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ABSTRACT: When it comes to predicting experimental values of molecular properties with deep learning, the key problem is the
lack of sufficient experimental data for training. We propose a method that consists of pretraining a graph neural network that aims
to reproduce first-principles quantum mechanical results, followed by fine-tuning of a fully connected neural network against
experimental results. The combined pretraining and fine-tuning model is expected to yield molecular properties close to
experimental accuracy. This is made possible because first-principles quantum mechanical methods are often qualitatively correct or
semiquantitatively accurate; thus, a calibration of the calculation results against high-precision but limited experiment data can
improve accuracy greatly. Moreover, the method is highly efficient, as first-principles quantum mechanical calculation is bypassed.
To demonstrate this, we apply the combined model to determine the experimental heats of formation of organic molecules made of
H, C, O, N, or F atoms (up to 30 atoms), where mere 405 experimental data are used. The overall mean absolute error is 1.8 kcal/
mol for these molecules.

■ INTRODUCTION
Graph neural networks (GNNs)1 have been employed to
predict quantum mechanical properties of molecules.2,3 They
include message passing neural networks2 and dense tensor
neural networks.3 A recent review4 summarizes possible
applications of GNNs, including learning molecular finger-
prints, molecular optimization, and molecular generation.
Molecules can be intuitively considered as graphs by chemists,
as atoms being nodes and bonds being edges. GNNs are
designed to be input with structural information of any
molecule and output the molecular properties of interest. Most
of these studies5 predict the molecular properties calculated at
the density functional theory (DFT)6 level. As the solution of
the Kohn−Sham equation is bypassed, the computational
efficiency can be greatly improved.

However, DFT results are often not accurate enough. Can
the accuracy of the GNN-learnt quantum mechanical proper-
ties be improved further, for instance, the calculated
thermodynamic properties within chemical accuracy compared
to experimental results? Direct training of GNNs targeting at
experimental values seems to be impractical, since exper-

imental data are expensive to obtain and thus scarce. Limited
experimental data are not enough to train a deep network.
There have been attempts to employ a reduced amount of data
to machine-learning molecular properties. Kim and colleagues7

proposed a self-supervised network to learn molecular
representations from the Simplified Molecular-Input Line-
Entry System, followed by a fine-tuning with smaller datasets
(ranging from 600 to 90,000 molecules). Moreover, there was
also work exploiting transfer learning with an unsupervised
pretraining model to extract structural information and transfer
learning with more than 20,000 data to predict carbohydrate
reactions.8 For smaller experimental datasets, simpler network
structures are usually used instead. In 2018, a group of
researchers predicted solar cell efficiencies with simple
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machine learning algorithms such as linear regression, the
artificial neural network (ANN), and random forest with only
280 experimental data points.9 Similarly, the ANN was again
proven to be capable of predicting semiempirical quantum
chemical properties.10 In one of the most recent studies, a
deep-learning ANI-1ccx method was proposed to compute
enthalpies of formation of molecules to near chemical accuracy
without training directly on experimental values, with time
complexity O(n).11 We are attempting to approach the same
level of accuracy and comparable computational cost with
another method.

What if we introduce quantum mechanics in between? DFT
results are often qualitatively correct or semiquantitatively
accurate; consequently, a small and yet accurate experimental
dataset would be enough to calibrate DFT results to yield the
experimental results. Almost 20 years ago, a calibration method
was developed to correct DFT heat of formation (HoF) within
chemical accuracy, as compared to the experimental HoFs of
organic molecules. A simple two-layer fully connected neural
network (NN) and mere 180 accurate experimental values
were used for training and testing.12 The model was further
employed or extended in a series of follow-up studies,
confirming its reliability.13 In addition, transfer learning or
fine-tuning of NNs has been frequently used in computational
chemistry. For example, the Δ-ML model combines fast but
approximate quantum mechanical calculation and big data-

based machine learning, to reach higher approximation.14 Also,
the discrepancies between DFT-computed properties and
experimental measured counterparts can be possibly elimi-
nated by a deep transfer learning approach.15 As a result, deep
learning with fine-tuning can help quantum mechanics in
computing molecular properties near experimental accuracy
with limited data.

