B3LYPG
functionals, which belong to a higher rung of the “Jacob’s ladder.”
The overall mean absolute errors (MAEs) of ML-B3LYP and ML-
B3LYPG functionals on the test sets are exhibited in Fig. 2 in
comparison with the original B3LYP and B3LYPG functionals. The
displayed numbers are associated with the best ML model that yields
the smallest training and validation MAEs. Since ML-B3LYP and
ML-B3LYPG have similar numerical performance over the various
test sets, the following discussion will focus mainly on the former for
brevity.

As shown in Fig. 2, the original B3LYP functional gives a rela-
tively large MAE on the G2-AE set. The MAE on the G3-HOF test
set containing some larger molecules is around 10 kcal/mol, about
twice as large compared to the MAE on the G2-AE set. With the
ML-corrected B3LYP, the MAE reduces to about 3 kcal/mol on the
G2-AE set, and an even more substantial reduction of about 70%
in MAE is observed on the G3-HOF test set. Since conventional
DFAs often produce appreciable errors for the prediction of thermo-
chemical energies, especially the AE and HOF,86 the ML correction
effectively and consistently improves the accuracy and transferabil-
ity of the original B3LYP functional on these properties for small-
and medium-sized molecules. With the TEs of both molecules and
atoms calculated with the same ML-corrected functional, the incon-
sistency issue in our previous work33 regarding the calculation of AE
or HOF is solved.
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FIG. 2. Performance of ML-corrected B3LYP and B3LYPG functionals in comparison with their uncorrected counterparts. The number over each bar is the MAE of the
corresponding dataset yielded by a particular DFA; see the main text for details. G2-AE set is taken as the validation set during the training process. The reference values
for the TEs associated with the G2-TE and TAE sets are consistent with the AEs of the G2-AE set reported in Ref. 80. For computing HOF of the G3-HOF set, a scaling
factor of 0.98 is applied to the thermal correction according to Refs. 79 and 87. The calculation of BDEs in the BDE42 set is based on geometries optimized at the level of
B3LYP/6-31G(d) extracted from computational chemistry databases,106–109 and the corresponding reference values for comparison are adopted from Refs. 89 and 90. The
geometries and reference energies for the P6-AE, Alk-AE, BDE99, ISO20, and ISO-C sets are adopted from Ref. 86.

Regarding the absolute energies, both the ML-B3LYP and ML-
B3LYPG functionals achieve a substantial improvement over their
uncorrected counterparts. With the original B3LYP and B3LYPG,
the MAEs on the G2-TE and TAE sets are larger than 10 kcal/mol.
Particularly, the B3LYPG yields exceptionally large MAEs on the
G2-TE and TAE sets. The prediction errors by ML-B3LYP on the
molecular and atomic TEs in the G2-TE and TAE set have seen
a 30% decrease from the errors with the original B3LYP, while
the MAEs of B3LYPG are substantially reduced to 1/6 and 1/4
for the molecular and atomic TEs, respectively. The improvement
in the prediction of TEs by the ML correction is consistent with
the improved accuracy for the prediction of AEs. In principle,
this implies that the improved performance is not only due to the
cancellation of errors but also caused by a more accurate descrip-
tion of the KS mapping; whereas, in practice, this indicates that
the enhanced transferability of the ML correction should allow for
a more universal improvement on a wider range of species and
properties.

We further evaluate the performance of ML-B3LYP on the P6-
AE set, a set of organic molecules containing up to 20 non-hydrogen
atoms, and the Alk-AE set, a set of 1–8 alkane AEs. For both sets,
the ML-B3LYP functional effectively reduces the MAEs of 49.7 and
20.4 kcal/mol by the original B3LYP to 24.3 and 4.7 kcal/mol, respec-
tively. The performance of the ML-B3LYP functional on all the
AE-related test sets suggests that the ML correction can significantly
enhance the accuracy of predicted AEs, and the inclusion of absolute
energies in the training set is beneficial for the learning task.

