
Chapter 10
Machine Learning Corrections for DFT
Noncovalent Interactions

Wenze Li, Jia Liu, Lin Li, LiHong Hu, Zhong-Min Su, and GuanHua Chen

Abstract Noncovalent interactions (NCIs) play crucial roles in supramolecular
chemistries; however, they are difficult to measure and compute. Currently, reliable
computational methods are being pursued to meet this challenge, but the accuracy
of calculations based on low levels of theory is not satisfactory and calculations
based on high levels of theory are often too costly. Accordingly, to reduce the cost
and increase the accuracy of low-level theoretical calculations to describe NCIs,
an efficient approach is proposed to correct NCI calculations based on the bench-
mark databases S22, S66, and X40. In this approach, machine learning methods,
general regression neural network (GRNN), and support vector machine (SVM)
are used to perform the correction for DFT methods on the basis of DFT calcula-
tions. VariousDFTmethods, includingM06-2X,B3LYP,B3LYP-D3, PBE, PBE-D3,
and ωB97XD, with two small basis sets (i.e., 6-31G* and 6-31+G*) were investi-
gated. Moreover, the conductor-like polarizable continuum model (C-PCM) with
two types of solvents (water and pentylamine) was considered in some DFT calcula-
tions. With the correction, the root mean square errors (RMSEs) of all DFT calcula-
tions were improved by at least 70%. Relative to CCSD(T)/CBS benchmark values
(used as experimental NCI values because of its high accuracy), the mean absolute
error (MAE) of the best GRNN result was 0.33 kcal/mol, which is comparable to
high-level ab initio methods or DFT methods with fairly large basis sets. Notably,
this level of accuracy is achieved within a fraction of the time required by other
methods. Additionally, SVM is applied on datasets in the gas phase, which gave
similar correction accuracy as GRNN. For all of the correction models based on
various DFT approaches, the validation parameters according to OECD principles
(i.e., the correlation coefficient R, the predictive squared correlation coefficient q2
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and q2cv from cross-validation) were greater than 0.92, which suggests that the correc-
tion model has good stability, robustness, and predictive power. The correction can
be added following DFT calculations. With the obtained molecular descriptors, the
NCIs produced by DFT methods can be improved to achieve high-level accuracy.
Moreover, only one parameter is introduced into the GRNN correction model, which
makes it easily applicable. Overall, this work demonstrates that the machine learning
correctionmodelmaybe an alternative to the traditionalmeans of correcting forNCIs.

10.1 Introduction

Noncovalent interactions (NCIs) are significant in bio-molecular structures,
supramolecules, and polymers [1–3]. Because of the inherent intricacy of NCIs,
their measurement, computations as well, are challenging, especially for complex
biological systems. Therefore, efficient computational methods are practical tools
for exploring NCIs. However, the accurate calculation of NCIs is quite demanding
because such rigor requires coupled cluster or MPn levels of theory with large basis
sets (e.g., complete basis set limit CBS, aug-cc-pVDZ, 6-311+G(3df, 2p)) [4]. The
CCSD(T) method with a complete basis set description (i.e., CCSD(T)/CBS), which
involves taking single and double electron excitations iteratively and triple electron
excitation perturbatively can provide a highly accurate description of various types
of noncovalent complexes. Although this approach is considered to be the golden
standard of computational methodologies, it is impractical for molecules with more
than 100 atoms [5, 6]. In the calculations, solvation effects are usually neglected,
although they are of importance for NCIs. Therefore, it is challenging to obtain accu-
rate NCIs for medium- or large-sizedmolecules with reasonable computer resources.
Compared with covalent bonds, NCIs are weak, highly susceptible to the environ-
ment, and diversified.Generally, NCIs are classified into four categories: electrostatic
(e.g., hydrogen bonding and ion-pairing), π-effect (e.g., cation-π, π-π stacking),
van der Waals forces (e.g., dispersion attractions, dipole-dipole, and dipole-induced
dipole interactions), and hydrophobic. Among NCIs, the magnitude of hydrogen
bonding is larger than that of most other NCIs, and hydrogen bonding combines
electrostatic, polarization, exchange-repulsion, charge transfer, and even dispersion.
Detailed energy decomposition analyses have shown that every interaction between
two molecular systems involves a combination of multiple interactions that makes
the interaction strong enough to maintain the stability of the molecular structures
[5]. Although the magnitude of each NCI (i.e., several kilocalories) is much smaller
than that of covalent bond interactions (i.e., hundreds of kilocalories), a dramatic
effect may be observed in ligand binding, transition states, and biological systems
[5]. Some special types of dispersion interactions, such as C-H···π, N-H···π, and
halogen bonding, usually must be investigated individually [7, 8]. The significance
of certain NCIs in biological systems remains largely uninvestigated [2, 7, 9]. These
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reports indicate that NCIs are intrinsically complicated and difficult to calculate with
high accuracy. Some types of NCIs formulism are still unclear, for instance, the
hydrophobic interaction.

Quantum chemical methods have become an indispensable tool for studying
molecular systems. Density functional theory (DFT) methods are the most popular
quantum chemical methods because of their efficiency and satisfactory perfor-
mance. However, DFT methods are deficient with respect to the calculation of NCIs.
Recently, there has been a significant effort to incorporate dispersion interactions in
DFTmethods, and great progress has beenmade [10–16]. However, further improve-
ment in accuracy for NCI calculations is desirable. Regarding the forms of the disper-
sion corrections, in general, there are three types of NCI-corrected DFT methods.
The parameterized NCI correction methods are standard hybrid DFT functionals
with parameters optimized using training sets of benchmark interaction energies,
such as M05-2X and M06-2X [13]. In these methods, adjustable parameters have
been fit to a “training set” of molecules. The accuracy of such parameterizedmethods
usually depends on the benchmark databases; for this reason, the accuracy of these
methods may not be reliable for molecules that are not in the benchmark database.
Dispersion correction methods, for example, the DFT-D series, are flexible because
the dispersion term can be added to anyDFTmethod. Thus, the addition of dispersion
correction terms can generally improve the DFT calculation of NCIs [15]. However,
dispersion interactions comprise only a fraction of the total NCIs. The long-range
corrected hybrid density functionals, such as theωB97 series [14, 16], can be included
to improve the performance when calculating NCI systems. However, these methods
can only partly solve the accuracy of long-distance interactions. Although the results
obtainedwith these corrected functionals are usually improved formost applications,
there is no systematic way of improving them, and high accuracy by low levels of
theory or for large molecules (i.e., >100 atoms) is difficult to achieve.