In this study, employing deep learning, we aim to predict
experimental HoF values of organic molecules with up to 30
atoms containing C, H, O, N, or F atoms, using molecular
structural information only. Rather than predicting directly
with a single deep NN, we introduce quantum mechanics in
between and employ a combined pretraining and fine-tuning
(CPTFT) approach: a deep GNN is constructed and trained
to reproduce DFT HoFs at the B3LYP/6-31G(2df,p) level;
then, a two-layer fully connected NN is used to further fine-
tune the GNN against the experimental HoFs (architecture
illustrated in Figure 1). Only limited amounts of experimental
data are required for the fine-tuning step (405 HoFs used in
our study), while the pretraining step does require a large
amount of DFT-calculated HoFs. The network architecture in
the fine-tuning step follows the network structure in ref 12, but
our overall network prediction requires no expensive DFT
calculation, hence more computationally efficient than ref 12.

Figure 1. Schematic diagram of the CPTFT approach. It contains a (a) pretraining stage and a (b) fine-tuning stage. (a) In the pretraining step,
molecular structural information is fed into SchNet as the input, and DFT HoF, EDFT, is the output. The trained SchNet is frozen and used as part
of the fine-tuning. (b) In the fine-tuning step, characteristic molecular properties and EDFT reproduced from the SchNet in (a) are used as the input
for the two-layer fully connected NN to predict experimental HoF. The mean absolute error (MAE) for experimental HoFs is 1.8 kcal/mol. (c)
Architecture of the two-layer NN. The input layer consists of six input neurons (with one bias neuron, not shown in Figure 1), the hidden layer
consists of five neurons, and the output layer consists of one output neuron being the experimental HoF.
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■ METHODS
Construction of the Dataset. The data used for training

in this study come from two datasets: QM916 dataset and
Chen/13 dataset.17 QM9 is a dataset containing more than
130k stable small organic molecules consisting of C, H, O, N,
and F. All molecules within the dataset contain up to nine
heavy atoms. The dataset reports calculated quantum chemical
properties including energies, enthalpies, and free energies, at
the B3LYP/6-31G(2df,p) level. The 539 molecules in the
Chen/13 dataset are made up of C, H, O, N, F, S, and Cl, and
their experimental HoFs are included. There are 208
molecules, which exist in both datasets; i.e., they have not
only DFT HoF values (from QM9) but also experimental HoF
values (from Chen/13). They are chosen to be the dataset for
fine-tuning and excluded from the training process of GNN.

To pretrain the GNN, 70% molecules from QM9 are
randomly selected to be the training set, while 10 and 20% of
molecules are used for validating and testing sets. In fine-
tuning, the 405 molecules (molecules containing S and Cl, and
radicals are excluded from the Chen/13 dataset) of the Chen/
13 dataset are randomly split into the training and testing sets
with a ratio of 7:3, using the SPXY sampling method and
random sampling and KS sampling for comparison.

DFT HoFs are calculated at the B3LYP/6-31G(2df,p) level
for molecules in the QM9 dataset (calculation method of HoFs
is mentioned in the Supplementary Information). The graph
structured data are generated using RDKit and PyTorch
Geometric.18 Atomic attributes are encoded with the atom
type, family type (acceptor, donor, or aromatic), hybridization
type, and number of neighboring hydrogen atoms. The edge
index, which indicates the existence of bonds between atoms,
and edge attributes that include the bond type and bond
distance are also used as molecular representatives.

Molecular Representation in Graph Neural Networks.
Atomic types and positions within a molecule are used when
training the SchNet. The position matrix has a shape of 3 × N,
where N is the number of atoms in the molecule. The atom
type matrix is of shape N × 1. The information for methane in
matrices form is shown in Figure 2.

Computational Details of Graph Neural Networks.
Loss function is MSELoss, and the optimizer chosen is
Adam.19 The batch size is 256, and the learning rate is
decreased from 0.001 to 0.0005, with the learning rate being
halved every 100 epochs.

Computational Details of Two-Layer Neural Net-
works. The two-layer NN has one hidden layer with five
hidden neurons and is fully connected. Bayesian regularization
is adopted from a previous study.20 With Bayesian training,
prior and posterior probabilities are considered rather than
using fixed values during the updating of weights in

backpropagation. This method is designed to identify poor
underlying assumptions in NN models and to achieve both
good generalizability and Bayesian evidence with a limited size
of training data. The objective function can be expressed as
follows:

J y y E E( , )i i w D= +

where yi and ŷi are pairs of experimental heat of formation and
the predicted heat of formation, respectively. The objective
function J contains two parts: sum of square of weights EW and
sum of square error between the target and predicted value ED.