Regarding the prediction of IP and EA, ML-B3LYP improves
slightly over B3LYP; see Fig. 2. The results can be reasoned from two
aspects. First, the MAEs produced by the original B3LYP functional

on the G2-IP and G2-EA sets are around 4 kcal/mol, much smaller
than those of the AE-related test sets. To minimize the loss function
that collects all the errors at equivalent levels, the training process
focuses primarily on suppressing the largest errors, i.e., those on the
AEs. A more sophisticated ML model is probably needed to further
reduce the prediction errors for IP and EA. Second, the prediction of
IP and EA involves the calculation of charged species. However, the
present training set only consists of neutral molecules and atoms.
The inclusion of charged species into the training set and the loss
function of the ML model will likely improve further the prediction
on IP and EA.

Regarding the prediction of IEs, we assess the performance
of ML-B3LYP on the ISO20 and ISO-C test sets, which have
been explored in a previous benchmark study.86 The ISO-C set is
composed of the isomerization energies of C20 and C24 in their
ground-state geometries, and the ISO20 test set involves molecules
consisting of 1–4 non-hydrogen atoms. The ML-B3LYP basically
preserves the same level of accuracy for the prediction of IEs on these
two tests.

Regarding the prediction of chemical bonding energies, we
examine two test sets, BDE42 and BDE99. The ML-B3LYP improves
slightly over the original B3LYP functional. The BDE42 set is com-
posed of species with C–C, C–O, and C–N bonds ranging from
small molecules of a few atoms to relatively large organic com-
pounds of 7–9 carbon atoms. The ML-B3LYP yields almost the same
MAE as the original B3LYP. Particularly, the MAE on the smaller
molecules in the BDE42 set is about 2 kcal/mol, while the MAE on
the larger molecules with branched C–C bonds is about 9 kcal/mol.
The somewhat more extensive BDE99 set contains 83 BDEs of small
molecules with H–C, H–O, C–C, and several other types of bonds
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between elements of the first three rows of the Periodic Table, for
which the ML-B3LYP exhibits a minor improvement over the orig-
inal B3LYP functional. Besides the accumulation of errors with the
increasing size of the molecule, the minor improvement of BDE pre-
diction is also ascribed to the lack of chemical information on radical
species in the training set.

Regarding the prediction of reaction energy barriers, the ML-
B3LYP has a marginal improvement over the original B3LYP func-
tional. As shown in Fig. 2, the MAEs on the hydrogen and non-
hydrogen reaction barrier heights by the ML-B3LYP functional are
nearly the same as those by the original B3LYP functional. Similar
to the case of IP, EA, and IE, the rather minor improvement in the
accuracy of barrier height prediction may be ascribed to the lack of
transition-state species in the training set.

In brief, the numerical results demonstrated in Fig. 2 verify
the effectiveness of the ML correction to the two types of B3LYP
functionals that are frequently employed in density functional cal-
culations. In this work, the ML model only adopts the AEs and TEs
of neutral chemical species to train the ANN model. The result-
ing ML-B3LYP and ML-B3LYPG functionals improve substantially
the prediction of AEs (HOF) and TEs over the uncorrected coun-
terparts for species beyond the training set but rather marginally
on IPs, EAs, IEs, BDEs, and barrier heights. Among all the four
functionals examined in Fig. 2, the B3LYP functional yields the
largest errors on most of the test sets, while the ML-B3LYP func-
tional has the overall best performance for the prediction of various
energetic properties. Since the ML-B3LYP functional generally out-
performs the original B3LYP, it is potentially applicable in density
functional calculations as a safe and superior replacement for the
latter. Therefore, the above findings indicate that a semilocal ML
correction is practically useful in complementing an approximate
KS mapping.

B. Further analysis of accuracy and efficiency
1. Error accumulation

Since many DFAs including the B3LYP suffer from the prob-
lem that the error increases with the size of the system,27,87,110 we
would like to find out to what extent the semilocal ML-correction

addresses this general problem. As is shown in Fig. 3, the error in
molecular AE or HOF calculated by the original B3LYP functional
accumulates with the number of non-hydrogen atoms. The ML cor-
rection substantially mitigates the effect of error accumulation of
B3LYP, as the regression coefficient of ML-B3LYP is 0.5 kcal/mol
per atom, less than 1/4 of that of B3LYP. The reduction in error
accumulation results from the systematic correction model trained
in a SCF manner, which enables the ML-B3LYP to provide more
accurate prediction for larger chemical systems.

