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Abstract
The exchange–correlation (XC) functional plays the central role in density functional theory (DFT). The exact
XC functional determines a unique and universal mapping from the electron density of a system to either the
XC potential or the XC energy/energy density. Through a self-consistent way, all properties of the system can
be calculated by the mapping. The exact XC functional is hard to find, and various popular approximations to
it struggled to improve the accuracy further by traditional means throughout the past few decades. In this
chapter, we will review several approaches that redesign the DFT XC functional by machine learning (ML)
(ML-DFTXC). We will start from one of the earliest functional models that use the global density directly
and then move forward to more recent models that were built around the quasi-local electron density, elab-
orating them with concrete examples. Being the focus of this chapter, the section for quasi-local ML-DFTXC
models will be introduced from a solid theoretical foundation, the holographic electron density theorem, and
be concluded with a general framework that encompasses all existing models. Auxiliary ML models for van
der Waals interactions, which can be added on top of the quasi-local models, will also be discussed. For the
tutorial section, an open-source code and related examples will be provided.

Keywords: Exchange-correlation functional/potential, Machine learning, Deep learning, Convolution neural
network, Quasi-local electron density, Density functional theory

Introduction

Redesigning the exchange–correlation (XC) functional of density functional theory (DFT)
with machine learning (ML) algorithms, or ML-DFTXC, started as early as Handy and
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co-workers’ work in 1996 [1]. Later, the concept was rediscovered independently by Zheng
and co-workers in 2004 [2]. Since then, several proposals have been made to construct the XC
functional with various ML methods. In particular, over the past few years, several methods
have been developed aiming at reproducing the accurate electron density, instead of
reproducing energy-related scalar benchmarks only. In this chapter, the development of
the MLmethod for the DFT XC functional will be reviewed and discussed from the inception
of ML-DFTXC [1,2] to the era of deep learning [3–6].

Characterized by a deterministic and unique mapping between electron density and XC
energy or potential, the philosophy of integrating ML into DFT is fundamentally different
from statistical regressions, where information is usually immersed in random noises. On
the other hand, the deterministic mapping in DFT is so complicated, which goes far beyond
any ideas of mere parameter fitting. Fortunately, the task of finding such a deterministic map-
ping shares certain fundamental similarity with a series of already successful stories com-
pleted by ML, from which ML-DFTXC can borrow conceptually. Surprisingly in hindsight,
modern deep learning algorithms quickly become able to recognize faces, fold a protein
[7], and beat humans in their own games [8] alike. Motivated by the vast applications in
the field of computer vision and natural language processing, more efficient deep learning
algorithms are becoming available, including convolutional neural network (CNN) [9], graph
neural network (GNN) [10], and transformers [11]. In the era of deep learning, a new path
toward the heaven of chemical accuracy [12] is unfolding in front of us.

The existing efforts on the subject of ML-DFTXC come in different aspects and can be
roughly classified into several categories: the ML-redesigned XC potential mapping [3,13],
the ML-redesigned XC energy functional mappings [2,4,5,14–23], ML-redesigned fragment
XC energy functional mappings [6], and other categories beyond [24–35]. It is worth mention-
ing that except for the XC functionals/potentials, other parts of the DFT framework have also
been targeted and improved by ML, among which the kinetic energy functional attracted
broad attention [36–43]. ML has also been extensively applied to fitting or constructing
potential energy surfaces (e.g., [44]), where DFT is often used as either a training target or
one of the benchmarks for theML algorithms. In this type ofworks, DFT’s role can be replaced
with various other quantum chemistry methods as well. We would like to clarify that the cur-
rent chapter does not attempt to be as thorough as possible. On the other hand, it is intended
to only cover ML-DFTXC and focuses on methods that actually ‘redesign’ DFT’s XC func-
tional or potential mapping with ML, as suggested by the title.
Methods

Global electron density formulation of ML-DFTXC

Dictated by the Hohenberg–Kohn theorem [45], the ground-state electron density contains
all the information of a given system. Therefore, one can always construct an ML-DFTXC for-
mulation starting from the global electron density function of the entire system. The XC energy
EXC, as well as the XC potential at any position in real space vXC(r), can be deduced from the
global electron density. To describe and formulate such a complicated correspondence from
any physical electron density to its corresponding XC energy or potential, a hybrid functional
from traditional DFT provides a sensible starting point.
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As one of themost popular hybrid functionals, the B3LYP [46] functional includes five pure
functional terms, EX

Slater[ρ], EX
HF[ρ], ΔEX

Becke[ρ], EC
LYP[ρ], and EC

VWN[ρ], which are tuned by
three coefficients, a0, aX, and aC. ΔEX

Becke[ρ] is the difference between the Becke88 exchange
functional [47] and the Slater [48] exchange functional EX

B88[ρ]�EX
Slater[ρ]. The other terms,

EX
Slater[ρ], EX

HF[ρ], EC
LYP[ρ], and EC

VWN[ρ], are the Slater exchange, Hartree–Fock (HF)
exchange [49], Lee–Yang–Parr (LYP) [46] correlation, and Vosko–Wilk-Nusair (VWN) [50]
correlation functionals, respectively.

EB3LYP
XC ¼ a0E

Slater
X ρ½ � + 1� a0ð ÞEHF

X ρ½ � + aXΔEBecke
X ρ½ � + aCE

LYP
C ρ½ � + 1� aCð ÞEVWN

C ρ½ �: (1)

The coefficients in a hybrid functional are fitted to experiments / more accurate calcula-

tions and fixed as constants afterward. In B3LYP, the values of the three coefficients
(a0¼0.8, aX¼0.72, and aC¼0.81) came directly from Becke’s original fitting to a set of atom-
ization energies, ionization potentials, and so on. [47].

Keen readers may realize that in theory, the coefficients should be system-dependent too.
Indeed, if one also writes these coefficients as density functionals (any system dependency is
density dependency by the Hohenberg–Kohn [45] theorem), the expression becomes an exact
density functional:

EExact
XC ¼ a0 ρ½ �ESlater

X ρ½ �+ 1� a0 ρ½ �ð ÞEHF
X ρ½ �+ aX ρ½ �ΔEBecke

X ρ½ �
+aC ρ½ �ELYP

C ρ½ �+ 1� aC ρ½ �ð ÞEVWN
C ρ½ �:

(2)

Being cast in this form, the coefficients become system-dependent too, that is, a0, aX, and aC

are different for different systems as the electron density functions ρ are different. All the
physical information that the individual pure functionals failed to capture are cast in the func-
tional forms of the coefficients. Therefore, learning the exact density functional becomes
equivalent to learning the density functionals of these coefficients a0[ρ], aX[ρ], and aC[ρ].