Applying Bayer’s rule:

P w D M
P D w M P w M

P D M
( , , , )

( , , ) ( , )
( , , )

| = | |
|

Given the assumption that weights and noise in the dataset
are random variables, NNs can be also explained by Bayes’
rule. In the Bayesian NN, α and β are regularization parameters
of these two terms. P(w | α, M) denotes the prior knowledge of
weights before training on any dataset. P(D | w, β, M) is the
probability of data occurring given the weights. P(D | α, β, M)
is used as a normalization constant to guarantee that the total
probability is 1.

MALTAB is used to construct a fine-tuning model. The
pretrained result from the GNN is used as one of the inputs.

■ RESULTS
Pretraining: GNN Prediction of DFT Heats of

Formation. Molecules are traditionally represented as
structural diagrams with bonds and atoms. It is natural to
consider molecules as graphs, with atoms being nodes and
bonds being edges. A GNN1 is employed to represent the
molecules of interest and trained to produce the DFT HoFs.
We use the SchNet21 to predict DFT HoFs at T = 298 K,
ΔfH298

Θ , for the molecules in the QM916 dataset. B3LYP/6-
31G(2df,p) is employed to calculate ΔfH298

Θ of 134k organic
molecules containing up to 30 C, H, O, N, or F atoms. The
SchNet is a variant of GNNs. It makes use of continuous-filter
convolutional layers to capture interactions among atoms. The
output energy is represented as the sum of individual atomic
energies.

To investigate the accuracy of the SchNet, the MAEs
between predicted and targeted HoFs are calculated and listed
in Table 1. The MAEs of SchNet in both training and testing
datasets are around 0.2−0.3 kcal/mol.

Computation Time Comparison with DFT. In addition
to accuracy comparison, the computational efficiencies of both
the DFT method and SchNet are also compared. DFT
computation is known to have time complexity of O(n3),
which indicates that if the number of electrons within the
molecule being computed is doubled, the computational time
will be expected to octuple. As for SchNet, the trained NN
would not be as sensitive to the size of the molecule as DFT.

Figure 2. Matrix representation of methane in the dataset. The
position matrix lists the three-dimensional coordinates of the atoms
within the molecule. The atom type matrix lists the atomic numbers
of all atoms within the molecule.

Table 1. SchNet Predicted Mean Absolute Errors of the
HoFs for the Molecules in the Training, Testing, and
Validating Datasets

dataset training set testing set validating set

MAE (kcal/mol) 0.22 0.33 0.33
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The comparison of computational time between DFT and
SchNet is summarized in Figure 3 below.

Twelve molecules with the electron number ranging from 40
to 64 are selected to be the benchmarking molecules. Their
DFT thermodynamic properties are computed using an
ORCA22 single strand, while SchNet is applied on a single
GPU. For the molecule with 64 electrons, DFT uses 1455 s for
obtaining the result, when SchNet only uses 0.005 s. As a
result, SchNet is proved to be much faster than traditional
DFT calculation.

Fine-Tuning: Prediction of Experimental Heats of
Formation. The classical universal approximation theorem23

states that the two-layer NN of an arbitrary number of hidden
neurons with nonpolynomial activation functions can approx-
imate any continuous functions to arbitrary accuracy.
Consequently, it can theoretically calibrate systematic errors
between DFT and experimental HoFs. As the number of
accurate experimental HoFs is limited, the number of the
hidden neurons in the hidden layer must be limited as well as
the number of the descriptors. In principle, it is not guaranteed
that the two-layer NN with limited hidden neurons/
descriptors yields the HoF within the chemical accuracy.
Here, we adopt the same procedure and descriptor selection in
ref 17 to calibrate further the HoFs resulted from the SchNet
against the Chen/13 dataset.

The architecture of the two-layer NN is shown in Figure 1a.
The SchNet-output EDFT is taken as the first descriptor to the
two-layer NN. Also, 405 experimental HoFs from the Chen/13
dataset are chosen to be the experimental HoF dataset for
training and testing. The MAE of the HoFs between the two-
layer NN’s outputs and the experimental values is around 1.8
kcal/mol (Table 2).