2. Computational efficiency
It is important to test the computational efficiency of the ML-

corrected DFA. In Fig. 4, two medium-sized organic molecules
selected from the test sets are calculated by B3LYP and ML-B3LYP,
and the convergence of total energy during the SCF process is
depicted to compare the efficiency of the two functionals. Despite
a slight delay in reaching the SCF convergence between ML-B3LYP
and B3LYP, it usually requires only one or two more iterations for
the ML-B3LYP to converge for various types of molecules because of
the relatively small magnitudes of the ML correction. The extra com-
putational effort for the evaluation of the ML correction is usually
negligible compared to the other parts of the calculation and thus
negligible in most cases.

We further evaluate the computational efficiency of the ML-
B3LYP on 173 molecules with more than one non-hydrogen
atom. Denote r̃ = tML−B3LYP

/tB3LYP as the relative computation time
between the SCF calculations with the ML-B3LYP and B3LYP func-
tionals. The histogram for the 173 molecules is depicted in Fig. 5.
For most of the molecules (about 84%), the computational time
with ML-B3LYP is similar to that with B3LYP (1 ≤ r̃ ≤ 2). There
are a few molecules for which r̃ > 2. These large r̃ values are sim-
ply because the molecules are so small that the time for loading the
ML model becomes discernible. There are some molecules (about
10%) that the calculation with ML-B3LYP is even faster than that
with B3LYP (r̃ < 1). For large molecules, calculations with ML-
B3LYP are usually slightly slower than with B3LYP. For instance,
ML-B3LYP takes 15% more time than B3LYP for the SCF calculation
of the C60 fullerene molecule. Therefore, the ML-B3LYP functional
can be conveniently implemented and efficiently applied in the same

FIG. 3. Error in molecular AE or HOF
vs the number of non-hydrogen atoms
for molecular species in the G2-AE and
G3-HOF set. The dots are the absolute
errors and the lines are linear regres-
sions for the errors of the two test sets by
the ML-corrected and the original B3LYP
functional. The regression coefficients
are 2.1 and 0.5 kcal/mol per non-H atom
for B3LYP and ML-B3LYP, respectively.
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FIG. 4. Comparison of SCF convergence
between the B3LYP and ML-B3LYP func-
tionals for (a) octahedrane (C12H12) and
(b) dodecahedrane (C20H20). The resid-
ual errors of total energies are plotted
with respect to the SCF iteration num-
bers. The convergence criterion is set to
1 × 10−9 Hartree.

FIG. 5. A histogram of the relative computational time for SCF calculations by
ML-B3LYP vs B3LYP over 173 molecules taken from the test set.

way as the original B3LYP functional, with no significant increase in
computational efforts.

3. Accuracy of electron density
The electron density calculated by B3LYP and ML-B3LYP is

also been examined. We take 60 small molecules from the test sets
and calculate their electron densities on the same r-points by the
B3LYP, ML-B3LYP, and CCSD(T) methods with the same basis set.
By taking the numerical outcomes of CCSD(T) as the reference data,
the MAE of the electron density calculated by B3LYP or ML-B3LYP
is evaluated via

DDFA
=

1
N

N

∑
i=1
∣ρCCSD(T)

(ri) − ρDFA
(ri)∣, (8)

where ρDFA
(ri) is the electron density of a species at ri calculated

by DFA, and N is the total number of r-points. Define the relative
error as

ΔD̃ =
DML−B3LYP

−DB3LYP

DB3LYP . (9)

A negative ΔD̃ means that the electron density calculated by ML-
B3LYP is closer to that of CCSD(T) than by B3LYP and thus more
accurate.

Figure 6 depicts the histogram on ΔD̃ of 60 molecules taken
from the test sets. Apparently, most of the molecules fall within
the range of −0.2 ≤ ΔD̃ ≤ 0.2, which means that the electron den-
sity calculated by ML-B3LYP does not deviate significantly from that
by the original B3LYP functional. More importantly, the majority
of molecules have a negative ΔD̃, indicating a minor improvement
of electron density by ML-B3LYP over the original B3LYP. Such
an improvement is a direct consequence of the small yet effective
change in ϵDFA

XC (r) by the ML correction, which is eventually con-
sistent with the correction scheme proposed in Eq. (1). Since the
ML correction is implemented in an SCF manner, a small correction
to the original XC energy density is expected to yield an effective
improvement to the total energy of a chemical system, with the
electron density corrected self-consistently.

