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ABSTRACT: The past decade has seen an increasing interest in
designing sophisticated density functional approximations (DFAs)
by integrating the power of machine learning (ML) techniques.
However, application of the ML-based DFAs is often confined to
simple model systems. In this work, we construct an ML correction
to the widely used Perdew−Burke−Ernzerhof (PBE) functional by
establishing a semilocal mapping from the electron density and
reduced gradient to the exchange−correlation energy density. The
resulting ML-corrected PBE is immediately applicable to any real
molecule and yields significantly improved heats of formation while
preserving the accuracy for other thermochemical and kinetic
properties. This work highlights the prospect of combining the
power of data-driven ML methods with physics-inspired derivations
for reaching the heaven of chemical accuracy.

1. INTRODUCTION

Density functional theory (DFT) has achieved enormous
success in physics, chemistry, biology, and materials science as
an efficient tool to study electronic structures and reactions in
molecules, condensed phases, and extended many-body
systems since the 1990s.1 The success goes to the modern
paradigm of DFT which consists of the Hohenberg−Kohn
(HK) theorem2 and the Kohn−Sham (KS) formalism,3 with
the former offering a one-to-one mapping between ground-
state electron density and external potential and the later
providing a practical approach to finding the ground-state
energy by adopting a certain approximation for the exchange−
correlation (XC) functional.
A great variety of density functional approximations (DFAs)

have been proposed. Diversified strategies have been
employed, such as the analytic analysis on simple physical
models, the explicit imposition of exact physical constraints or
conditions, the adiabatic connection4 between the reference
noninteracting system and real interacting system, and the use
of semiempirical or empirical parameters whose values are
determined by optimizing the numerical accuracy of density
functional calculations.5−12 Despite the progress made,
chemical accuracy has not been achieved universally within
the framework of KS-DFT. This is partly because the
mathematical representation of the KS mapping, ρ(r) →
vXC(r), with ρ(r) and vXC(r) being the electron density and XC
potential, is not sophisticated enough.

One way to attain more expressive representation of the KS
mapping is to introduce more intricate density descriptors.
Following this idea, DFAs invoking more complex density
related quantities have been constructed, which belong to
higher rungs of “Jacob’s ladder”.13 It has been demonstrated
that the growing complexity of functional form indeed leads to
enhanced accuracy.14 However, practical application of DFT
still faces challenges even with the most sophisticated manually
designed DFAs.
An alternative approach to enhance the representation of the

KS mapping has become increasingly popular, which is to
exploit machine learning (ML) techniques.15−31 As early as in
1996, Tozer et al.32 have used an artificial neural network
(NN) to fit the Zhao−Morrison−Parr XC potential.33 This
pioneering work demonstrated that it is entirely possible to
represent the KS mapping by means of ML models. Recently,
Zhou et al. have employed a deep learning techniquethe
convolutional NNto yield in principle the exact KS
mapping.34 Nagai et al. have constructed an NN-based
mapping from a series of density descriptors to the XC energy
density ϵXC(r), which results in a family of NN-based DFAs.35
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Aside from the KS mapping, other ML-based mapping
schemes have also been proposed to enhance the predictive
power of DFT.36−38 For instance, NN models have been used
to optimize the values of semiempirical parameters39,40 in
DFAs such as B3LYP and LC-BLYP. Snyder et al. have
adopted an ML approach to construct the mapping ρ(r) → T,
with T being the kinetic energy functional, for one-dimensional
(1D) noninteracting models.41 Brockherde et al. have
attempted to bypass the KS equations by directly learning
the density-potential and energy-density maps with ML.42 Dick
and Fernandez-Serra43,44 and Chen et al.45 have independently
constructed an NN-based mapping from the generalized KS
single-electron reduced density matrix to an energy correction
term.
Despite the above exciting progress, the application of ML-