To visualize the performance of the SchNet and two-layer
NN, comparisons among various HoFs are shown in Figure 4.

Comparison between Sampling Methods. Training
and testing MAEs are compared among three different
sampling methods: random sampling, Kennard−Stone (KS)
sampling,24 and sample set partitioning based on joint x−y
distances (SPXY) sampling.25 In the KS and SPXY sampling
methods, molecules in the training set are selected furthest

away from each other, and the rest of the molecules are in the
testing set. The KS sampling method is conducted based on
the Euclidian distances of the descriptors between all data
points, while SPXY considers distances of not only the
descriptors but also the targets. Therefore, they lead to
different partitionings of training and testing datasets. In
contrast to random sampling, they lead to better testing
performances as compared to the training performances. In all
three sampling methods, the training and testing ratio are 7:3.
The results of all three sampling methods are summarized in
Table 3.

For SPXY, bootstrap analysis17,20 is performed 100 times.
The average value and standard deviation of HoFs are
evaluated for each testing molecule selected by SPXY. The
error bars, i.e., standard deviation, are plotted for each testing
molecule in Figure 4c.

An important issue to be noticed is that the use of both KS
and SPXY sampling methods may affect the transferability of
the model obtained. However, we performed training and
testing on the QM9 dataset and similar molecules, and the
effect of the sampling method may be ignored.

■ DISCUSSION
We have developed the CPTFT approach to predict the
experimental HoFs of the organic molecules containing up to
30 C, H, O, N, or F atoms, and only limited experimental data
are available for training and testing. This is possible because
DFT yields qualitatively correct HoFs of the organic molecules
of our interest. DFT/B3LYP is itself efficient enough to
calculate sufficient data to pretrain the SchNet to reproduce
DFT results, to be specific HoFs in this study. The trained
SchNet in the pretraining step is then able to generate more
DFT results at a much quicker rate than DFT itself. The fact
that DFT calculation is bypassed distinguishes our work from
previous work predicting more accurate molecular properties.
Then, the pretraining step is followed by fine-tuning the two-
layer NN to yield the experimental values. After fine-tuning,
systematic errors of DFT results are mostly corrected;
however, some random error still exists, which is introduced
in the pretraining step. Since our dataset is made of the
molecules containing up to 30 atoms, the CPTFT approach
cannot be extrapolated to larger molecules. Moreover, it may
not be applied to molecules containing atoms other than C, H,
O, N, or F.

Besides the HoFs, DFT has been employed to calculate
other molecular properties and the results are qualitatively or
semiquantitatively correct. This implies that the CPTFT
approach can be extended to predict the experimental values
of these molecular properties as well. Besides quantum
mechanical methods, molecular dynamics,26 multiscale simu-
lation,27 coarse grained modeling,28 finite element methods,
and various other methods have been used to calculate the
material properties and structures and often yield qualitatively
correct results. Our proof-of-principle work suggests that the

Figure 3. Computational time comparison between DFT and SchNet.
Orange triangles indicating computing time for DFT, and dark-green
dots indicating SchNet computational time. A significant speed
difference is captured in the figure.

Table 2. MAE of SchNet-Produced and CPTFT HoFs for
the Training and Testing Molecules against Experimental
HoFs

dataset/method
training set (kcal/

mol)
testing set (kcal/

mol)

SchNet 7.7
CPTFT with SPXY sampling 4.3 1.8
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CPTFT approach can be extended to predict the accurate
experimental properties, employing other computational

methods besides DFT, and largely reduce the amount of
experimental data required.
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Figure 4. Comparisons among the experimental, DFT, SchNet, and
CPTFT HoFs. (a) Comparison between SchNet and DFT HoFs (R2

= 0.9998). (b) Comparison between SchNet and experimental HoFs
(R2 = 0.9738). (c) CPTFT HoFs versus experimental values (R2 =
0.9972). Error bars are computed by bootstrapping of testing
molecules selected by the SPXY sampling method. Large error bars
indicate that the molecule is of less seen structures in the training
dataset; therefore, the prediction values vary more.

Table 3. MAE Comparison among Random, KS, and SPXY
Samplings

sampling methods random KS SPXY

training MAE (kcal/mol) 3.4 4.3 4.3
testing MAE (kcal/mol) 6.4 2.2 1.8
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