4. Magnitude of correction
To assess the magnitude of the ML correction, a comparison is

made between ϵB3LYP
XC (r) and ΔϵML

XC(r) resulted from the SCF calcu-
lations over the G2-AE set. It is found that ∣ΔϵML

XC(r)/ϵB3LYP
XC (r)∣ < 0.1

for 99.5% of the r-points and ∣ΔϵML
XC(r)/ϵB3LYP

XC (r)∣ < 0.01 for 98.2%
of the r-points; see the supplementary material for details. Such a
comparison suggests that, although the constructed semilocal cor-
rection has a relatively small magnitude, it is sufficient to improve
the accuracy of the parent DFA.
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FIG. 6. A histogram on the relative error in electron density by ML-B3LYP vs
B3YLP for 60 molecules with the result of CCSD(T) taken as the reference. The
dotted line is ΔD̃ = 0. A negative ΔD̃ means that the electron density calculated
by ML-B3LYP is closer to the result of CCSD(T) and hence deemed as more accu-
rate, whereas a positive value indicates that the density by ML-B3LYP deviates
further away from the prediction of CCSD(T) and thus less accurate.

5. Influence of integration grids
As the integration grids sometimes affect the SCF energies by

DFAs, ML-B3LYP is assessed with different levels of grids on the
G2-AE set. The grids are chosen to be at level 4, (99, 590) and level
5 in PySCF, where (99, 590) is referred to as the UltraFine grid level
in Gaussian, and the grids at levels 4 and 5 are sparser and denser
than (99, 590), respectively. The output energies and the MAEs on
the G2-AE set by ML-B3LYP are the same for all the grids tested,
suggesting that the default integration grid is sufficient for accurate
calculations by ML-B3LYP.

6. Basis set dependence
The ML-B3LYP and B3LYP functionals are tested in this work

on the entire dataset with all levels of basis sets in the Def2 fam-
ily. The consistent results indicate a weak dependence of the results
on the choice of basis set, provided that the basis set has at least a
medium size.

IV. CONCLUDING REMARKS
This work has developed a correction scheme for improving the

performance of DFAs with an ML model that is built from semilo-
cal density descriptors. The correction is constructed with an ANN
model whose parameters are determined by the non-gradient global
optimization of the loss function consisting of AEs and TEs for sev-
eral chemical species. The resulting ML-corrected B3LYP functional
yields more accurate predictions for both the energy difference
properties and the absolute energies of general chemical species
than the original B3LYP. In general, ML-B3LYP provides a more
accurate and more balanced performance of calculations on thermo-
chemical and reaction kinetic properties than the original B3LYP,
especially for TE and AE, and slightly improves the accuracy of pre-
diction for IP, EA, and BDE. Implemented on the PySCF platform
as a customized density functional, ML-B3LYP can be immediately
applied to general chemical species the same way as the original
B3LYP functional, without a significant increase in computational
effort.

The introduction of absolute energy for training the ML
correction model contributes to a more stable optimization and
leads to robust models with consistently more accurate predic-
tions of both chemical energies and electron density compared
to the parent functional. With the modest semilocal correction
of the XC energy density, improved and more balanced perfor-
mance of DFAs for chemical predictions with SCF calculations can
be safely achieved without significantly degrading compliance with
strict physical conditions. The ML-B3LYP built in this work is an
enhanced B3LYP functional and can be a favorable replacement
for both types of B3LYP functionals commonly used in electronic
structure calculations. The computational efficiency of the SCF
convergence for the original DFA is effectively preserved by the
ML-DFA.

In summary, this work explores the possibility of developing
“a functional that performs uniformly better than B3LYP,”74 and
presents the ML-corrected functional that generally improves the
predictive accuracy of B3LYP on various properties. The results
demonstrate the effectiveness of combining ML corrections with
DFAs for better performance. For now, the predictions by the ML-
corrected functional are not within the chemical accuracy and will
be promoted in further studies.