based KS mapping has been confined to simple model systems
or specific types of molecules. Moreover, to achieve a
satisfactory accuracy, in some ML-based mapping schemes,
sophisticated density descriptors corresponding to higher
rungs of Jacob’s ladder had to be invoked.35 The goal of this
work is to demonstrate that, apart from the design of complex
density descriptors, the construction of a highly sophisticated
ML-based KS mapping is also important for enhancing the
predictive power of DFAs. Specifically, we choose to use
simple density descriptors including the electron density
function and its first-order derivatives. Thus, the resulting KS
mapping is a generalized gradient approximation (GGA) for
the XC functional. A GGA-type functional could offer a simple
interpretation of the KS mapping46 and, meanwhile, allows for
an efficient treatment of extensive systems such as solids.
Furthermore, a semilocal mapping also has the advantages that
it is intrinsically universal and transferable, automatically
preserves the system’s spatial symmetry, and does not require
the use of any auxiliary atomic basis functions. At the current
stage, the method is potentially useful for systems where hybrid
or meta-GGA functionals may be expensive or the correction
from the more complicated descriptors is not important.
Regarding the predictive power of the ML-corrected

mapping, we shall focus on thermochemical properties for
which conventional GGA functionals yield large errors. For
such properties, the functional-driven error usually dominates
over density-driven error.47 Therefore, for numerical conven-
ience, in this work an ML model which presents a correction to
a parent GGA functional is constructed in a post-self-
consistent-field (post-SCF) manner.
The remainder of this paper is organized as follows. Section

2 provides a detailed account of our construct of the ML-
corrected GGA functional as well as the data sets adopted to

determine and assess the parameters involved in the ML
model. In section 3 we demonstrate the numerical perform-
ance of the constructed ML-corrected functional and present
extensive discussion. Concluding remarks are finally given in
section 4.

2. METHODOLOGY
We choose the widely used Perdew−Burke−Ernzerhof (PBE)
functional48,49 as the parent DFA. Although the PBE functional
yields much improved thermochemical properties over the
local density approximation (LDA),2,50−52 its overall accuracy
is still far from satisfactory. This is partly because, while the
analytic form of the PBE functional satisfies a number of exact
physical constraints, it is not sophisticated enough to account
for all the subtle features of electron density as well as their
influence on the XC energy.
Instead of constructing a more superior GGA functional

completely from scratch, we consider a correction to the PBE
energy functional, EXC

PBE, and an ML model is adopted to
represent the energy correction, ΔEXC

ML. The ML-corrected PBE
functional, abbreviated as ML-PBE hereafter, assumes the
following form:

∫
∫

ρ ϵ ζ ϵ

ρϵ ρ ζ ρ

= + Δ

= [ + Δ ]

=

‐E E E

r s

F r s F s

r

r

d ( , , )

d ( ) ( , , ) ( , )

s

s

XC
ML PBE

XC
PBE

XC
ML

XC
PBE

XC
ML

X
unif

XC
PBE ML

(1)

Here, ϵX
unif is the exchange energy density of a uniform

electron gas, and ϵXC
PBE and ΔϵXCML are the XC energy densities

corresponding to the PBE functional and the ML correction,
respectively. In practice we could take the best possible
semilocal DFA as the reference for ΔϵXCML. Regarding the
involving density-related quantities, ζ = (ρ↑ − ρ↓)/ρ is the
relative spin polarization and s = |∇ρ|/(2kFρ) is the reduced
density gradient, with kF = (3π2ρ)1/3 and rs = (4πρ/3)−1/3

being the Fermi wavevector and Wigner−Seitz radius,
respectively.48 Upon the last equality of eq 1, the ML-PBE
functional is recast into a compact form by referring to the
LDA exchange and defining two local enhancement factors,
FXC
PBE and FML, where FXC

PBE enhances the LDA exchange to the
PBE functional and FML enhances the PBE to the ML-
corrected PBE.
The challenge then is to construct a universal and accurate

semilocal mapping, {ρ↑(r), ρ↓(r), s↑(r), s↓(r)} → ΔϵXCML(r),
with sσ = |∇ρσ|/[2(3π2)1/3ρσ4/3] (σ = ↑, ↓) being the spin-