A milestone was laid in 2004, when the first attempt [2] was made to learn this exact XC
functional. The work cast the exact XC functional in the above form and trained a neural
network for a0[ρ], aX[ρ], and aC[ρ]. The neural network has five descriptors as the inputs
and two neurons as the hidden layer. The five descriptors are the functionals of electron
density. The detail of the neural network structure is shown in Fig. 1. The neural network-
predicted coefficients are then combined with the pure functionals by (2), and the whole
XC functional is used in Kohn–Sham (KS) self-consistent field (SCF) [51] calculations.

The XC potential vXC is needed for the KS SCF calculation [51]. When calculating the XC
potential from the XC energy (2), a functional derivative of the energy expression is taken
with respect to ρ(r) (at every position r):

vExactXC rð Þ ¼ δEExact
XC

δρ rð Þ

¼ a0
δESlater

C

δρ rð Þ + 1� a0ð Þ δE
HF
X

δρ rð Þ + aX
δΔEBecke

X

δρ rð Þ + aC
δELYP

C

δρ rð Þ + 1� aCð Þ δE
VWN
C

δρ rð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
terms containing partial derivatives w:r:t energy functionals

+
δa0

δρ rð ÞE
Slater
C � δa0

δρ rð ÞE
HF
X +

δaX
δρ rð ÞΔE

Becke
X +

δaC
δρ rð ÞE

LYP
C � δaC

δρ rð ÞE
VWN
C|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

terms contraining partial derivatives w:r:t a0, aX, and aC

: (3)



FIG. 1 The structure of a neural network that learns the system-dependent coefficients a0[ρ], ax[ρ], and ac[ρ].
Reprinted from X. Zheng, et al., A generalized exchange-correlation functional: the Neural-Networks approach, Chem. Phys.

Lett. 390 (1–3) (2004) 186–192, Copyright (2004), with permission from Elsevier.
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The derivatives are taken on both the coefficients and the individual energy functionals.
When one assumes that a0[ρ], aX[ρ] and aC[ρ] do not depend on ρ too much:

δa0 ρ½ �
δρ rð Þ �

δaX ρ½ �
δρ rð Þ �

δaC ρ½ �
δρ rð Þ � 0, (4)

the second part of the expression vanishes, and the XC potential becomes
vXC rð Þ � a0 ρ½ � δE
Slater
C

δρ rð Þ + 1� a0 ρ½ �ð Þ δEHF
X

δρ rð Þ + aX ρ½ � δΔE
Becke
X

δρ rð Þ + aC ρ½ � δE
LYP
C

δρ rð Þ + 1� aC ρ½ �ð Þ δE
VWN
C

δρ rð Þ :

(5)

With the above approximation, themachine-learnedXCpotential was trained and tested in

the KS SCF calculations for 116 small molecules, and improvements were observed over the
original B3LYP functional (Table 1).

Despite the relative convenience of implementation, there is one key difficulty: the transferabil-
ity problem. Large amounts of data on small molecules can be readily obtained employing high-
precision quantum chemistry methods such as coupled cluster singles and doubles (CCSD) [52]
and quantum Monte Carlo (QMC) [53,54]; however, data on large molecules are hard to obtain.
How to transfer the knowledge learnt from small molecules to larger molecules is a challenge.
Consider when generalizing the functional from small molecules to large molecules: the density
descriptors need to be carefully designed and validated; otherwise, different parts of the neural



TABLE 1 Performance of the ML global density functional.

RMS errors (all data are in the units of kcal mol21)

Properties AE IP PA TAE Overall

Number of samples 56 42 8 10 116

Aa 2.9 3.9 1.9 4.1 3.4

DFT-1b 3.0 4.9 1.6 10.3 4.7

DFT-NNc 2.4 3.7 1.6 2.7 2.9

a Becke’s work.
b Conventional B3LYP/6–311+G(3df,2p).
c Neural-Networks-based B3LYP/6–311+G(3df,2p).
Reprinted fromX. Zheng, et al., A generalized exchange-correlation functional: the Neural-Networks approach, Chem. Phys. Lett. 390 (1–3) (2004)
186–192, Copyright (2004), with permission from Elsevier.
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network may scale incorrectly as the system sizes grow. Moreover, a descriptor that works for
small systems may not be able to capture information as effectively in a large system as different
types of physics may contribute differently to systems of different sizes.

For a size-consistent ML DFT model, a more natural choice would be build on the concept
of locality. A machine-learned density functional that only depends on local densities can be
easily extendable from small to large systems. However, does the local density contain
enough information for local XC potential? As will be demonstrated in the following
paragraphs, instead of the local electron density, the ‘quasi-local electron density’ includes
enough information for the corresponding local XC potential and therefore all other informa-
tion about the system. It is worth mentioning that for a local/quasi-local ML model, one may
also start from the above-mentioned formulation. Eq. (2) can be generalized into a local/
quasi-local one by simply converting to an r-dependent version:

EXC ¼
ð
a0 rð ÞeSlaterX rð Þ+ 1� a0 rð Þð ÞeHF

X rð Þ+ aX rð ÞΔeBeckeX rð Þ
+aC rð ÞeLYPC rð Þ+ 1� aC rð Þð ÞeVWN

C rð Þd3r,
(6)

where the lowercase eX
Slater, eX

HF, ΔeXBecke, eCLYP, and eC
VWN are the local contributions to-
ward the energies of the functionals EX
Slater, EX

HF, ΔEX
Becke, EC

LYP, and EC
VWN, respectively.

Aswemove forward, it will become clear that this formulation constitutes a special case of the
general quasi-local electron density formulation.
Quasi-local electron density formulation of ML-DFTXC: The ML XC
potential model

The holographic electron density theorem (HEDT) and its implications
on ML-DFTXC

As early as in 1981, Riess andM€unch [55] have stated that an arbitrary finite volume of the
ground-state electron density determines the density distribution of a molecular system. The
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conjecture originates from their hypothesis that the electron density functions in atomic and
molecular species are real analytic in the real space excluding the nuclei. The validity of such a
hypothesis is, however, neither trivial nor obvious and was yet to be proven rigorously. In
1999, Mezey extended Riess andM€unch’s statement to the ground-state holographic electron
density theorem (GS-HEDT) [56]; however, his proof was not rigorous. Later, Fournais et al.
laid a solid mathematical foundation of the GS-HEDT by proving the real analyticity of elec-
tron density function of arbitrary atomic and molecular eigenstates [57,58]. Another proof of
real analyticity of electron density has been given by Jecko [59]. The GS-HEDT is believed to
be related to the concept of quantum similarity measures in DFT [60,61].

