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ABSTRACT: A multimodal deep learning model, DeepNCI, is
proposed for improving noncovalent interactions (NCIs) calcu-
lated via density functional theory (DFT). DeepNCI is composed
of a three-dimensional convolutional neural network (3D CNN)
for abstracting critical and comprehensive features from 3D
electron density, and a neural network for modeling one-
dimensional quantum chemical properties. By merging features
from two networks, DeepNCI is able to reduce the root-mean-
square error of DFT-calculated NCI from 1.19 kcal/mol to ∼0.2
kcal/mol for a NCI molecular database (>1000 molecules). The
representativeness of the joint features can be visualized by t-distributed stochastic neighbor embedding (t-SNE), where they can
distinguish categorized NCI systems quite well. Therefore, the fused model performs better than its component networks. In
addition, the 3D CNN takes electron density as inputs that are in the same range, despite the size of molecular systems, so it can
promote model applicability and transferability. To clarify the applicability of DeepNCI, an application domain (AD) has been
defined with merged features using the K-nearest-neighbor method. The calculations for external test sets are shown that AD can
properly monitor the reliability for a prediction. The model transferability is tested with a small database of homolysis bond
dissociation energy including only dozens of samples. With NCI database pretrained parameters, the same or better performance
than the reported results is achieved by transfer learning. This suggests that the DeepNCI model is transferable and it may transfer to
other relative tasks, which possibly can resolve some small sampling problems. The source code of DeepNCI can be freely accessed
at https://github.com/wenzelee/DeepNCI.

■ INTRODUCTION
Intermolecular interactions such as protein folding, drug
binding, and nanomaterial self-assembling are frequently
dominated by noncovalent interactions (NCIs).1−5 They
span a wide range of weak interactions, including hydrogen
bonding, dipole−dipole interactions, steric repulsion, and
London dispersion, etc. Experimental measurements of NCIs
are highly demanding,6−8 especially for large molecules
containing abundant NCIs; therefore, effective computational
tools are often resorted to, in particular, high accurate first-
principles methods. Apparently, NCI calculations have more
complexity than covalent bonds, because of its complexity and
diversity. Moreover, intrinsic mechanisms of some NCIs are
still unclarified and explicit formulation descriptions for them
are not yet available. When confronting NCI problems, some
considerations, such as long-range interaction, correlation,
dispersion, and polarization, should be involved in the
functionals of computational methods.9 The nonvariational
method with correlation of the electronic motions, CCSD(T),
has been termed the gold standard of NCI computation.10

However, the main obstacle that obstructs widespread
applications of CCSD(T) in practice, has been the steeply
increasing computational effort > O(N6) with the number of
molecular orbitals N.10−12 In past decades, the density

functional theory (DFT) method has become one of the
most popular first-principles methods in molecular studies,
because of their efficiency and economy. However, they are
deficient on NCI computations. Conventionally, in DFT
methods, parametrization, dispersion correction, or long-range
correction are often adopted in functionals to perform NCI
calculations.13,14 Whereas improving functionals is confined
with the capability of computational methods, massive
improvements cannot be guaranteed and computation is still
costly. A recently emerged alternative, machine learning
correction, can circumvent intractable problems in first-
principles methods, such as effective approximations, limited
basis set, and explicit function forms.15−18 Therein, machine
learning models can dramatically improve calculation accu-
racies to a high level of first-principles (MP2, CCSD, etc.) with
input features by low-level calculations, e.g., DFT or Hartree−
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Fock with small basis sets such as STO-3G and 6-31G*.19−23

Especially in our proposed machine learning correction
model,19 it takes a calculated target value (e.g., DFT-calculated
NCI in this study) by first-principles methods as a primary
descriptor that contains most of the physical essence of the
target, which makes the accuracy improvement for the low-
level calculation easy to attain. The molecular descriptors
obtained by first-principles methods have physical meanings
and are apt to construct high-capacity machine-learning
models with better interpretability. Therefore, cooperating
first-principles calculations with machine-learning algorithms
probably can achieve high accuracy and efficiency simulta-
neously.24−29 Recently, with the rapid development of artificial
intelligence and enormous applications of first-principles
methods, machine learning has started to play a more and
more important role in computational chemistry. However, the
machine learning model performance is heavily dependent on
the quality of input features that are mostly obtained by feature
engineering.30 Nevertheless, feature design and selection are
ambiguous tasks that count on special expertise and means to
find the complete set of significant features.20,21,30 Fortunately,
the deep learning algorithm is determined to be an effective
solution.
In 2012, it was a milestone that Hinton’s group won the