Machine learning, the most active branch of artificial intelligence (AI), has been
implemented to process large data sets in many fields. Last year, AlphaGo defeated
human was a milestone competition of deep learning, which was a vision of much
wider applications with machine learning methods in the near future [17]. In 2003,
we applied artificial intelligence neural networks to improve the accuracy of DFT
calculations for the first time [18]. Later, similar approaches were adopted for other
databases, where machine learning did the correction works [19–21]. In our work,
neural networkswere used to correct the errors associatedwithB3LYP/6-311+G(d,p)
calculations for the heats of formation (�H θ

f ) of 180 organic molecules. The RMSE
of the calculated�H θ

f was dramatically reduced from 21 to ~3 kcal/mol [18]. There-
after, this strategy has been used to solve different types of accuracy problems for
quantum chemical calculations, including absorption energies and Gibbs free energy
[22–32]. In practical applications, the incorporation of quantum chemical methods
and machine learning methods can be called a “GOLDEN” combination because
the advantages of both methods can be fully utilized; for example, machine learning
methods can use the essential information captured by quantum chemical methods
to reduce calculation errors caused by inherent approximations in the level of theory
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and limited basis sets. The essential feature of such a combination is to take the calcu-
lated properties of interest obtained by quantum chemical methods as the primary
descriptor. Because the calculated values include all of the essential information of
the property of interest, the systematic and random errors from various aspects of
the calculations are easy to reduce. Thus, the accuracy of the quantum chemical
calculations can be markedly improved, which enables low-level quantum chemical
calculations to be performed with higher accuracy. Moreover, the use of machine
learning methods is likely to uncover important factors that may affect the accu-
racy of the target properties. Therefore, this approach revealed a new strategy for
developing a correction term(s) for quantum chemical methods.

To improve the accuracy of DFT calculations for NCIs and investigate the factors
that affect weak interactions, herein we propose a new correction for DFT NCI
calculations through a combination of DFT and machine learning methods. In the
following, the complex correctionmodel is described according to the steps of model
establishment. The model includes DFT calculations for the benchmark databases
and the development of a stepwise machine learning correction model: data division,
descriptor selection, regression, and validation.Detailed discussions of the correction
model and concluding remarks are presented following description of the method.

10.2 Methods and Materials

In recent years, a variety ofmeans, dispersion corrections, long-range corrections, and
new parameterizations have been developed for DFT functionals to obtain reasonable
descriptions ofNCIs [13–17]. In this study,we propose a new simple form for theNCI
correction for DFT methods. Specifically, a machine learning correction term can be
used with many DFT functionals. This NCI correction is based on DFT calculations
and a machine learning correction expressed as (1):

EDFT-ML
nci = EDFT

nci + ECorr
nci (1)

EDFT-ML
nci is the NCI after machine learning correction, EDFT

nci is the NCI calculated
by the DFT methods, and ECorr

nci is the correction that is improved by the machine
learning method. With this approach, the correction is obtained by machine learning
methods on the basis of the DFT calculations. This approach is an empirical method
and the prediction model is established using DFT-calculated NCIs as the primary
descriptor; thus it is more efficient and more applicable than those that directly
improve the DFT functionals. Plus, it also possesses good flexibility. Indeed, the
trained correction term can be applied with most quantum chemical calculations.
With the obtained molecular descriptors, the accuracy of the corresponding quantum
chemical calculations can be improved to higher-level first-principles calculations.
Moreover, its computational cost is very low and improvements in accuracy for low
levels of theory are very likely because of the machine learning model capabilities.
Furthermore, the accuracy of the descriptor is not important for the machine learning
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calculations. The calculated descriptors are only required to reflect the qualitative
trend of certain properties, which is easily achieved with quantum chemical methods
with minimal basis sets. Therefore, small basis sets are sufficient for describing
molecular systems, and the correctionmodel can be readily applied to awide range of
molecules and variousDFTmethods aswell as other first-principlemethods.Notably,
the method is not restricted to minima molecular geometries such that optimized
structures with negative frequencies are also tolerable. Because this method is based
on DFT calculations, the basic requirement of applications is that a successful DFT
(quantum chemical) calculation must be performed for the molecular descriptor
calculation. To establish a general correction model for DFT methods and to show
the flexibility of the model, we explored various DFT methods using this correction.
A variety of functionals were chosen, including M06-2X, B3LYP, B3LYP-D3, PBE,
PBE-D3, and ωB97XD. We note that the B3LYP and PBE functionals represent the
DFT methods with or without fitting parameters, respectively.

10.2.1 DFT Calculations

DFT calculations were first performed to obtain quantummolecular descriptors. The
benchmark databases of NCIs developed by P. Hobza et al. offer an excellent oppor-
tunity for novel computational techniques to examine NCIs [32–34]. In our calcula-
tions, three typical benchmark databases with equilibrium structures have been used
(i.e., S22, S66, and X40). The three databases include various NCI complexes with
important bonding motifs, H-bonded, dispersion-dominated, mixed, and halogen
bonded complexes. The databases also cover a wide range of sizes and interaction
strengths of NCI complexes. The initial geometries of the database molecules were
taken from published supplementary materials [32–34]. The geometry optimizations
and energy calculationswere performedat the same level of theories. Thedownloaded
structures in the references were not used here because the correction is meant to
make predictions for molecules that are newly discovered or studied.