In mathematics, a real function is said to be analytic if it possesses derivatives of all orders
at every point and agrees with its Taylor series in a neighborhood of each individual point.
For any real system such as one consisting of atoms and molecules, the external potential act-
ing on each electron, ν(r), is real analytic except at the nuclei. Apart from the isolated points
where the point charges of the nuclei lead to non-analytic electron densities, the r-space is
continuous elsewhere and the electron density on it, ρ(r), is thus real analytic. In practice, an-
alytic functions such as Gaussian functions and plane waves are often adopted as basis sets
for quantum mechanical calculations, which naturally results in real analytic electron densi-
ties. As a result, the real analytic ρ(r) within a subregion is sufficient to settle its values ev-
erywhere in the entire physical space. This can be proven by the analytic continuation of
real analytic functions, and an explicit proof can be found in the textbook [62]. A simple proof
for the holographic property of real analytic ρ(r) in three-dimensional physical space has been
provided by Chen et al. [63]. They have also proposed the time-dependent holographic elec-
tron density theorem (TD-HEDT) for open electronic systems and applied it to the study of
the time-dependent quantum transport problem [63–66].

As is indicated by the GS-HEDT, in principle, the electron density function within any fi-
nite volume determines the global density distribution of a real atomic or molecular system.
Therefore, DFT can, in principle, yield accurate predictions with the complete information on
the electron density function at a single spatial point (including all orders of density deriv-
atives). Nevertheless, in practice, it is more convenient to attain a numerically feasible KS
mapping ρ(r)!vXC(r), with the electron density in a finite region surrounding the given spa-
tial point r, termed as the quasi-local electron density at r.

The essence of GS-HEDT has been utilized implicitly in the development of ML-DFTXC.
A CNN-based KS mapping has been established, which yields the XC potential at any spatial
point by the quasi-local electron density function around that point [3], as shown by Eq. (7).
Here, “quasi-local” means that the information on electron density is not rigorously restricted
to the interested point r but allowed to include a small neighborhood surrounding that point.
Given the impressive accuracy of the test results in reference [3], the compact region selected
to represent the quasi-local electron density is considered to be adequate for the determina-
tion of the XC potential.

Kohn has proposed the following locality principle on the “nearsightedness of electronic
matter” with the following remarks: “local electronic properties, such as the density ρ(r),
depend significantly on the effective external potential only at nearby points” [67,68]. In fact,
the GS-HEDT shares the same foundation as the nearsightedness principle, both suggesting
the local nature of ground-state electron density. Although many modern density functional
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approximations (DFAs), especially the ones above the third rung of Jacob’s ladder [69], inten-
sively adopt the exact exchange or other non-local information for more accurate predictions,
it should be possible to achieve a reasonable quasi-local KSmapping bymaking use of sophis-
ticated ML techniques. Intuitively, size consistency naturally follows (quasi-)locality. In ad-
dition, in a quasi-local model, the computational complexity only grows linearly with respect
to the system size.

vXC ρ½ � rð Þ¼ vXC ρ r0 r�r0j jj < δ, 8δð Þ½ � rð Þ: (7)

To build an ML-DFTXC model of quasi-local electron density, one may start with an XC

potential model, where the ML model directly outputs the XC potential to be used in KS SCF
calculation. The XC potential plays the central role in DFT [51]. It is predicted by the ML
algorithm through quasi-local electron density.

vML�XC rð Þ ¼ Mθ ρ r0ð Þ r0�B rð Þ
��� �

(8)

� ħ
2m

r2 + vext: rð Þ + vH rð Þ + vML�XC ρ r0ð Þ r0�B rð Þ
��� �� �

ψ i ¼ εiψ i (9)

where Mθ denotes the MLmodel with all its parameters θ already optimized, B(r) denotes the

quasi-local neighborhood of r, square brackets of vML-XC denote the functional dependency
(dependence on the whole neighborhood), and parentheses denote a function. vext., vH,
and vML-XC refer to the external potential, the Hartree potential, and the machine-learned
XC potential, respectively. As dictated by the HEDT, the neighborhood could be arbitrarily
small in principle. In practice, the neighborhood must be of a certain size, such that the
density values sampled in it can encode the density information in a numerically
meaningful way.

For each value of XC potential at grid point r, the inputs are sampled from the grid points r0

in B(r) with r at the center, making the model only aware of the relative position r02r. For
easier convolution operation, the neighborhood can be chosen as a cube centered at position
r, with sampling points arranged along their x, y, and z positions in order [3]. For a given win-
dow half-length h, the sampling points r0 are in the ranges r0x� [rx�h, rx+h], r

0
y� [ry�h, ry+h],

and r0z� [rz�h, rz+h], with certain step length (the smaller the step, the more points sampled
given a fixed h). The output is the local XC potential value at r, and therefore, once trained, the
model predicts the XC potential at the position r of the center of the sampling box.

For different r, the XC potential vXC(r) is predicted point-by-point using the same structure
and the same set of optimized parameters; therefore, the entire potential is acquired by
sweeping the model across the entire grid. The resulting potential is then fed back into the
KS equations to calculate a new density.

Pre-calculating XC potential as the target

The electron densities that are to be employed to train the MLmodel can be obtained using
the highly accurate ab initio methods such as the wave-function-based methods such as
CCSD. Besides the electron density ρ, vXC is also needed. Given a density from CCSD, the
corresponding XC potential vXC can be calculated by various optimization procedures that
effectively invert the KS equations (collectively referred to as the inverse Kohn–Sham
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methods [70]). The optimization procedures employed in reference [3] to generate training
targets is the Wu–Yang (WY) method [71], which will be elaborated here.

Readers might be wondering that if a numerical optimization procedure can solve an XC
potential from a density, then why do we bother training an ML model that also predicts an
XCpotential from a density. The answer lies in the core concept of DFT itself.Whatwewant to
machine-learn is the universal XC functional that maps any density to it corresponding XC
potential. On the other hand, the optimization procedure only solves a system-specific XC
potential that corresponds to a particular known electron density. The procedure entails only
themathematics of the (inverse of ) KS equationswhich does not include the physics about the
many-particle system at all. TheMLmodel, on the other hand, tries to learn the actual physics
inside, which is by definition universal. The inverse KS method generates the XC potentials
vXC which are used, together with electron densities ρ, as the training data fed to the model.