Figure 1. Schematic diagram illustrating the workflow for constructing the ML-corrected PBE functional. Details are elaborated in the main text.
Here, Ω0 is a preset threshold for the minimization of loss function Ω.
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specific reduced density gradient. With the inclusion of an ML
correction, the exact physical constraints satisfied by the parent
DFA are likely to be compromised. This presents another
important challenge for the development of ML-corrected
DFAs.
Figure 1 illustrates the workflow for establishing the ML-

based KS mapping. To construct a semilocal mapping, an
individual point in the r-space of any chemical species is taken
as a sample. Each sample is associated with a data entry, with
the density descriptors {ρσ(r), sσ(r)} representing the features
of the sample and ΔϵXCML(r) as the label. The key is to acquire a
sufficient amount of pointwise data to enable supervised
learning of the ML model. To this end, highly accurate
reference data ΔϵXCref (r) are needed to guide the learning
process, which aims to minimize the loss function

∫∑ ϵ ϵΩ = |Δ − Δ |
=M

r r r
1

d ( ) ( )
m

M

m m
1

XC,
ML

XC,
ref

(2)

where M is the number of species in the training data set.
Usually, it is the energy difference between two species that

can be obtained accurately from experiment or from high-level
quantum chemistry calculation. However, to enable the
training of a semilocal ML model, the reference value for the
energy of each species, Em

ref, is required. Moreover, the
discrepancy between the energy calculated by the PBE
functional and the corresponding reference value, ΔEXC,m =
Etot,m
ref − Etot,m

PBE , is to be decomposed into pointwise errors, which
are then assigned to each individual r-point. In this work, we
follow an intuitive notion that the XC energy density of a GGA
functional on every r-point is subject to roughly the same
amount of relative error. Thus, the decomposition of error is
done by presuming that the correction to energy density is
proportional to the XC energy density itself, i.e.

ϵ
ϵ

Δ = Δ
E

Er
r

( )
( )

m
m

m
mXC,

ref XC,
DFA

XC,
DFA XC,

(3)

Apparently, if the training set consisted only of a single
species, the ratio ΔϵXC,mref (r)/ϵXC,m

DFA (r), which serves as the target
for the enhancement factor FML, would be a constant in the r-
space. This contradicts the presumption that FML is r-
dependent. To avoid such a conceptual problem, the training
set should include an abundant number of species so that the
r-dependence of FML is adequately manifested.
In practice, the r-space integral of a function f(r) is often

evaluated via a summation over discretized grids, i.e., ∫ dr f(r)
→ ∑i f(ri) W(ri), with W(ri) being the weight of the ri grid
point. Here, {ri} are just the grid points adopted to evaluate
the one-electron integrals for constructing the KS Hamiltonian.
Equation 3 is thus rewritten as

ϵ
ϵ

ρ ϵ
Δ =

∑
Δ

W
Er

r

r r r
( )

( )

( ) ( ) ( )m i
m i

j m j m j j
mXC,

ref XC,
DFA

XC,
DFA XC,

(4)

In principle, the DFA in eqs 3 and 4 can be the ML-PBE
functional so as to form a self-closed training process, while in
practice the DFA is chosen as the original PBE, which is found
to yield a more accurate ML model; see the Supporting
Information for more details.
At each ri grid point, ΔϵXCML(ri) is obtained by feeding the

descriptors {ρσ(ri), sσ(ri)} into the chosen ML model

ϵ ρ ρΔ = [ ]↑ ↓ ↑ ↓G s sr r r r r( ) ( ), ( ), ( ), ( )i i i i iXC
ML ML

(5)

where GML(x) denotes the explicit function form associated
with the ML model. For each species in the training and test
sets, calculation with the original PBE functional is performed
to generate a set of descriptors {ρσ(ri), sσ(ri)} and the
corresponding PBE energy density ϵXC