Regarding reference NCI values, the NCIs obtained by the CCSD(T)/CBS level of
theory is taken as the target or reference experimental values of NCIs for building the
correction models. The reason is that CCSD(T)/CBS is considered the golden stan-
dard of computational methodologies and its associated NCIs are highly accurate. By
this means, two obstacles for a machine learning model can be solved: experimental
NCIs and expansion of the database. Therefore, the correction model can be further
improved by easily addingmoremolecules in the databaseswith accurateNCIs deter-
mined by the CCSD(T)/CBS level of theory. In addition, because the highly accurate
NCIs determined herein by CCSD(T)/CBS are taken as experimental values, they
are not considered calculated values under certain computational conditions any
longer. Accordingly, the DFT calculations in this study are not confined to calcula-
tions in vacuum. We note that adopting gas-phase experimental values as the targets
for solution-phase DFT calculations is not appropriate. Including a solvent model
is like introducing a systematic error to the DFT calculations when comparing with
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gas-phase experimental values. Fortunately, such protocols do not affect the perfor-
mance of the machine learning correction models because the systematic errors can
be easily removed, which is also one of the most important advantages in combining
machine learning methods with quantum chemical calculations. That is, the calcu-
lations expose trends in the properties, which are possibly more important than the
accuracy of the descriptors. The advantage allows us to perform either a gas-phase
or liquid-phase descriptor calculation for an experimental target. In our previous
works, we obtained the same correction accuracy using different input accuracies
[18, 30]. This study also illustrates that input descriptors with different levels of
accuracy were corrected to the same level of accuracy. The DFT methods M06-2X,
ωB97XD, B3LYP, B3LYP-D3, PBE, and PBE-D3 were used to calculate NCIs. For
the M06-2X and ωB97XD methods, solvent effects have been considered using the
conductor-like polarizable continuum model (C-PCM) with two types of solvents
(i.e., water and pentylamine, which, with an epsilon value of 4.2, was chosen to
mimic a protein’s environment). For the M06-2X method, the diffuse basis set effect
was also investigated by comparing the results using the 6-31G* and 6-31+G* basis
sets, which, although relatively small, make the model practical for large complexes.
The M06-2X and ωB97XD calculations were performed using the Gaussian 09
program package [35]. However, this program has not implemented the 6-31G* and
6-31+G* basis sets for Bromine (Br) or Iodine (I). Thus, the polarization ECP basis
set LANL2DZDP, which can be used for most metallic elements, was used for these
atoms. B3LYP, B3LYP-D3, PBE, and PBE-D3 calculations with the pure basis set
6-31G* were performed using the ORCA 3.0 quantum chemical program [36].

10.2.2 Machine Learning Correction

The machine learning correction was constructed using a stepwise procedure:
descriptor selections, data division, regression, and validation. The detailed descrip-
tions of each step are presented as follows. All values are normalized to [−1, 1] in
the machine learning correction steps.

10.2.2.1 Data Division

To maintain a balance between the training and test sets, the distance-dependent
algorithm called, SPXY(sample set partitioning based on joint X-Y distance), a Ken-
Stone improved method, is adopted [37]. According to the joint x-y distances in (2),
the training set and test set are partitioned such that the training set is concentrated
in certain ranges or the maximal point is removed from the training set [37].

dxy(p, q) = dx (p, q)

maxp,q∈[1,N ] dx (p, q)
+ dy(p, q)

maxp,q∈[1,N ] dy(p, q)
; p, q ∈ [1, N ] (2)
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10.2.2.2 Partial Least Square (PLS) Descriptor Selection

Molecular descriptors represent the essential features of a molecule and can
be considered its fingerprint. In a machine learning model, molecular descrip-
tors can be the inputs of regression methods, and a quantitative structure-
activity/property relationship (QSA/PR) can be established between the inputs and
output (targets/endpoints). Therefore, molecular descriptors markedly affect the
quality of a regressionmodel [38–40]. Usually,molecular descriptors can be obtained
in various ways, including quantum chemical calculations, molecular mechanical
calculations, and structure analyses. In our calculations, we sought to adopt the
correction in quantum chemical programs while keeping the modeling as simple as
possible. For this reason, only descriptors from quantum chemical calculations and
constitutional descriptions of molecular structures were used to construct the model.

Screening of the molecular descriptors is an important step that is intended to
avoid redundancy and noise of the extracted information. In this correction approach,
PLS is used to select the most significant descriptors. PLS is a recently developed
generalization of multiple linear regressions (MLR) and is a multivariate statistical
data analysis method for modeling multiple variables. In addition to being a feature
extraction method, it is also a regression model. This approach has become popular
because it is capable of analyzing large amounts of data that are strongly correlated
with noisy and large dimensional X-variables. It has also been found to be a very
efficient data dimensionality reduction method [41]. Herein, PLS is used to screen
the molecular descriptors; that is, the method selects the most significant descriptors
from all of the available descriptors according to the PLS fitting coefficients.

10.2.2.3 Genetic Algorithm (GA) Descriptor Selection

The idea behind the GA method is to randomly code features to a string of binary
variables (1 for selected features, 0 for unselected features), where the site of each
variable indicates the numbering of each feature. Subsequently, according to the
general GA procedures (reproduction operator, crossover operator, and mutation
operator) [42], the optimal individual can be obtained. At this point, the features
represented by a numerical value of 1 in the optimal individual are selected. The
fitness function the procedure can be expressed by the predictive residual sum of
squares, PRESS. Here, the PRESS is calculated by doing a leave-one-out cross-
validation in the training set. In the modeling for NCIs by SVM, the input descriptors
were determined by majority votes of genetic algorithm (GA). For each dataset, GA
was run ten times, then descriptors with survival times equal or more than that of
the primary descriptor (the DFT-calculated NCIs), are chosen as inputs of SVM
regression models. So descriptors used in the SVM regression, not as GRNN, are
varied from datasets.
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10.2.2.4 GRNN Regression Modeling

The general regression neural network (GRNN) proposed by Donald F. Specht in
1991 [43] is a nonlinear regression method that is able to process data with high
mapping capability within a flexible network. Notably, the GRNN method is robust
when performing these calculations. The GRNN method shows a high learning rate
and is asymptotic for themajority of samples.Moreover, its prediction is independent
of the number of samples (i.e., themethod is suitable for the regression of even a small
number of samples). Compared with other machine learning methods, including
genetic algorithm (GA), support vector machine (SVM), and backpropagation neural
networks (BPNN), GRNN can better reduce the training time while guaranteeing the
quality of the regression model. The GRNN structure consists of four layers: input,
pattern, summation, and output layer (Fig. 10.1). The outputs are obtained by (3–5).

pi = exp

[
− (X − Xi )

T (X − Xi )

2σ 2

]
, i = 1, 2, . . . , n (3)

X = [x1, x2, . . . , xn]
T (4)

y = SN
SD

, SD =
n∑

i=1

pi , SN =
n∑

i=1

yi pi (5)

where xn is the neuron of the input layer, pi is the neuron of the pattern layer such that
the number of the pattern neuron is identical to the number of input samples, X is the
transposed matrices of input neurons, Xi is the input neuron corresponding to the ith
pattern neuron andσ is the smoothing factor that determines the shape of the function.
Each pattern neuron corresponds to a training sample, and the Gaussian function is
treated as the activation of the kernel function, which enhances the learning rate.

Fig. 10.1 The structure of GRNN
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SD and SN are the summation of the pattern neurons, y is the output and yi is the
experimental value of the training set.