The solution to the inverse KS problem is not as straightforward as it first appears. An an-
alytical solution is mostly absent, and different kinds of numerical optimization procedures
are usually employed. One of the popular potential optimization schemes was invented by
Wu andYang [71,72]. For a given input density ρin, one first constructs a LagrangeWs in terms
of the total effective potential v and the single-particle wave functions (WFs) ϕ.

Ws ψ , v rð Þ½ � ¼ 2
Xocc:
i

ϕih jbT ϕj

��� E
+

ð
v rð Þ ρ rð Þ � ρin rð Þf gdr (10)

where v plays the role as the Lagrange multiplier. WhenWs is stationary with respect to v, the

electron density becomes the same as the given density ρin.

δWs Ψ v rð Þ½ �, v rð Þ½ �
δv rð Þ ¼ ρ rð Þ � ρin rð Þ ¼ 0 (11)

In practice, the potential is projected onto a set of Gaussian basis functions. Once the effec-

tive potential is calculated, the XC potential vXC can be easily found by subtracting the exter-
nal potential and the Hartree potential [73].

With the pair of density and XC potential being pre-calculated, the training procedure is
decoupled from the KS procedure, and the resulting ML model maps its inputs ρ to the out-
puts vXC. Training proceeds with a typical backpropagation procedure such as stochastic gra-
dient decent (SGD) [74] or Adam [75]). Once enough data are provided for various types of
molecules and various quasi-local environments, the parameters in the ML XC potential
model can be optimized to learn and yield the XC potentials vXC of real molecular systems.

Model building, training, and SCF explained with a successful story

The ML model was successfully developed and implemented in 2019 [3]. Densities and
potentials were discretized on a grid whose points coincide with the set of quadrature points
used for potential integration. For the input, on each integration quadrature point, because
neighboring quadrature points usually do not conform to the sampling kernel shape, an extra
layer of grid was nested, whose 9�9�9 cube mesh resamples density and its derivatives in
the quasi-local neighborhood. A CNN model was applied on each cube of sampled density,
and the data went through a pipeline of two convolution layers, one max-pooling layer, and
four fully connected layers, consecutively. The final output of the model is a scalar value of
the XC potential at the respective quadrature point. A constant reference potential is usually



FIG. 2 The structure of the 3-D CNN model for molecules discretized on grid points. The input data at each grid
point include density and its derivatives along x, y, and z directions sampled on a 9�9�9 grid in the respective neigh-
borhood. The output is a scalar value representing the local XC potential. The model includes two convolutional
layers and four fully connected layers with a max-pooling operation sandwiched in between. The trained model
is used as the XC functional in the SCF calculation. Adapted with permission from Y. Zhou, et al., Toward the exact
exchange–correlation potential: a three-dimensional convolutional neural network construct, J. Phys. Chem. Lett. 10(22)

(2019) 7264–7269. Copyright (2019) American Chemical Society.
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subtracted from the overall single-particle potential for numerical convenience. In reference
[3], the reference potential is the HF [48] potential from converged HF electron density. For
each molecule, during each iteration of the KS SCF procedure, the model sweeps across all
quadrature points, and the resultant potential is integrated on grid by the saved quadrature
weights to produce the vXC in the matrix form (in the corresponding basis set) (Fig. 2).

The model was trained on a database of 50 H2 molecules and 50 HeH+ ions with different
bond lengths ranging from 0.504 to 0.896 Å (equally distributed). The trained model was ap-
plied both on H2/HeH+ with other bond lengths and tested on another ion H-He-He-H2+.
Compared to traditional functionals such as B3LYP [46], the results are typically 1 order of
magnitude more accurate compared to the reference CCSD electron density. The robustness
of the trained model was also demonstrated by starting the SCF at different initial densities
while converging to the same density.

The SCF procedure is depicted in Fig. 3. The process is similar to a typical SCF procedure
in traditional DFT, except with the XC potential being replaced with the ML XC potential
model’s output, whereas the input is based on the electron density of current iteration.

Impressive performances (Fig. 4) on the converged electron density (compared to the
CCSD results) were observed. Compared to B3LYP results, the accuracy improvements
can be as large as 1–2 orders of magnitude. In addition, when forces and energies are calcu-
lated from the predicted densities, the accuracies are also much better than those of B3LYP.

More importantly, the adoption of quasi-local electron density as input, together with the
special design of the deep learning structure, leads to astonishing transferability. In Fig. 5, the



FIG. 3 The SCF process for performing calcula-
tions with an ML XC Potential model (the
KS-DFT/NN model of the original paper), where
k represents the iteration number, υbg represents
the XC potential after removing a constant refer-
ence part and after projecting onto a basis set,
and Ω represents the grid of the 3D box.
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same model as shown in previous figures is tested on the HeH+ ion with much larger HedH
distances than that in the training set. Despite being trained on H2 and HeH+ of bond dis-
tances <0.9 Å, the out-of-sample performance in terms of the density difference to CCSD
stayed much smaller than that of B3LYP [46] even at bond distances of� 3 Å for HeH+. More
impressively, even when tested in systems such as He-H-H-He2+, which has both different
numbers of electrons and different numbers of nuclei than molecules/ions in the training
set, the density performance remains better than B3LYP results.
Quasi-local Electron density formulation of ML-DFTXC: The ML XC energy
density model

Theory

An alternative target for the ML model is the XC energy density, εXC(r) [4], whose unique
mapping to the quasi-local density is also guaranteed by the HEDT. The XC energy density
εXC(r) connects to the XC potential through integration and functional derivatives (to be



FIG. 4 Performance of the ML XC Potential model (the KS-DFT/NNmodel of the original paper) in Fig. 2 on H2/
HeH+. When compared with B3LYP results [46], the density accuracy is 1–2 orders of magnitudes higher. Not sur-
prisingly, the corresponding forces and relative energies calculated based on the densities are also significantly more
accurate. Adapted with permission from Y. Zhou, et al., Toward the exact exchange–correlation potential: a three-dimensional

convolutional neural network construct, J. Phys. Chem. Lett. 10(22) (2019) 7264–7269. Copyright {2019} American Chemical
Society.
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elaborated in latter sections where we attempt to unify all formalisms). The ML model pro-
duces outputs εXC(r) at each position, which is then swept across all grid points. The energy
derivative in the XC potential is calculated at all grid points, and the rest of the procedure is
the same as in the ML XC potential model.