PBE(ri). ΔϵXCML(ri) are
subsequently computed by eq 5, and the corrected total energy
of the species is obtained by eq 1.
The data set used in this work consists of two parts: a

training set for optimizing the ML model and a test set for
evaluating the performance of the ML-corrected functional.
The training set contains 166 energetic data, including 148
standard heats of formation (HOF) taken from the G2/97
set53 (denoted as the G2-HOF set hereafter) and 18 total
energies of neutral atoms of the first three periods (from H to
Ar). Note that the HOF (or the atomization energy) of a
molecular species involves the calculation of the molecular
energy as well as the energies of all the constituent atoms. For
numerical convenience, the errors associated with the HOF
data are assigned completely to the molecular species, i.e.,
ΔEXC,m in eqs 3 and 4, while the PBE energies of neutral atoms
are taken as constant parameters in the training stage. This is
consistent with the presently adopted error assignment scheme
where the errors of HOF are attributed only to molecular
species and not to the constituent atoms.
The test set contains 75 HOF from the G3-3 subset of the

G3/99 set54 (denoted as the G3-HOF set hereafter), and 88
ionization potentials (IPs) and 58 electron affinities (EAs)
from the G2/97 set55 (denoted as the G2-IP and G2-EA sets),
as well as 42 bond dissociation enthalpies (BDEs) of small
organic molecules taken from a handbook of BDE
experimental data56 as well as high precision calculations57

(denoted as the BDE42 set). The G3-HOF set consists mainly
of organic molecules containing 2−10 carbon atoms as well as
covalent compounds made of elements from the first three
rows of the periodic table.
We also assess the predictive power of ML-PBE beyond

thermochemical properties by examining energies for reaction
kinetics. Specifically, the test set also includes 38 barrier
heights for hydrogen-transfer reactions from the HTBH38/08
set58−60 and 38 barrier heights for non-hydrogen-transfer
reactions from the NHTBH38/08 set58−60 (denoted as the
HTBH38 and NHTBH38 sets). There are around 2.4 million
r-points in the training set and over 8 million in the test set.
In the evaluation stage, the total energies of the species in

the test set (including atoms, molecules, ions, and transition
state complexes) are calculated with the ML-PBE functional.
The only exception is the total atomic energies for the
assessment of the G3-HOF set. To be consistent with the
training process, the PBE energies of neutral atoms are taken as
constant parameters for the computation of HOF.
The density functional calculations are performed by the

Gaussian 16 suite of programs.61 For each species, the atom-
centered r-points62,63 are generated by an in-house built
quantum chemistry software package, QM4D,64 with which the
density descriptors {ρσ(r), sσ(r)} on these r-points are then
evaluated.
The Gaussian basis set 6-311++G(3df,3pd) is employed

throughout this work unless specified. Computational details
are provided in the Supporting Information.
A number of ML models were tested for constructing the

semilocal KS mapping of our interest. These include some
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well-established deep learning techniques such as the convolu-
tional NN. Among all the candidates, the XGBoost,73 which
implements the gradient boosting decision tree (GBDT)
algorithm,74,75 excels in the overall performance and is finally
adopted to construct the ML mapping. A generic function
GXGB(x) learned by the XGBoost has the form of

∑=
=

G gx x( ) ( )
t

T

t
XGB

1 (6)

where the basis function gt(x) is a simple decision tree. The
model is trained additively; i.e., at each epoch a new basis
function gt(x) is added to the existing model, followed by
optimization of the involving parameters.
Owing to its prevailing advantages in numerical efficiency

and robustness, XGBoost has gained increasing interest from
practitioners in various fields of chemistry and materials
science, and it is particularly favorable for our task. In contrast,
a sophisticated NN model with a large number of hidden
neurons, according to our practical experience, is not
compatible with a feature vector of only four dimensions in
our problem.
Ideally, the explicit form of ΔϵXCML should allow for SCF

calculations with the ML-PBE functional. However, XGBoost
is intrinsically nondifferentiable, while a common differentiable
NN model yields much inferior training performance than
XGBoost (the relative error is at least 50% larger than that of
XGBoost). Therefore, at the present stage, the ML correction
is implemented in a post-SCF manner.