To obtain a reliable and stable model, K-fold cross-validation is employed when
training the network. In this approach, there are N samples in the training set, which
are evenly divided into K groups. K−1 groups are chosen as the training samples
and the remaining sample is assigned as the validation sample. The network loops
K times and the results of each cycle are compared. The best prediction accuracy
of the input data sets is then selected to generate the GRNN model. The descriptor
selection and regression modeling are fulfilled within the training set.

10.2.2.5 SVM Regression Modeling

Support vector machine (SVM) was proposed by Vapnik in 1995, which can be used
for pattern classifications and nonlinear regressions [44]. It can deal with nonlinear
and high-dimensional problems for small databases. Usually, nonlinear problems are
difficult to solve. Samples may bemapped to high-dimensional space to be converted
to linear problems, but it may cause high-dimensional problems. Whereas, kernel
functions can directly transfer features from low to high dimensions, which could
avoid complex calculations in the high-dimensional space. SVM also can overcome
the local minima problem that often occurs in neural networks. Nowadays, SVM has
become one of the most popular classifications and regression methods due to its
outperformance.

The fitting function used is

f (x) =
n∑

i=1

αi yi K (x, xi )+β0, (6)

where K (x, xi ) is a kernel function. αi is restricted to 0 ≤ αi ≤ C and can be
estimated by maximizing a Lagrangian. C is the cost parameter that determines the
amount of regularization.

In this study, we use the radial basis function (RBF)

K (x, xi ) = exp(−γ ‖x − xi‖2) (7)

as a kernel function, where γ and C are obtained from a grid search for the highest
cross-validation accuracy.

10.2.2.6 Model Validation

To validate our models, we calculated validation parameters for our correctionmodel
according to the principles of theOrganization for Economic Cooperation andDevel-
opment (OECD) [45]. These parameters are the correlation coefficient R, predictive
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squared correlation coefficient q2 and q2cv obtained from cross-validation, mean abso-
lute error (MAE) and root mean square error (RMSE), which represent the goodness-
of-fit, robustness and predictive behavior of the model, respectively [46]. Generally,
the fitting power in terms of q2 is larger than the stability power in terms of q2cv
(values of q2cv and q2 larger than 0.5 are valid.). If q2 − q2

cv > 0.3, then this may
indicate that the established model is over-fit [47]. All of these parameters have been
calculated to evaluate the correction models.

10.3 Results and Discussions

10.3.1 Databases

In our correction model, the NCIs of the benchmark databases S22, S66, and X40 are
examined. There are 125 different molecules in the benchmark databases. Of these,
121molecular dimerswere used in this study,whereas fourmoleculeswere discarded
because of failures to optimize them with the chosen DFT methods. The molecules
in the databases are classified into four types according to the dominant NCIs that are
present: dispersion, hydrogen bonding, mixed complexes, and halogen interactions.
Various important NCI interaction motifs are included [32–34]. The numbers of NCI
molecules in each class used in the correction model andmean values of the NCIs are
listed in Table 10.1. Clearly, the mean NCIs of the H-bonded complexes are much
lower than the other three types, which show the enhanced stability of H-bonded
complexes relative to the other NCI-dominated molecular systems.

10.3.2 NCI Calculations with DFT Methods

The geometries of molecules are important for the calculation of accurate DFT inter-
action energies. Therefore, the optimized structural profiles are kept identical to those
found in the benchmark databases. In the X40 database for the molecules HX-MeOH
(X = Cl, Br and I), the DFT methods overestimate the interaction between H and
C on MeOH or underestimate the interaction between H and X. Accordingly, the
optimized structures of these molecules cannot be obtained without constraints, and

Table 10.1 The mean values
(kcal/mol) of CCSD(T)/CBS
benchmark interactions and
the number of four
NCI-dominated molecular
complexes

Types Number Mean

H-bonded complexes 29 −10.33

Dispersion complexes 30 −3.94

Mixed complexes 26 −3.70

Halogen complexes 36 −3.43
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thus, these molecules were omitted from our study. The NCI energy is calculated by
Enci = EAB−(EA+EB). BecauseNCI systems bound viaweak interactions between
the fragments are not as stable as covalently bonded systems, the global minimum
sits in a shallow potential energywell. From our calculations, it is observed that when
hydrogen bonds dominant the optimized structure, minor changes in the hydrogen
bonds, such as a length or angle, lead to a change in the structure from a stable
minimum to a saddle point structure with at least one negative frequency. Thus, it is
challenging to locate the stationary point of some structures, and negative frequencies
exist for some molecules. However, this outcome does not affect the results of the
correction model when using machine learning methods to perform the correction
(i.e., the correct physics is necessary rather than the accuracy of the descriptors).
The overall results are shown in Table 10.2. To simplify the expression, the DFT

Table 10.2 The validation parameters of DFT and GRNN correction models (RMSE and MAE
units: kcal/mol)

RMSE MAE DFT GRNN

DFT GRNN DFT GRNN q2 R q2 q2cv R

M062X/6-31G*(vac)

(DFT1)
1.66 0.50 1.34 0.35 0.87 0.98 0.98 0.95 0.99

M062X/6-31G*a

(DFT2)
1.79 0.52 1.13 0.37 0.85 0.93 0.98 0.92 0.99

M062X/6-31G*b

(DFT3)
1.43 0.46 1.00 0.34 0.90 0.96 0.98 0.93 0.99

M062X/6-31 + G*a

(DFT4)
2.59 0.54 1.45 0.33 0.68 0.89 0.98 0.96 0.99

ωB97XD/6-31G*(vac)

(DFT5)
1.77 0.47 1.55 0.35 0.85 0.98 0.98 0.96 0.99

ωB97XD/6-31G*a

(DFT6)
1.74 0.54 1.22 0.38 0.86 0.93 0.98 0.93 0.99

ωB97XD/6-31G*b

(DFT7)
1.46 0.46 1.17 0.34 0.90 0.95 0.98 0.94 0.99

B3LYP/6-31G*a

(DFT8)
3.98 0.62 3.01 0.46 0.25 0.80 0.97 0.92 0.98

B3LYP-D3/6-31G*a

(DFT9)
1.89 0.56 1.18 0.40 0.83 0.93 0.98 0.92 0.99

PBE/6-31G*a

(DFT10)
3.15 0.62 2.33 0.46 0.53 0.83 0.97 0.92 0.98

PBE-D3/6-31G*a

(DFT11)
1.96 0.59 1.33 0.45 0.82 0.91 0.97 0.92 0.98

The best results in relevant calculations are highlighted in bold
vacThe calculations are performed in vacuum
aThe solvent is set as water (ε = 78.35)
bThe solvent is set as pentylamine (ε = 4.20), which possess a similar dielectric constant as the
protein environment (ε ~ 4.0)



194 W. Li et al.

methods are named from DFT1 to DFT11 in Tables 10.2, 10.3 and 10.4. These
results show that with respect to the benchmark NCIs by the CCSD(T)/CBS level of
theory, the RMSE values of most DFT methods with functional corrections are less
than 2 kcal/mol, which is apparently better than the methods in which dispersion
corrections are not incorporated into the functionals (i.e., DFT8 and DFT10), where
the RMSE values are larger than 3 kcal/mol. The RMSE values of different types
of functional corrections (i.e., DFT1-7, DFT9, and DFT11) are similar. It should be
noted that the MAEs and RMSEs of the liquid phase calculations probably include
systematic errors induced by comparing solvent models with experimental gas-phase
values.