By integrating εXC(r) weighted by ρ(r), theMLXC energy densitymodel also output the total
XC energy. Given availability of total XC energy data from various sources, it might be tempt-
ing to train the model with the total energy as the target alone. However, the complexity of the
XC functional entails huge numbers of degrees of freedom. To train a model for an XC func-
tional, targeting only one or a few scalars per molecule provides too little information, leaving
much room for overtraining. Recall that in the previous section, for eachmolecule, the model is
provided as many data as the number of grid points, either in the form of vXC(r) or directly in
ρ(r). Therefore, the best strategy would be to include training targets on the whole grid. Except
at this time, the target can no longer be pre-calculated because there is no procedure such as the
WY method [71] to produce energy density εXC(r). To complicate things even more, because
calculating vXC from εXC (see Eq. (15)) already includes derivatives w.r.t ρ(r), calculating
the parameters introduces second-order derivates into the computation. In the actual imple-
mentation, the second-order derivative calculation includes saving the first derivative graph
and other numerical burdens into the backpropagation process; however, with automatic
differentiation techniques and packages becoming available, such burdens are no longer
deal-breakers.

Coming back to the problem of backpropagation through inverse KS, to circumvent it, one
may opt to use optimization procedures that do not rely on backpropagation, for example, a



FIG. 5 The out-of-sample performance of the ML XC potential model (KS-DFT/NN model of the original paper).
The training set of the model only included the HeH+ ion up to bond length <0.9 Å. In (a), the density (after SCF)
difference (relative to CCSD) of the model on a HeH+ ion of bond length¼1.5 Å is compared with that of B3LYP
[46]. The relative energy of the HeH+ ion of bond lengths up to 3.0 Å is compared with those of CCSD and
B3LYP in (b). The density difference (as in a)) of the linear H3

+ ion with HdH distance¼0.7 Å is plotted in (c),
and the density difference of the linear He-H-H-He2+ ion with both HdHe and HdH distances¼0.7 Å is plotted
in (d). Adapted with permission from Y. Zhou, et al., Toward the exact exchange–correlation potential: a three-dimensional

convolutional neural network construct, J. Phys. Chem. Lett. 10(22) (2019) 7264–7269. Copyright (2019) American Chemical

Society.
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Monte Carlo [53] simulation. Optimization without backpropagation is usually much more
computationally intensive; however, certain successful cases [4] demonstrated their feasibil-
ity when both the model and the dataset are not too large.

Alternatively, one can program the whole KS solver in a fully differentiable way, and
backpropagation can be performed together with other differentiable parts in the sequence.
Thanks to recent progress in automatic differentiation [76], the differentiable eigen-solver
became available, and such kind of backpropagation has been implemented in 1D model
systems that were solved directly in real space [5].

Implementation and illustrative examples

In the first work [4], a fully connected neural network was trained with various density
descriptors as inputs and the XC energy density as the output. The density descriptors
include all or various combinations of the following five quantities:
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ρ rð Þ;
ς rð Þ¼ ρ# rð Þ�ρ" rð Þ� 	

=ρ rð Þ;
s rð Þ¼ rρ rð Þj j= 2 3π2

� 	1=3
ρ4=3 rð Þ

h i
;

τ rð Þ¼ 1=2
Xocc:

i
rφi rð Þj j2;

R rð Þ¼
ð
dr0ρ r0ð Þe � r�r0j j=σð Þ:

8>>>>>>><>>>>>>>:
(12)

Depending on which quantities are included, the formulation includes various levels of

details about the local/quasi-local density. The ML model becomes a coarse-grained
quasi-local electron density model if the fifth term is included (in the original paper [4], when
all five descriptors are included; the models are referred to as ‘near region approximation’ or
NRA type functional). When calculating XC potential with Eq. (15), backpropagation was
used to calculate the partial derivatives of XC energy with respect to density descriptors.
However, in training, backpropagation was replaced with a Monte Carlo [53] method,
avoiding the complications from both the ‘backpropagation through inverse KS’ problem
and the second-order derivative problem.

It can be seen from Fig. 6 that for an ML XC energy density model that uses local density
descriptors only, the performance is already reasonable. However, the performance only
becomes comparable to traditional hybrid functionalswhen the coarse-grained quasi-local den-
sity is included, through the fifth descriptor (the NRA in Fig. 7 as well as in the original paper).

In the second work [5], the KS solver is programmed in a fully differentiable way; in fact,
error even backpropagates through multiple iterations of SCF. Because the SCF runs through
various densities that oscillate around the converged density, the training effectively includes
more information about the functional mapping from the density to the XC energy. Therefore,
in the original paper, the scheme was coined the name ‘KS regularizer’, expressing its gen-
eralization (preventing overfitting) capability. The input is the global electron density, and
the output is thewhole XC energy density. The loss function included both energy error terms
and density error terms. The energy error term has contributions from multiple iterations
(with a decay factor for earlier iterations), whereas the density error term only contains
the root-mean-square error of the last iteration’s output density (Fig. 8).

Impressive generalizability was demonstrated for a one-dimensional H2 model system,
where only two training examples were able to determine the whole dissociation curve reason-
ably well (Fig. 9). However, being developed for 1-Dmodel systems, the work still more or less
belongs to the ‘proof of concept’ category. Considering the computational complexity, an ex-
tension toward realistic 3D systems would take extra effort in future. Moreover, such differen-
tiation posts certain numerical issues in degenerate cases. Another promising solution is to
change the form of the loss function. Currently, work along this direction is also in progress.
Quasi-local electron density formulation of ML-DFTXC: The ML XC
fragment energy model

Theory

As discussed above, theHEDT theorem guarantees the quasi-local density representability
of the XC potential as well as the XC energy/energy density. Practically, the information
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contained in the one-to-one mapping between the local XC potential and quasi-local electron
density can be utilized in different ways. One way that differs slightly from previous models
is dividing XC energy into contributions from naturally meaningful parts (for example
‘atoms’). In Fig. 10, the electron density of a given system is divided into four fragments.
By HEDT, there is a unique mapping from each fragmental density to all properties of the
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system. If a unique way of partitioning the fragmental XC energy contributions ΕXC¼
P

iEi is
specified, then we have the unique mapping ρfrag.i! {E1,E2,E3,E4}8 i. In practice, the map-
ping to the fragment’s own XC energy ρfrag.i!Ei would be more straightforward to find,
which in turn uniquely determines a quasi-local XC functional Ei¼EXC[ρfrag. i]. Provided that
the way of partitioning a system is universal, this fractional XC functional would also be uni-
versal. With atomic division, both the input and output are sampled with reference to atoms.
The straightforward way goes as directly equating the total XC energy of a molecule to the
summation of XC energy contributions from constituent atoms. An ML model reads and de-
ciphers quasi-local densities around each nucleus, outputting the corresponding atomic XC
energy contribution. A derivative of the total XC energy with respect to the electron density
yields the XC potential by Eq. (15). It should be noticed that although the XC energy come
from an atom-by-atom summation, information from higher-order interactions among atoms
can still be encoded because the quasi-local density around each nucleus already includes
information from all orders. However, it is up to the MLmodel to decide the ratio of splitting
such energy contribution to the participating parties. For example, for a C]O bond with a
specific surrounding, the XC energy correction because of the bonding alone can be assigned
to both the carbon and the oxygen and possibly also to other surrounding atoms in small
portions.