Several aspects of this work need to be further explored. First,
the current ML correction can be modified and developed to extend
its applicability to more types of DFAs and various chemical systems
by considering exact physical constraints. The physical constraints
can be integrated into the training process, similar to the control
of the SCF convergence for the ML-DFA during the optimization,
to guide the correction model of the ML-DFA toward chemical
accuracy. Meanwhile, a more complete and balanced training set
can be built to include the chemical environment of ionic and rad-
ical species as well as species in non-equilibrium geometries. A
systematic protocol is to be established to determine the optimal
composition of the training set so that the set is adequate for train-
ing a correction model with high accuracy and broad transferability.
Moreover, Yaron and co-workers111,112 have successfully integrated
quantum chemistry calculation into an ANN for the prediction of
molecular properties. This was achieved by incorporating the den-
sity functional tight binding (DFTB) theory as a layer in the network
and combining the back propagation of the DFTB Hamiltonian and
network parameters with the SCF calculation for the charge distri-
bution to train the ANN. Their findings suggest that it is possible to
design a practical approach to optimize the ML-corrected KS map-
ping by back propagation and gradient descent algorithms through
an SCF procedure, which will be further explored. Furthermore,
the applicability of ML-DFA can be extended to periodic solids. In
future work, we will explore an appropriate way to integrate the
information on non-equilibrium geometries into the training pro-
cess of ML-DFA to improve its predictive power on barrier height
and other kinetic properties. It will also be attempted to further
improve the predictions by the ML-DFA of the binding energies
through a proper introduction of the radical reference data in the
training process of the functional. Finally, similar to the ML correc-
tion term defined in this work, an ML correction term to capture
non-covalent interactions can be added to the XC energy density
of DFAs to correct the predictions of the original DFAs on non-
covalent interactions, possibly aided by a proper design of non-local
density descriptors.
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SUPPLEMENTAL MATERIAL

See the supplementary material is available free of charge at:

● SM.pdf: Details about the datasets and numerical perfor-
mance of the ML-corrected functionals.

● The code for performing density functional calculations
with the proposed ML-B3LYP functional with PySCF can be
obtained from https://github.com/beckhamwjc/ML-DFA.
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APPENDIX: DERIVATION OF ML-CORRECTED
XC POTENTIAL

According to the definitions in Eqs. (1) and (3), the functional
derivative of ΔvML

XC;σ is calculated in the same manner as the XC
potential of GGA functionals,1,2

ΔvML
XC;σ(r) =

δ ∫ dr f ML
(rs, s, ζ)

δρσ

=
∂ f ML

∂ρσ
−∇ ⋅

∂ f ML

∂∇ρσ
, (A1)

where f ML
= ρΔϵML

XC . According to the chain rule for functional dif-
ferentiation, the first part of the derivative in Eq. (A1) is directly
calculated, given the fact that the arguments of f ML, {rs, s, ζ}, are
all functions of the electron density ρ,

∂ f ML

∂ρσ
=
∂ f ML

∂rs

∂rs

∂ρσ
+
∂ f ML

∂s
∂s
∂ρσ
+
∂ f ML

∂ζ
∂ζ
∂ρσ

=
∂ f ML

∂rs
(−

4π
9
)r4

s +
∂ f ML

∂s
(−

s
πr3

s
)

+
∂ f ML

∂ζ
(

4π
3
)r3

s [sgn (σ) − ζ]. (A2)

According to the chain rule for function differentiation, the second
part of the derivative in Eq. (A1) is directly calculated, given the fact
that only s is an explicit function of the density derivative∇ρσ while
rs and ζ are not,

∇ ⋅
∂ f ML

∂∇ρσ
= ∇ ⋅ (

∂ f ML

∂s
∂s

∂∇ρσ
)

= ∇ ⋅ (
∂ f ML

∂s
314/3s3

16π5/3r12
s
∇rs). (A3)

Therefore, we have

ΔvML
XC;σ(r) =

∂ f ML

∂rs
(−

4π
9
)r4

s +
∂ f ML

∂s
(−

s
πr3

s
)

+
∂ f ML

∂ζ
(

4π
3
)r3

s [sgn (σ) − ζ]

+∇ ⋅ (
∂ f ML

∂s
314/3s3

16π5/3r12
s
∇rs), (A4)

as in Eq. (4).
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