10.3.2.1 Diffuse Basis Function

We note that DFT4 performs worse than DFT1–3, even though it uses a slightly
larger basis set. In contrast to 6-31G*, the diffuse function present in 6-31+G* is
intended to improve the calculation of NCIs. Diffuse functions play an important
role in NCI calculations because they account for the distant electronic density of
an atom. However, in this calculation, the diffuse function instead shows negative
effects without any advantages. Indeed, the RMSE of DFT4 is 2.59 kcal/mol, which
is 0.8 kcal/mol larger than that of DFT2. To clarify the role of the basic functions,
ωB97XD/6-31+G* was also performed for both the S22 and S66 databases; notably,
similar results were obtained, with RMSEs for M06-2X/6-31+G* and ωB97XD/6-
31+G* of 2.86 and 2.91 kcal/mol, respectively. These results indicate that the use
of one diffuse function does not benefit the calculation of NCIs for this basis set in
solvent. Because themeans of the correction for these twoDFTmethods are different,
the reason for this basis set effect remains unclear. Further studies on basis set effects
are ongoing.

10.3.2.2 Solvation Effects

Because NCIs usually occur in aqueous biological systems, our calculations were
mainly performed with a description of a solvent. Two solvent environments were
considered: water and protein. The protein environment (with a dielectric constant
ε of ~4.0) [48] is mimicked by pentylamine (ε = 4.2). In vacuum, DFT1 and DFT5
provide good results. In solvent, the results show that the NCI values are more
accurate in the protein environment than in water. As shown in Table 10.2, the NCIs
calculated by DFT3 and DFT7 possess the smallest RMSEs (<1.5 kcal/mol) among
all of the DFT methods examined. This result indicates that solvent effects play a
crucial role in NCI systems and the choice of solvent may impact the accuracy of the
calculations. Our calculations demonstrate that an environment that accounts for the
protein is recommended for NCI calculations in the corresponding level of theory,
and the proper choice of a dielectric value can improve the accuracy of the DFT
calculations [49].
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Table 10.4 The RMSE (kcal/mol) of benchmark databases by DFT methods with respect to
CCSD(T)/CBS benchmark interactions

Methods RMSE

S22
(DFT)

S22
(GRNN)

S66
(DFT)

S66
(GRNN)

X40
(DFT)

X40
(GRNN)

M062X/6-31G*(vac)

(DFT1)
1.41 0.57 1.84 0.48 1.85 0.52

M062X/6-31G*a

(DFT2)
2.55 0.58 1.67 0.48 1.31 0.52

M062X/6-31G*b

(DFT3)
1.82 0.42 1.37 0.45 1.22 0.49

M062X/6-31 + G*a

(DFT4)
3.99 0.83 2.45 0.43 1.33 0.47

ωB97XD/6-31G*(vac)

(DFT5)
1.68 0.30 1.46 0.43 1.71 0.53

ωB97XD/6-31G*a

(DFT6)
2.36 0.60 1.70 0.50 1.25 0.55

ωB97XD/6-31G*b

(DFT7)
1.56 0.28 1.46 0.43 1.35 0.56

B3LYP/6-31G*a

(DFT8)
5.97 0.47 3.90 0.63 2.04 0.65

B3LYP-D3/6-31G*a

(DFT9)
2.78 0.41 1.79 0.59 1.24 0.57

PBE/6-31G*a

(DFT10)
4.66 0.57 3.07 0.67 1.80 0.56

PBE-D3/6-31G*a

(DFT11)
2.68 0.45 1.79 0.61 1.66 0.60

The best results in relevant calculations are highlighted in bold
vacThe calculations are performed in vacuum
aThe solvent is set as water (ε = 78.35)
bThe solvent is set as pentylamine (ε = 4.20), which possess a similar dielectric constant as the
protein environment (ε ~ 4.0)

10.3.2.3 Dominant Interactions in the Complexes

The mean values of the NCI references, the DFT calculations, and the RMSE and
MAE of the NCIs for four types of complexes calculated by various DFT methods
are listed in Table 10.3. A comparison of the mean NCI values of the four types
of dominant interaction complexes indicates that the mean NCI values of hydrogen
bonding complexes are larger than the other three types of complexes because of
its strong hydrogen bonding interaction, which provides greater stabilization to the
complexes than the other NCIs. In the gas-phase calculations (i.e., DFT1 and DFT5),
all of the average interactions are larger than the reference values, which indicate
that all of the interactions are overestimated. In the solvent phase, screening effects
in water are very strong, and thus the results underestimate the hydrogen-bonded
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and dispersion complexes. However, when the dielectric constant is decreased to 4.2
(i.e., the protein environment), the DFT calculations are clearly improved, with the
best results obtained with DFT3 and DFT7. In the solvent phase, the NCIs of the
hydrogen-bonded complexes are all underestimated by the DFT methods. The best
estimate for the H-bonded complexes is obtained by DFT7 (i.e., ωB97XD/6-31G*
with a protein environment). Except for the H-bonded complexes, estimates of the
NCIs do not follow a consistent trend. The best results are obtained by DFT3 (i.e.,
M062X/6-31G* with a protein environment) for dispersion and halogen interactions
and DFT2 (i.e., M062X/6-31G* with water) for mixed complexes. Comparing DFT
methods with dispersion corrections, most of the RMSEs for the entire dataset fall
between 20 and 50% of the mean NCI values. Without the dispersion correction,
DFT8 (i.e., B3LYP/6-31G* with water) and DFT10 (i.e., PBE/6-31G* with water)
do not give reasonable results, although the latter method is better than the former
for the four types of complexes.