In fact, molecular potential energy surfaces can be constructed from atomic contributions
[44] before the sudden popularity of deep learning models. However, a true XC functional

http://creativecommons.org/licenses/by/4.0/


FIG. 8 The structure of theMLXC energymodel by Li et al. [5] that includes KS SCF into training. The forward and
backward propagation passes in SCF during training are depicted in (a) as black solid and read dashed lines, respec-
tively, (b) shows the details of one iteration when zoomed in. The structure that utilizes the quasi-local information of
the density to produce the XC energy density is depicted in (c).Adapted from reference L. Li, et al., Kohn-Sham equations as
Regularizer: building prior knowledge into machine-learned physics, Phys. Rev. Lett. 126(3) (2021) 036401, with the symbol for
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should be universal, which needs no extra information about the system other than the den-
sity itself, where every nuance of the XC energy or XC potential comes from the subtle dif-
ferences in the shape of the quasi-local density. To construct a universal XC functional, the
complexity of the physics demands models with higher complexity (Fig. 11), which is only
becoming practical with recent developments in deep learning.

Implementation and illustrative examples

One successful case of XC energy from atomic contribution demonstrated promising accu-
racy in small molecules [6]. The model builds specific neural networks for each atom type,
sampling the electron density surrounding each nucleus with Gaussian-orbital-like ‘projec-
tors’. The descriptors are calculated from integrating the quasi-local electron density with
different projectors. The ‘projected’ values are then symmetrized to become the input for

http://creativecommons.org/licenses/by/4.0/
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the neural networks. The output of each neural network is a scalar value representing energy
contribution from each atom. The total XC energy is calculated from summing the outputs of
all atomic neural networks (Fig. 11). For SCF calculation (Fig. 12), functional derivatives need
to be taken with respect to density. Noticeably, the derivatives assume rather simple trans-
formation from density descriptors to density itself:

http://creativecommons.org/licenses/by/4.0/


FIG. 11 The structure of the ML XC energy by atomic contribution. The quasi-local electron density around each
nucleus is described by projecting on to ‘projectors’. Descriptors are then symmetrized and fed to atomic neural
networks. Atoms of the same type share the same neural network parameters. Their respective outputs play the role
as fragmental contributions, which are summed up to produce the total XC energy. Reproduced from reference

S. Dick, M. Fernandez-Serra, Machine learning accurate exchange and correlation functionals of the electronic density, Nat.
Commun., 11(1) (2020) 1–10 under the Creative Commons Attribution 4.0 International license: http://creativecommons.

org/licenses/by/4.0/.

–0.015

–0.010

–0.005

0.000

0.005

0.010

0.015
ρCCSD(T) ρPBE ρNXC-W01 ρPBE

FIG. 12 The density differences between theML XC energymodel (NXC-001 in the original paper)-predicted elec-
tron density and PBE-calculated electron density for water molecules versus that between CCSD(T) and PBE.
Reproduced from reference S. Dick, M. Fernandez-Serra, Machine learning accurate exchange and correlation functionals of

the electronic density, Nat. Commun., 11(1) (2020) 1–10 under the Creative Commons Attribution 4.0 International license:

http://creativecommons.org/licenses/by/4.0/.

548 23. Redesigning density functional theory with machine learning

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


549Methods
vML ρ rð Þ½ � ¼
X
β

∂EML

∂cβ

δcβ ρ½ �
δρ rð Þ ¼

X
β

∂EML

∂cβ
ψβ rð Þ, (13)

where β is the index for different projectors, cβ is the projected value of the density on the

projector, and ψ(r) is the shape of the projector.

However, the model(s) is not yet universal because not only different atoms use different
networks and also different projectors but also, more importantly, different models were
trained for different datasets (three different models were trained for three different datasets
in reference [6]).
General quasi-local electron density formalism of ML-DFTXC

In all the three types of quasi-local models introduced earlier, the ML model connects the
election density to the XC energy, XC energy density, or XC potential. In this section, we unify
all of themwhile trying to elucidate deeper insights among their connections. The input of the
ML algorithm is the quasi-local density, whereas the output can be any of the three: the XC
potential, the XC energy density, or the fragmental/atomic XC energy contribution. The XC
potential relates to the XC energy through partial derivatives with respect to the electron den-
sity, and the XC energy density relates to the XC energy through an integration:

EXC ¼
ð
εXC rð Þρ rð Þdr ¼

ð
εXC ρ r0 r0�B rð Þjð Þ,r½ �ρ rð Þdr, (14)

vXC rð Þ ¼ δEXC

δρ rð Þ ¼ εXC rð Þ +
ð
r0�B rð Þ

δεXC r0ð Þ
δρ rð Þ ρ r0ð Þdr0

¼ εXC ρ r0 r0�B rð Þj Þ,rð � +
ð
r0�B rð Þ

δεXC ρ r00jr00�B r0ð Þ:ð Þ,r0½ �
δρ rð Þ ρ r0ð Þdr0:

"
(15)

Here again, B(r) denotes the neighborhood of any point r in space. With the electron den-

sity given, all the three quantities are uniquely determined, and the conversion from one to
another is also uniquely specified. It is worth reiterating that despite being formulated in XC
potential, the HEDT works for both XC potential (vXC) and XC energy density (εXC) at every
point r in space; therefore, an ML model’s structural design for XC energy density can be
directly borrowed from that for the XC potential and vice versa.