3. RESULTS AND DISCUSSION
Before assessing the performance of the ML-PBE functional,
we first explore how the size of the training set affects the
training performance. If only a single species in the G2-HOF
set is used for training, a mean absolute error (MAE) of 10.8
kcal/mol is yielded for the rest of the G2-HOF set, while if 10
randomly chosen species are taken as the training set, the
cross-validation MAE (with the rest of the G2-HOF set) drops
to 9.0 kcal/mol. Further enlarging the training set to 100
randomly chosen species results in a smaller cross-validation
MAE of 6.9 kcal/mol. Such a trend is consistent with the
understanding on the error decomposition scheme of eq 3 that
an abundant number of species is required to adequately
express the r-dependence of FML.
The MAEs for the various data sets yielded by ML-PBE are

exhibited in Figure 2. For the purpose of comparison, the
MAEs of the same data sets yielded by the original PBE
functional, the strongly constrained and appropriately normed
(SCAN) functional76 which is a meta-GGA on the third rung
of Jacob’s ladder, and the Becke-3-Lee−Yang−Parr
(B3LYP)77−79 hybrid functional which belongs to the fourth
rung of Jacob’s ladder are also displayed.
As shown clearly in Figure 2, the original PBE yields

appreciable errors for the HOF, with MAEs of 17.1 and 33.7
kcal/mol for the G2-HOF and G3-HOF sets, respectively. By
invoking the ML correction to XC energy density, ΔϵXCML(r),
the resulting ML-PBE achieves a much improved accuracy for
the calculation of HOF. Specifically, the MAEs are
substantially reduced to 5.7 and 8.8 kcal/mol for the G2-
HOF and G3-HOF sets, respectively. Such errors are already
comparable to those yielded by the meta-GGA SCAN. With
both PBE and ML-PBE, the MAE for the G3-HOF set is about
twice that for the G2-HOF set, because of the larger sizes of

molecules in the former data set. Such error accumulation over
the r-space will be scrutinized below.
The ML correction does not improve the prediction of IP

and EA, as the MAE yielded by ML-PBE is almost the same as
that by the original PBE; see Figure 2. There are two possible
reasons. First, the original PBE yields much larger errors for
HOF than for IP and EA, and thus the ML model will focus
mainly on the former errors to achieve an overall balanced
performance across various energetic properties. Second, the
training data set only involves neutral species, and thus the ML
model might not gain enough knowledge about the charged
species. We have attempted to add several ionic species to the
training set, but there was not much change in the MAEs. This
confirms that the training of the ML model is predominantly
driven by the errors of HOF. Nevertheless, both PBE and ML-
PBE outperform SCAN in the prediction of IP and EA.
We also extend the assessment of ML-PBE to kinetic

properties. As demonstrated in Figure 2, the ML correction
leads to a marginal improvement in the prediction of reaction
energy barriers. Just like the situation of IP and EA, since the
training data set consists mainly of molecular species at their
equilibrium geometries, the ML model does not learn much
about the transition state species. Moreover, the discrepancy of
calculated reaction barriers from the reference values is closely
related to the delocalization error of a semilocal DFA, which
has been analyzed and understood from the perspective of
fractional charges.80−84 To correct the delocalization error,
exact physical constraints such as the Perdew−Parr−Levy−
Balduz condition85 needs to be imposed explicitly,82,84,86,87

which is of critical significance and to be investigated further.
The ML-PBE produces slightly larger MAEs than SCAN for
the HTBH38 and NHTBH38 sets.
For the prediction of BDEs, we examine the BDE42 set

which is composed of 42 BDEs of organic molecules randomly
chosen from refs 56 and 57. The BDE42 set covers three kinds