10.3.2.4 Molecules in the Benchmark Databases

The RMSEs of the DFT methods and the GRNN corrections for the databases are
listed in Table 10.4. The RMSEs of the best DFT calculations for S22, S66, and X40
are 1.56 kcal/mol by DFT7 and 1.37 and 1.22 kcal/mol by DFT3 (highlighted in
bold), respectively. These results indicate the best performance of the DFT methods
for the three databases are achieved by DFT3 and DFT7. Comparing these results
in terms of solvent, a protein environment is more appropriate for estimating NCIs
and yields better results in the corresponding level of theory. Based on the overall
performance, we suggest that DFT3 andDFT7 are suitable for economic calculations
for medium- and large-size systems.

10.3.3 GRNN Correction Model

10.3.3.1 Descriptor Analyses

With the SPXYmethod, the entire database was divided into a training set (consisting
of 91 molecules) and a test set (consisting of 30 molecules). Because the trends of
various DFT-calculated NCIs are similar in terms of their correlation coefficients,
we performed screening for only descriptors obtained by theM06-2Xmethod. In the
M06-2X calculations, the effects of both the basis set and solvents are considered.
In total, there are 43 descriptors extracted from the quantum chemical calculations
and constitutional descriptors, which are listed in Appendix Table 10.6.

From the DFT calculations and structural analyses, of the 43 molecular descrip-
tors, 25 are quantum chemical descriptors, whereas the remaining are molecular
structural descriptors, such as the number of atoms and the number of valence elec-
trons. The results from the molecular descriptor screening using the PLS method are
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shown in Fig. 10.2 and Table 10.6 of the Appendix. In the PLS screening, the top
10 descriptors in terms of the PLS coefficients were chosen for further regression
modeling. After optimizing the neural network, the optimal network consisted of
four input descriptors.

In Fig. 10.2, the red columns are the selected descriptors. For M06-2X/6-31G*
either in water or the protein environment, DFT-calculated NCIs (DFT1-2), the
number of valence electrons (Nve), dipole moments (D), and the energy of the
second lower unoccupied molecular orbital (ELUMO+1) are selected. For M06-2X/6-
31+G* with water, four selected descriptors for regression calculations are shown in
Fig. 10.2c (DFT3, Nve, ESE, Arrangement). However, two selected descriptors (i.e.,
the arrangement ofmonomers (Arrangement) and the electronic spatial extent (ESE))
are different from those used for the M06-2X/6-31G* methods. This difference may
be ascribed to numerical differences of the descriptors from different basis set calcu-
lations. Thus, for M06-2X/6-31G* with different solvents, the selected descriptors
are identical. Because the same basis set gives similar accuracy, the same selected
descriptors for two basis sets with other DFT methods are adopted for the regression
model.

The coefficients of the primary descriptor, DFT1-3, are much larger than the other
selected descriptors (Fig. 10.2). The other descriptors show a similar significance
and are used to amend the offset of the DFT NCI values. Nve was selected by both
basis set calculations, which may indicate that the nature of the NCIs is mainly
electronic. Dipole-dipole interactions are very important for NCIs [50, 51] which
may affect charge transfer, electron transition, and excited-state properties. Thus,
there is little doubt that dipoles are also important for NCIs. The arrangement of the
monomers in the NCI systems can influence the size of the interaction area between
the monomers. Therefore, Arrangement is closely related to the magnitude of the
interactions. The ELUMO+1reflects the electronic properties of bonding, and ESE is
the electron density distribution that indicates the molecular interaction space. The
NCIs and the electron density of the frontier molecular orbitals of representative
molecules from four types of complexes are plotted in Fig. 10.3. Although there is
no loss or gain in the NCIs, the electron density of eachmonomer changes because of
the interaction between monomers. However, from the frontier orbital distributions
and the NCI plots [52, 53] we cannot determine how the LUMO+1 contributes to
the dominant interactions. Thus, this result may be a numerical coincidence because
the values of the PLS coefficients are quite close to each other (<0.2) for all of the
descriptors except for the DFT NCI values. In total, there are two constitutional and
four quantum chemical descriptors in the selected descriptors. It is not surprising
that quantum chemical descriptors are more favorable than constituent descriptors
because they possess more detailed information of the target property.

10.3.3.2 GRNN Correction

ForGRNN, the network structure and connectionweights between neurons are deter-
mined if the study samples are assigned. In the GRNN modeling, there is only one
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Fig. 10.2 PLS coefficients for all molecular descriptors. The red columns are the selected
descriptors from the calculations a M06-2X/6-31G*(water) b M06-2X/6-31G*(pentylamine)
c M06-2X/6-31+G*(water) for the GRNN correction model, respectively
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Fig. 10.3 The NCI plots and electron density of the frontier molecular orbitals (Carbon: grey,
Nitrogen: blue, Oxygen: red, Hydrogen: white, Chlorine: yellow)

parameter that requires optimization: the smoothing factor, σ . The regression value
of σ determines the generalizability of the network; when σ approaches zero, the
output becomes very similar to the objective value, although the predictive ability
might be poor. In practice, network training is the process of optimizing the smoothing
parameter. It is necessary to select reasonable smoothing parameters. Smaller smooth
parameters (σ ) give rise to stronger network approximation processes. Similarly,
higher values of the smoothing parameter result in a smoother network approxima-
tion process but will increase the validation error. In this study, we used a loop test to
determine the smoothing parameter. During training, the range of σ values was set
as [0.1, 2] with a step size of 0.1. The optimal GRNN model was constructed using
the σ value with the smallest validation errors. Through training, the best smoothing
parameters (σ ) were obtained for the 6-31G* (0.2) and 6-31+G* (0.1) basis sets.
Notably, σ is insensitive to the DFTmethod but appears to be influenced by the basis
sets that are employed. Although a GRNNmodel was trained for each DFT method,
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only two σ values (i.e., 0.2 and 0.1) were obtained for the 6-31G* and 6-31+G* basis
sets.

By GRNN regression, the functional form of the correction can be expressed as:

EDFT−GRNN
nci =

∑n
i=1 yi exp

[
− (X−Xi )

T (X−Xi )

2σ 2

]
∑n

i=1 exp
[
− (X−Xi )T (X−Xi )

2σ 2

] (6)

As shown in the GRNN method section, yi denotes the benchmark NCI of the
training set, X is the transposed matrices of input neurons (four selected descriptors)
and Xi is the input neuron corresponding to the ith pattern neuron, all of which are
known inputs. Thus, in the correction model, there is an empirical parameter σ (0.2
and 0.1 for the 6-31G* and 6-31+G* basis sets, respectively) that is determined
when the regression model is constructed. This correction term is easy to implement
in quantum chemical programs, where it can be added as a subroutine after the
quantum chemical calculations. Thus, using a low-cost DFT calculation to obtain
molecular descriptors, NCIs by higher levels of theory can be achieved. Further, this
approach could be applicable to a wider range of molecular systems than could be
determined directly using higher levels of theory. The proposed correction model
was generated in Matlab R2014b [54] with the GRNN code [55].