For theMLXCfragmentenergymodel, thedensity-weighted integration in (15) is replacedwith
a summation over fragmental contribution. For a smooth transition from fragment to fragment,
fragmental boundaries are usually not clear-cut (for example in (13) the ‘projector’ cβ has a kernel
of Gaussian orbital shape [6]); therefore, at any position r, multiple Eis can contribute to vXC(r):

vXC rð Þ ¼ δEXC

δρ rð Þ ¼
X

i:r�Frag:i

δEi

δρ rð Þ : (16)

Eventually, the machine-learned model is plugged into KS SCF calculations, where the XC

potential is needed to solve the KS equations. Therefore, the total energy and energy density
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approaches need extra conversion from the MLmodels outputs. Once the ML XC potential is
calculated, it is added on top of other terms that do not depend on the ML model, including
the external potential, the Hartree potential, and an optional custom reference potential.
A new electron density is calculated from the solution of the KS equations. The new density
is then fed into the same ML model, and the same procedure is repeated. Therefore, like in
traditional DFT, the system is solved iteratively until convergence. Once the SCF converges,
the final density will then be used to calculate a variety of molecular properties such as the
electron affinity, the ionization potential, the heat of formation and so on.

It should be noted that because the MLmodel represents the universal XC functional rather
than a single system-specific XC potential, the same ML model with the same parameters is
applicable to all atoms, molecules, ions, and materials.

However, during training, the parameter optimization is complicated by the iterative pro-
cedure of SCF for the ML XC energy density model and the ML XC fragment energy model.
The ML model and the KS equations are tangled together in the above-mentioned formula-
tions. Intuitively, to train the ML model, the parameters should be optimized in such a way
that helps the SCF procedure converge to the correct density. To implement this, the algo-
rithm should minimize the density error everywhere in space. However, optimizing the
whole SCF procedure is complicated and implicit. Theoretically, one may present the formal-
ism as an SCF procedure nested in a model optimization procedure; practically, for realistic
systems, a simpler view is called for.

Because the samemodel is invoked during each iteration, one may isolate one iteration out
from the SCF procedure and focus optimization/training only on it. Considering the fact that
when SCF reaches convergence, the density settled down around the target density. There-
fore, the model should be optimized in such a way that the correct density gives back the cor-
rect density itself after one iteration. To summarize, the optimization is simplified to ‘right
density in, right density out, one iteration in between’.

To implement such an optimization procedure, a loss function can be written directly in
terms of the input density and the newly calculated density from one SCF iteration,

Lρ ¼ Etraining samples

ð
ρML+KS rð Þ � ρtarget rð Þ� 	2

dr
� �

, (17)

where ρML+KS is generated from ρtarget by running one SCF iteration and Etraining samples in-

dicates taking expectation over all training samples (molecules in the training set). To train
the model by backpropagating a loss function of this form, one could implement the process
of solving KS equations in a fully differentiable way. One may also choose other forms of loss
functions in terms of density that make backpropagation through KS easier by certain math-
ematical manipulations.

On the other hand, if the XC potential is theMLmodel’s output, onemay skip the KS equa-
tions altogether during training (but only for training) and write the loss function directly in
terms of the XC potential itself as

LvXC ¼ Etraining samples

ð
vML
XC rð Þ � v

target
XC rð Þ


 �2
dr

� �
: (18)

In this case, the target vXC should be pre-calculated in the data preparation phase, and the

model is algorithmically decoupled from the KS equation altogether during training.
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On the other hand, if the model output is chosen to be the XC energy ΕXC[ρquasi�local(r)] or
the XC energy density εXC(r)[ρquasi�local(r)], in addition to reproducing the density, the model
will output the energy through Eq. (14), for which an extra scalar loss (19) can be added. The
energy loss function can be combined with the density loss function with a weight factor in
front, which is then tuned as a hyperparameter.

LE ¼ Etraining samples EML
XC � E

Target
XC

h i2
: (19)

In the training phase, all parameters in the ML model will be optimized to reproduce the

density either directly or indirectly (and to reproduce the energy and/or energy derived
properties if included). The target ground-state density is usually acquired through expen-
sive ab initio methods such as CCSD or CCSD(T), whereas additional energy-related molec-
ular properties are either from ab initio methods to or from experiments. Optimization in
training is usually performed by descending along the loss function’s gradient direction.
The gradient (expressed in terms of the model parameters) is most effectively calculated
through backpropagation. If the density loss function (17) is included and the model is
coupled with KS equations, as mentioned above, backpropagation needs to go through the
inverse eigenvalue problem in the KS equations first before reaching the ML model. It takes
certain numerical techniques or special engineering of the loss functions for the
backpropagation to access the network where the actual parameters are updated. Alterna-
tively, reproducing the target density can be enforced by using Eq. (18) only, which leads back
to pre-calculating XC potential as the target and the successful story in 2.3.
Additional ML models: ML For van der Waals interaction

Van der Waals (vdW) interaction plays a central role in organic chemistry, biochemistry,
and material sciences. it is related to transient dipoles, producing little manifestation in the
electron density. The subtlety of such interaction plaques both ML-DFT and traditional DFT
alike.

Althoughmany conventional DFAswith relatively simple forms (such as LDA, GGAs, and
hybrids) fail to describe the vdW accurately, several other schemes exhibit remarkable per-
formance in certain systems [84]. However, most successful stories rely heavily on non-local
quantities, hindering the direct transplantation to the quasi-local ML-DFT framework.

Given the fact that vdW is mainly because of the interactions among transient dipole mo-
ments and barely induces density change, a combined ML model is called for. Indeed, tran-
sient dipoles’ interaction does not come from changes in the respective interacting densities.
The very minor density response is the result, rather than the reason, for the vdW interaction.
The minor density change and its corresponding vXC change are both higher in order in a
perturbative sense. On the other hand, the energy shift because of vdW interaction is a direct
effect of the transient dipoles’ interaction.

To elaborate, it is clear from (20) that when calculating vXC during SCF, the effect from the
minor density change of vdW interaction can be largely ignored within reasonable accuracy
requirements; indeed, the second term with second-order derivatives with respect to ρ is
much smaller than the first term as δρ << 1 for vdW interaction. On the other hand, the en-
ergy shift is obviously not negligible. Therefore, adding an additional correction term for
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vdW after SCF becomes the most sensible choice. In fact, a vdW ML model can be trained
separately based on quasi-local electron density. After training, it can be added on top of
the ML XC models as an extra correction term to the XC energy.