Figure 2. Performance of ML-PBE in comparison with the PBE,
SCAN, and B3LYP functionals. The number over each bar is the
MAE of the corresponding data set yielded by a particular DFA; see
the main text for the details about the data sets. The MAEs of the G2-
IP and G2-EA sets by SCAN are evaluated via calculations done with
the 6-311++G(3df,3pd) basis set, while the other MAEs associated
with SCAN are taken from refs 65 and 66. The MAEs of the
HTBH38/08 and NHTBH38/08 sets by B3LYP are evaluated via
calculations done with the MG3S basis set,67 while the other MAEs
associated with B3LYP are extracted from refs 59 and 68. The
calculation of BDEs in the BDE42 set by PBE, SCAN, and B3LYP
functionals are based on geometries optimized at the level of B3LYP/
6-31G(d) extracted from computational chemistry databases,69−72

and the corresponding reference values for comparison are adopted
from refs 56 and 57.
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of common chemical bonds, C−C, C−O, and C−N, with half
of the data associated with branched C−C bonds. As is
demonstrated in Figure 2, the MAEs of ML-PBE and PBE are
very similar to each other and are apparently smaller than those
of SCAN and B3LYP. The PBE functional gives rise to
relatively large errors for the BDEs of branched C−C bonds.
Specifically, for the 21 data on branched C−C bonds, the
MAEs of the PBE, ML-PBE, SCAN, and B3LYP functionals
are 6.6, 6.7, 9.4, and 10.7 kcal/mol, respectively, which are
distinctly larger than the overall MAEs of the BDE42 set.
Nevertheless, for both the original and ML-corrected PBE
functionals, the errors on BDEs (even for branched C−C
bonds) are still below the average errors of the entire test set
(12.5 and 6.5 kcal/mol for PBE and ML-PBE, respectively),
which covers various types of energetic properties.
While the MAE of B3LYP is much larger than that of PBE

on the BDE42 set, B3LYP yields much more accurate results
than PBE on the G3-HOF set. Such behavior agrees with the
previous examination by Xu et al.,88 who have found that the
accuracy of HOF has little correlation with the accuracy of the
predicted BDE by the same DFA.
From the above analysis, it is reasonable to conclude that the

ML-PBE generally outperforms the original PBE in the
prediction of thermochemical and kinetic properties of
molecules, and it achieves almost the same level of accuracy
as the meta-GGA SCAN. This justifies our proposed strategy
of constructing a sophisticated KS mapping by using relatively
simple density descriptors. On the other hand, the ML-PBE
underperforms the hybrid B3LYP functional for all the
energetic properties examined in Figure 2. This accentuates
the limitation of a semilocal functional form, as well as the
necessity of building nonlocal ingredients into the ML
correction to XC energy for further improving its predictive
power.
The ML-PBE is designed to improve over PBE in the

prediction of all kinds of thermochemical properties in a
balanced manner. This means that it is expected to yield
roughly the same magnitude of error for different energetic
properties. Therefore, the ML model is trained with only the
HOF data, since the original PBE performs most unsatisfac-
torily on HOF among all kinds of energies. Moreover, it is
remarkable that the ML also yields a much more balanced
error distribution for HOF in the sense that the mean signed
error reduces from 16.3 to 0.3 kcal/mol on the G2-HOF
training set and from 33.7 to 1.7 kcal/mol on the G3-HOF test
set.
Throughout this work, for the computation of HOF, the

total energies of the atoms are taken as the PBE values. Such a
treatment differs from the common tradition of quantum
chemistry but is nevertheless practical and reasonable, as it is
consistent with the presently adopted error assignment
scheme: the error of HOF is attributed only to molecular
species and not to the constituent atoms.
We proceed to examine whether the distribution of

pointwise errors in the XC energy density is improved by
the ML correction. Parts a and b of Figure 3 depict histograms
of pointwise errors, ΔϵX̃CPBE(r) = ϵXC

ref (r) − ϵXC
PBE(r) and

ΔϵX̃CML‑PBE(r) = ϵXC
ref (r) − ϵXC

ML‑PBE(r), assessed for the G2-
HOF training set and the G3-HOF test set, respectively.
Clearly, the original PBE gives rise to a rather biased error
distribution with a long tail of positive values, while with the
ML correction the pointwise errors become more centralized
and balanced. It is noticed that the calculation result on the