The correction is obtainedwith this regressionmodel. The overall corrected results
presented in Table 10.2 show that the correction model improved all of the DFT
results, irrespective of whether an inherent NCI correction was already present in the
DFT functional. The GRNN correction RMSEs relative to the CCSD(T)/CBS bench-
mark NCIs were reduced from 1.43–3.98 kcal/mol to 0.46–0.62 kcal/mol, and the
MAEs decreased from 1.00–3.01 kcal/mol to 0.33–0.46 kcal/mol. The best correc-
tion results were achieved by combinations of GRNN with both DFT3 and DFT7,
which are based on the best DFT results. The correction for the methods without NCI
corrections was significant; indeed, the RMSEs of DFT8 and DFT10 were reduced
to 0.62 from 3.98 and 3.15 kcal/mol, respectively. All of the evaluation parameters
of the GRNN model are larger than 0.92 (Table 10.2), indicating that the GRNN
correction model is robust and possesses good predictability in terms of the princi-
ples outlined by the OECD. As shown in Table 10.3, for the different types of NCI-
dominated complexes, theGRNNcorrection remarkably reduces the errors in various
NCI systems. The best performance for each type of complex was 0.34 kcal/mol for
H-bonded, 0.42 kcal/mol for dispersion, 0.40 kcal/mol for mixed, and 0.47 kcal/mol
for halogen complexes. Regarding the databases, theGRNNcorrection also performs
well and is very stable (Table 10.4). The best performance for S22 (0.28) and S66
(0.43) on the basis of DFT7(ωB97XD/6-31G*) was similar to the results calculated
with spin-component scaled MP2 SCS-MI-MP2/cc-PVTZ S22 (0.26 kcal/mol) and
S66 (0.38 kcal/mol) reported in [6], whereas the DFT methods used in this study
required significantly less computational time than the MP2 methods.

The NCI results before and after the GRNN correction are plotted in Figs. 10.4,
10.5, 10.6, and 10.7 and Tables S2–12 of the Supplementary Information for M06-
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Fig. 10.4 NCIs calculated byDFTM06-2X (left) andDFT-GRNN (right) versus benchmark values.
The inserts are the deviation (calculated-benchmark) distribution relative to the benchmark values
in each calculation (training set: red; test set: blue)
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Fig. 10.5 NCIs calculated byDFTωB97XDandDFT-GRNNversus benchmark values. The inserts
are the deviation distribution relative to the benchmark values in each calculation (training set: red;
test set: blue)

2X, ωB97XD, B3LYP, B3LYP-D3, PBE, and PBE-D3, respectively. These figures
show the calculations by DFT and the GRNN correction versus the CCSD(T)/CBS
benchmarkNCI values. Clearly, all of theNCI values are improved andmove towards
the CCSD(T)/CBS results after the GRNN correction is applied. All of the deviations
(NCIDFT − NCIGRNN) of the DFT (1–11) calculations are reduced, and the range of
error distributions is narrowed from [−3, 13] to [−2, 2] kcal/mol. The systematic
errors are eliminated, and most of the values are close to zero. Moreover, the results
with the correction included have no serious outliers, and the accuracy of the absolute
values of most data is within chemical accuracy. As shown in the left panels of
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Fig. 10.6 NCIs calculated by DFTB3LYP, B3LYP-D3, and DFT-GRNN versus benchmark values.
The inserts are the deviation distribution relative to the benchmark values in each calculation
(training set: red; test set: blue)

Figs. 10.6 and 10.7, the improvement of the DFT NCI calculations by adding the
dispersion correction demonstrates the significance of the dispersion correction term
in DFT functionals. After adding the dispersion (D3) correction, the errors of B3LYP
and PBE are decreased and their accuracy is similar to that of other dispersion
corrected DFTmethods. The results after the GRNN correction is applied are similar,
indicating that GRNNs are capable of correcting the results of DFT methods with
no inherent NCI correction.

10.3.3.3 SVM Modeling

To investigate if the correction accuracy is limited to GRNN model, a SVM correc-
tion model is built up with various numbers and types of descriptors for gas-phase
datasets. The results are shown in Table 10.5. It’s been seen that the DFT results are
also improved to chemical accuracy (RMSE:0.34 ~ 0.59 kcal/mol) by SVM correc-
tion. And some results are even better than GRNN correction. This demonstrates
that machine learning is a valid means to perform NCI correction. However, the
results given by differentmachine learningmethods are various, the proper regression
algorithm selection may improve regression results.
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Fig. 10.7 NCIs calculated by DFT PBE, PBE-D3and DFT-GRNN versus benchmark values. The
inserts are the deviation distribution relative to the benchmark values in each calculation (training
set: red; test set: blue)