EXC ρ0 + δρ½ � �EXC ρ0½ �+
ð
δEXC ρ½ �
δρ rð Þ

����
ρ¼ρ0

δρ rð Þdr,vXC ρ0 + δρ,r½ � ¼ δEXC ρ½ �
δρ rð Þ

����
ρ¼ρ0 + δρ

� δEXC ρ½ �
δρ rð Þ

����
ρ¼ρ0

+

ð
r’�B rð Þ

δ2EXC ρ½ �
δρ rð Þδρ r’ð Þ

����
ρ¼ρ0

δρ r’

� 	
dr’:

(20)

TheMLmodel for vdW can borrow the conventional wisdom from traditional DFT. In fact,

empirical correction approaches such as the DFT-D3 method [85] have been widely used for
prediction of geometric structures and energetic properties of dispersion. These approaches
are computationally very efficient, but their effectiveness relies heavily on the few empirical
parameters and depends critically on the system. On the other hand, a specially designedML
model is perfect for a large number of tunable parameters and degrees of freedom. Provided
with enough training data, an ML model for vdW corrections will almost surely outperform
currently available fitted models. Once trained and validated, a combination of such an ML
model with the quasi-local ML-DFT model would be straightforward.
Case study

An example for the ML-DFTXC potential model

For a hands-on experience, the readers are encouraged to try out our open-source models
and datasets on GitHub. Most of our code was written in python, and our models were built
with the open-source package PyTorch [86]. For a better understanding of the implementation
details, inexperienced readers are recommended to go through a comprehensive tutorial of
PyTorch before making any modifications to the models we provide. As a starting point,
PyTorch provides introductory level tutorials on their own website at https://pytorch.
org/tutorials/.

Ourmodel usesWYXC potential as the direct training target. For the H2molecule example
(Fig. 13), training can be performedwith our pre-calculated CCSDdensity andWY vxc for aH2

molecule with a 0.7 Å bond length. No SCF calculations are needed for training. At the eval-
uation phase, full SCF calculation can be performed for the example structure. The SCF cal-
culation is implemented with the PySCF [87] package. To perform training and evaluation on
the example, one may follow steps (1) to (7) listed below:

(1) Before getting started, please make sure all the prerequisites are installed and work
properly.

(2) Create and enter a new folder, and download our code and dataset by typing

≫git clone https://github.com/zhouyyc6782/oep-wy-xcnn.git
(3) Enter the example/simple_H2 directory, create a folder /log here to store the upcoming
results, and run training by typing
≫python ../nn_train/main.py train.cfg.

https://pytorch.org/tutorials/
https://pytorch.org/tutorials/
https://github.com/zhouyyc6782/oep-wy-xcnn.git
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Here, all training settings and hyperparameters are defined in the .cfg file; to write a
new .cfg file for a different configuration, please refer to the README file provided with
the code.
(4) Training will start on the provided H2 dataset; by default, the maximum epochs is 1000.
(5) Perform SCF calculations on the newly trained model by typing
≫python ../xcnn/main.py test.cfg

(6) One can check the SCF performance of the model by examining the output file generated.

A typical run for a small molecule such as H2 should result in an error at the level of
10�5�10�7 in terms of I. Because only one H2 structure is included in the simple_H2
example training set, the error could be larger. Please refer to the original paper for the
definition of I [3].

(7) The tutorial is centered around a pre-built dataset from one H2 structure for both training
and SCF. To use the whole dataset and reproduce the result from the original publication
[3], more vxc target data need to be generated by the WY method. To use the code in the /
oep-wy folder for performing WY calculations, a modified and recompiled version of
PySCF is needed. For a set of H2 and HeH+ data, the run_oep.py, gen_dataset.py, run_train.
py and run_xcnn.py provides automatic scripts for generating data fromWY calculations,
collecting data, training the model with the data, and testing the model with SCF
procedures, respectively. Interested readers are advised to follow the README from the
GitHub repository in step 2) for recompiling PySCF and additional custom
implementations of the code.

The WY, training, and SCF codes we provide here are not limited to the above example or
themolecules/ions demonstrated in reference [3]. The readers are encouraged to use the code
on different systems. Depending on the format of the dataset, the readers need to write their
own scripts similar to run_oep.py, gen_dataset.py, run_train.py, and run_xcnn.py mentioned in
step 7) for automating the WY, training, and SCF procedures.
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Conclusions and outlook

The explosive development in AI catalyzed a quick turnover of deep learning model struc-
ture designs. From the algorithm perspective, most of the above-mentioned approaches
focused on applying CNN on learning DFT XC functionals, whereas GNN, RNN, and Trans-
formers are also promising candidates for overhaulingDFTdesign. GNNextends CNN toward
irregular grids for electron density/XC potential. RNN [88] is ideal for time-dependent data
and may find profound applications in TD-DFT. However, Transformers [11] and other
attention-basedmodels allow themodel to be smarter, deciding by itself where to ‘pay attention
to’ in the electron density or XC potential. The subtlety and sensitivity of the electron density
data in DFT problems made it a perfect target for such attention-based models.

During the preparation of this chapter, a new work based on quasi-local electron density
formulation of ML-DFTXCwas published [89]. This is a quasi-local version of the global elec-
tron density formulation ofML-DFTXC reported in reference [2]. Instead of learning themap-
ping ρquasi�local!vXC/EXC/εXC from scratch, themodel learns the r-dependent coefficients of
three existing functionals.

EMLP
XC ρ½ � ¼

ð
fθ x rð Þð Þ �

eLDA
X rð Þ
eHF rð Þ
eωHF rð Þ

264
375d3r: (21)

In Eq. (21), fθ is a row vector of three elements outputted by the ML model, and the

eX

LDA(r) , eHF(r), and eωHF(r) are the local LDA [48], local Hartree Fock [90], and local
range-separated Hartree Fock [90] energies, respectively. An extra D3 [85] correction
was added to the EXC

MLP to produce the final XC energy prediction.
In the chapter, we reviewed several approaches that redesignDFT XC energy functional by

ML. We started from a functional model that uses the global density, moving toward more
intuitive and transferable quasi-local models, and ended with additional ML term for vdW
than can be added on top of theML XC terms that induce larger electron density changes than
those of vdW interaction. For quasi-local models, we brought up the holographic electron
density theorem as the theoretical foundation, followed by a series of successful implemen-
tation schemes. All schemes of quasi-local ML-DFTXC: the ML XC potential model, the ML
XC energy density model, and the ML XC fragment energy model, have deep physical con-
nections and share the same fundamental design elements in common. Successful stories for
these variants are demonstrated [3–6], and the readers are encouraged to find more inspira-
tion from the respective original papers, as well as the open-source code and examples we
provided. It is our hope that the universal XC functional of DFT can be found and accurately
reproduced by new generations ofMLmodels in near future, revolutionizing the field of com-
putational chemistry like what Alphafold [91] did to the field of structural biology.
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