G3-HOF set by PBE is so biased that the deviations from the
reference values are all positive. Following the decomposition
scheme of eq 3, ΔϵXCref (ri) values are positive for all the species
in the G3-HOF set. Nevertheless, ML-PBE counterbalances
the biased positive distribution of errors by a relatively larger
amount of negative deviations, leading to a drastic drop of the
MAE. The improvement is overall consistent for both the
training and test sets, though the error distribution is
somewhat broader for the latter. We have set the correction
to the XC energy density as a linear function of electron
density and reduced gradient, and we train the model using a
function of the difference in HOF as the cost function. By
performing a linear regression for the pointwise errors, the
MAE of the resulting corrected PBE is 16.8 kcal/mol, only
slightly improved over the original PBE with an MAE of 17.1
kcal/mol. Therefore, a sophisticated ML model is indeed
necessary to provide a nontrivial correction to the PBE
functional.
As mentioned earlier, a semilocal KS mapping inevitably

leads to the accumulation of pointwise errors; i.e., the error in
the total XC energy ΔEXC increases linearly with the size of the
system. As shown in Figure 4, with the original PBE, ΔEXC of a
molecular species grows rapidly with the number of
constituent atoms NA, and a linear regression indicates a

Figure 3. Histograms of pointwise errors in XC energy density for
PBE and ML-PBE, ΔϵX̃CPBE(r) and ΔϵX̃CML‑PBE(r), assessed for the (a)
G2-HOF and (b) G3-HOF sets. The horizontal position of a bar
represents the magnitude of the pointwise error in units of kilocalories
per mole, while the height of a bar stands for the number of r-points
possessing that particular amount of error. The vertical axis is in a
logarithmic scale.

Figure 4. Error in XC energy (ΔEXC) versus number of non-hydrogen
atoms (NA) for molecular species in the G3-HOF set. The lines are
linear regressions of the errors, with the slopes being 9.3 and 2.9 kcal/
mol per atom for PBE and ML-PBE, respectively.
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slope of 9.3 kcal/mol per atom. Although the linear increase of
ΔEXC still persists after adoption of the ML correction, the rate
of growth is greatly suppressed, as verified by a significantly
reduced slope of 2.9 kcal/mol per atom. Such a reduction in
the slope is consistent with the drop of the MAE associated
with the G3-HOF set; cf. Figure 2.
An intriguing question is, how large is the ML correction as

compared to the XC energy density of PBE? To answer this
question, we examine the magnitude of the enhancement
factor corresponding to the ML correction, FML = 1 + ΔϵXCML/
ϵXC
PBE. Figure 5 exhibits the distribution of FML for all the r-

points associated with the species in the training set. It is found
that a predominant majority of FML falls within a tiny interval
between 0.997 and 1.0, indicating that the ML correction
amounts to only about 0.3% of the magnitude of ϵXC

PBE. FML is
also generally smaller than FXC

PBE, with the ratio |FML/FXC
PBE| lying

mainly within the range [0.28, 0.95]. Therefore, the ML
correction scheme proposed in this work is in fact rather
conservative, and the physical considerations behind the
original design of the PBE functional are largely preserved in
the ML-PBE. This is in clear contrast to some other ML-based
DFAs which deviate significantly from the traditional
DFAs.35,45 Nagai and co-workers have also constructed ML-
based GGA and meta-GGA functionals.35 Different from our
proposed scheme of finding a correction to an existing DFA,
they attempted to establish NN-based DFAs completely from
scratch, and thus the enhancement factor of a resulting NN-
DFA deviates appreciably from those of the existing DFAs in
certain regions of density descriptors; cf. Figure 5 in ref 35. In
contrast, we always have FXC