Table 10.5 SVM correction results for datasets in vacuum

RMSE MAE DFT SVM

DFT SVM DFT SVM q2 R q2 q2cv R

M062X/6-31G* 1.66 0.34 1.34 0.23 0.87 0.98 0.99 0.98 0.99

M062X/6-31 + G* 1.07 0.36 0.80 0.18 0.95 0.98 0.99 0.99 0.99

B3LYP/6-31G* 1.96 0.59 1.57 0.39 0.82 0.94 0.97 0.93 0.99

B3LYP-D3/6-31G* 2.34 0.39 2.05 0.24 0.74 0.99 0.99 0.97 0.99

PBE/6-31G* 1.96 0.58 1.52 0.39 0.82 0.95 0.96 0.96 0.99

PBE-D3/6-31G* 2.64 0.37 2.19 0.24 0.67 0.98 0.98 0.97 0.99

ωB97XD/6-31G* 1.77 0.39 1.55 0.26 0.85 0.98 0.99 0.97 0.99

The best results in relevant calculations are highlighted in bold

10.4 Conclusions

Machine learning corrections are explored for DFT calculations. A general NCI
correction constructed by GRNN for DFT methods is proposed. NCI calculations
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have been a serious problem for DFT methods. Recent developments have improved
these methods, although NCI calculations with DFT methods with small basis sets
continue to possess large deviations. In this present work, GRNN and SVM correc-
tion for DFT NCI calculations were applied to various DFTmethods with or without
inherent NCI corrections in the functional. The results show that with this new
correction, all of the RMSEs of the tested DFT methods can be improved to chem-
ical accuracy (i.e., 0.3–0.6 kcal/mol). Because the approach combines the strengths
of both DFT and machine learning methods, it simultaneously achieves both effi-
ciency and accuracy at a very low cost. The best accuracy obtained by GRNN based
on ωB97XD/6-31G* is comparable with previous SCS-MI-MP2/cc-PVTZ calcula-
tions. It is noticed that the performances of different machine learning methods are
varied, so they should be chosen properly. In summary, the great advantages of this
method are the following: (1) the efficiency and accuracy of the method is high,
and it can be applied to large molecules with accuracy comparable to higher levels
of theory; (2) the correction model does not strictly require accurate descriptors as
inputs, provided that they correlate with properties in certain trends; and (3) in the
GRNN correction, there is only one parameter that must be fit, and the obtained
model is easy to implement in quantum chemical programs. Using the NCIs calcu-
lated by the CCSD(T)/CBS method as the target or reference experimental values
for the correction model not only avoids the difficulty of finding experimental NCIs
but also sets the stage for further improvements to the correction model by adding
more molecules to the database using the results from CCSD(T)/CBS calculations.
Moreover, the proposed state-of-the-art correction can be an alternative means for
extending DFT methods to large systems with comparably high accuracy. Further-
more, we believe that this approach can also improve the accuracy of NCIs for other
first-principle methods.

Acknowledgements The authors gratefully acknowledge financial support from NSFC
(21473025).

Appendix

See Table 10.6.
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Table 10.6 The full list of the molecular descriptors

No. Symbols Descriptors PLS coefficients

DFT1 DFT2 DFT3

Quantum chemical descriptors (QD)

1 NCI The noncovalent interactions calculated by DFT 0.88 0.83 0.66

2 Freq The first vibrational frequency 0.03 0.01 −0.06

3 Ed The energy of molecular dimmers −0.02 −0.03 −0.02

4 Ea The energy of A moleculea −0.05 −0.06 −0.03

5 Eb The energy of B moleculea 0.05 0.05 0.01

6 PD The polarizability of molecular dimmers 0.02 0.01 0.01

7 ZPE Zero point energy 0.07 0.06 0.06

8 EHOMO-1 The energy of HOMO-1b −0.08 −0.02 −0.02

9 EHOMO The energy of HOMOc 0.02 0.02 −0.02

10 ELUMO The energy of LUMOd −0.03 −0.04 −0.08

11 ELUMO+1 The energy of LUMO+1e 0.12 0.08 0.06

12 gHL EHOMO−ELUMO 0.03 0.04 0.02

13 PA The polarizability of A monomer 0.09 0.07 0.05

14 PB The polarizability of B monomer 0.00 −0.01 −0.01

15 Area The area of molecular dimmers −0.03 −0.02 −0.02

16 V The volume of molecular dimmers 0.00 0.00 0.00

17 D The dipole of molecular dimmers 0.11 0.10 0.03

18 QA The total charge of A monomer 0.04 0.02 0.06

19 QB The total charge of B monomer −0.04 0.02 0.06

20 KE Kinetic energy 0.03 0.03 0.03

21 PE Potential energy 0.02 −0.03 0.04

22 EE Electronic energy −0.04 0.01 −0.07

23 NN Interactions among nucleuses −0.05 −0.05 0.00

24 EN Interactions between electronic and nucleuses 0.02 0.01 0.03

25 ESE Electronic spatial extent −0.01 −0.09 −0.14

Constituent descriptors (CD)

26 SP3A The number of sp3 hybridized carbon atoms in
A

−0.02 0.01 0.02

27 SP2A The number of sp2 hybridized carbon atoms in
A

0.07 0.04 0.07

28 SPA The number of sp hybridized carbon atoms in A 0.05 0.09 0.05

29 SP3B The number of sp3 hybridized carbon atoms in
B

0.11 0.09 0.15

30 SP2B The number of sp2 hybridized carbon atoms in
B

0.12 0.08 0.04

31 SPB The number of sp hybridized carbon atoms in B −0.08 −0.09 −0.10

32 SP3/NC The proportion of sp3 hybridized carbon atoms
among all the carbon atoms

0.08 0.08 0.06

33 Arrangement The arrangement of molecular monomers 0.01 0.05 0.19

(continued)
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Table 10.6 (continued)

No. Symbols Descriptors PLS coefficients

DFT1 DFT2 DFT3

34 NC/NA The total number of hybridized carbon
atoms/NA

0.10 0.09 0.14

35 SP+SP2+/NA The proportion of sp and sp2 hybridized carbon
atoms in molecules

0.00 0.01 0.00

36 Ca/Cb The number of A carbon atoms/the number of
B carbon atoms

−0.05 −0.02 −0.01

37 NX The number of halogen elements 0.04 0.03 0.05

38 χ The electronegativity of halogen elements 0.04 0.03 0.04

39 NA The number of atoms 0.02 0.03 0.02

40 Ne The number of total electrons −0.08 −0.07 −0.09

41 Nve The number of valence electrons −0.13 −0.11 −0.12

42 Freedom The molecular degree of freedom 0.03 0.03 0.05

43 Mc The distance between two mass centers −0.05 −0.07 −0.11

aOne of the monomers of molecular dimmer is assigned to A and the other is B
bHOMO-1 is the second-highest occupied molecular orbital
cHOMO is the highest occupied molecule orbital
dLUMO is the lowest unoccupied molecular orbital
eLUMO+1 is the second-lowest unoccupied molecular orbital

References

1. (a) E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen, Yang W:
Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010). (b) A.
Rodríguez, M.J. Romero, A. Fernández, M. López-Torres, D. Vázquez-García, L. Naya, J.M.
Vila, J.J. Fernández,Dinuclear cyclometallated platinum (III) complexes. Relationship between
molecular structure and crystal packing. Polyhedron. 67, 160-170 (2014)

2. L. Yang, C. Adam, G.S. Nichol, S.L. Cockroft, How much do van der waals dispersion forces
contribute to molecular recognition in solution? Nature Chem. 5, 1006–1010 (2013)

3. M.P. Patil, R.B. Sunoj, The role of noninnocent solvent molecules in organocatalyzed
asymmetric michael addition reactions. Chem. Eur. J. 14, 10472–10485 (2008)
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