ML‑PBE ≃ FXC
PBE because of the small

magnitudes of the ML correction.
In terms of numerical performance, the NN-GGA obtained

by Nagai and co-workers yields an MAE of 11.0 kcal/mol for
the G2-HOF set and an MAE of 9.6 kcal/mol for the HTBH38
and NHTBH38 sets combined,35 while the corresponding
MAEs are 5.7 and 8.7 kcal/mol respectively by our proposed
ML-PBE. In fact, the ML-PBE achieves an MAE of only 8.8
kcal/mol for the G3-HOF set, which consists of molecules
considerably larger than those in the G2-HOF set. Therefore,
the ML-PBE is expected to outperform the NN-GGA obtained
in ref 35 for the prediction of thermochemical energies. Of
course, it is worth pointing out that much improved accuracy
has been achieved by Nagai and co-workers, with the use of
more sophisticated density descriptors.35

We have carefully studied the behavior of ML-PBE under
the uniform gas limit as well as some other physical constraints
with details included in the Supporting Information. The
present ML-PBE does not retrieve the exact uniform density
limit due to the lack of samples representing that specific limit
in the training set. This important aspect calls for more careful
exploration89 in the future.

4. CONCLUDING REMARKS

In this work we construct an ML correction to the PBE
functional by establishing a semilocal mapping {ρσ(r), sσ(r)}
→ ΔϵXCML(r). The resulting GGA functional, ML-PBE, yields
substantially improved HOF of molecular species over the
original PBE, and its overall performance on the prediction of
molecular thermochemical and kinetic properties is compara-
ble to that of the widely used meta-GGA SCAN. This indicates
that an accurate DFA with a balanced performance can be
achieved by combining the power of physically inspired
derivation and data-driven ML techniques. Further improve-
ment of the scheme in eq 1 could be realized with the use of
more sophisticated density descriptors and more advanced ML
models. It is desirable to have an ML-corrected semilocal DFA
outperforming the existing meta-GGA functionals. The
encouraging performance of ML-PBE confirms that integrating
the power of data-driven machine learning with physics-
inspired derivation is a promising approach toward the heaven
of chemical accuracy.
In principle, the ML-PBE functional constructed in this work

is immediately applicable to general electronic systems
including molecules, clusters, and bulk solids. However, limited
by the computational resources and codes at our disposal,
numerical calculations were restricted to simple molecules.
Further optimization and more extensive assessment of the
ML-corrected DFA are certainly desired.
There is still much room for improvement regarding the

design of the ML-based KS mapping. First, the construct of a
semilocal mapping requires the error in the total energy of a
molecule to be decomposed into pointwise contributions. The
present scheme relies on the presumption of eq 3. A more
rational way is perhaps to take the XC energy density of a
highly accurate hyper-GGA as ϵXC

ref (r). Second, the ML model
obtained by this work merely provides a post-SCF correction
to the energy, while the electron density is left uncorrected. In
principle, the XC potential vXC(r) can be evaluated by
exploiting the analytic gradients of the ML model, which
should enable a self-consistent correction to both the energy
and the electron density. This is to be pursued in our future
work with some differentiable ML models. It is entirely
possible to realize a self-consistent implementation of the ML-
based correction by utilizing a certain differentiable ML model.
Further exploration along this direction is underway.
Finally, to preserve the computational efficiency of a GGA

functional, the present work focuses only on a semilocal KS
mapping. It has been demonstrated that nonlocal density
descriptors may be crucial for addressing long-range electron
correlation effects such as the dispersive interaction.34,35 This
thus raises another challenge: incorporating the nonlocal
dependence effectively and efficiently into an ML model. Work
along this direction is underway.

Figure 5. Histogram showing the distribution of the pointwise
enhancement factor FML for all species in the training set. The height
of a bar represents the number of r-points assuming a particular value
of FML.
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