Merck Kaggle challenge (https://www.kaggle.com/c/
MerckActivity) using their deep learning models, which
opened a new chapter of applications using deep learning on
predicting activity and property for chemical compounds.
Deep learning is a representative learning, and its applications
have been soaring in various areas in the past decade.31−39 It
arises with its specialty of transforming the original raw input
features to distributed representation through multilayer
networks. Because of this signal extraction capability, it can
excavate representative features and reveal their internal
association automatically, without human intervention. Thus,
it can make objective decisions based on the abstracted feature
and also avoid the troublesome feature engineering in
traditional machine learning. Nowadays, deep learning has
already exhibited prominence on quantum chemical calcu-
lations. Yao and Parkhill37 used the 3D electron density of
small molecules, rather than 2D molecular fingerprints or
physical chemical properties, as the input feature, and
developed a 3D convolutional neural network model to
predict the Kohn−Sham kinetic energy of hydrocarbons.
Rathi et al. presented a deep graph convolutional neural
network model, trained on electrostatic potential surfaces
derived from high-quality first-principles calculations, that
rapidly generates ESP surfaces for ligands.40 Torng et al.
proposed a graph-convolutional neural network (Graph-CNN)
framework for predicting positive or negative interactions
between targets and ligands.41 Zhou and co-workers employed
a three-dimensional convolution neural network (3D CNN) as
the universal exchange-correlation potential, and the quasi-
local electron density is used as the descriptors.42 It was also
employed to determine the NCI of a helium dimer.42 An
experiment showed the Graph-CNN models with fine
prediction accuracy, outperformed other models, and achieved
comparable performance to 3D CNN protein−ligand scor-
ing.41 Lim recently proposed a novel deep learning approach,
using a graph neural network for predicting noncovalent
interactions between drugs and protein targets.43 They
extracted the graph feature of intermolecular interactions
directly from the 3D structure on the protein−ligand binding

pose to learn key features for accurate predictions of drug−
target interactions. The method is superior to other deep
learning models on the same task.43 Although many deep
neural networks contributed to NCI, they mainly have been
focusing on classification decisions.41,43 The regression work
with deep learning for predicting accurate NCI so far has been
discussed little.
In this study, we explored high accurate NCI regression deep

learning model with multidimensional descriptors. Three
general modeling problems are mainly addressed: universal
molecular representation, high prediction accuracy, and
transferability. (1) To improve the model generalization,
electron density (size-independent) is taken as raw input
features of 3D CNN, which can extract the representative
features from electron density cube. (2) To obtain high
accuracy, a multimodal deep learning architecture named
DeepNCI was established for NCI correction, which fused two
different types of modalities, 3D CNN and a neural network
(NN) model, dealing with electron density cube and chemical
property descriptors, respectively. With multimodality, Deep-
NCI can perform both feature extraction for 3D electron
density cube and descriptor transformation for 1D chemical
properties, thus gave high accurate NCI prediction. (3)
Transferability means extended applications for a model. So
the transferable property has been tested for DeepNCI on a
homolysis bond dissociation energy database. As far as we
know, the multimodal with deep architecture for the NCI
regression has not been reported.

■ MATERIALS AND METHODS
Datasets. When turning to benchmark databases of NCI,

the eminent works by Professor Hobza’s group should be
highly appreciated. In the modeling, the NCI benchmark
databases S66 × 8,44 S22 × 5,45 X40 × 1046 are used. The 1038
molecules in the databases are classified into four categories,
according to the dominant NCIs that are presented as
dispersion, hydrogen bonding, mixed complexes, and halogen
interactions.
The S66 × 8 dataset consists of 66 molecular systems, herein

each of them is treated at eight different intermolecular
distances, which allows an evaluation for the long-range
behavior of the investigated methods. Geometries were
constructed by scaling the equilibrium intermolecular distance
in the complexes by a factor of 0.9, 0.95, 1.0, 1.05, 1.1, 1.25,
1.5, and 2.0, starting from the MP2/cc-pVTZ geometry. The
S22 × 5 dataset consists of 22 molecular systems, and the
geometries of noncovalent complexes from the S22 dataset
were displaced along the intermolecular axis, forming one
shortened and three elongated (0.9, 1.2, 1.5, and 2.0 times of
the equilibrium intermolecular distance) structures for each
molecule. The X40 × 10 dataset features 10 points (equili-
brium distance re, four compressed dimers at 0.80re, 0.85re,
0.90re, and 0.95re, and five stretched dimers at 1.05re, 1.10re,
1.25re, 1.50re, and 2.00re) along the dissociation curve of each
molecule in the 40 complexes of the X40 dataset, which covers
electrostatic interactions, London dispersion, hydrogen bonds,
halogen bonding, halogen−π-interactions, and stacking of
halogenated aromatic molecules. In our previous works, we
tested various DFT methods, and in terms of accuracy,
efficiency, and stability, M062X is considered as the best
choice for computing quantum chemical descriptors (DFT
NCI value, electron density and other quantum chemical
properties) among tested DFT methods.20,21 Therefore, single-
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point calculations of these 1038 molecules are performed by
the Gaussian09 program package,47 using DFT M062X
method with the 6-31G* basis set under vacuum.
For building an unbiased and generalized model, a hybrid

distance sample set partition based on joint x-y distances
(HSPXY)48 is leveraged to divide the entire database into a
training set (800 molecules), an independent test set (214
molecules) and a validation set (24 molecules). The validation
set is used to validate the model and adjust the parameters.
The independent test set evaluates the prediction and
generalization ability of models.

Molecular Features. Two types of features of NCI
molecules calculated by the DFT (M062X/6-31G*) method
are exploited as model inputs that are 3D electron density and
quantum chemical properties.
Electron Density. The convolutional neural networks have

been trained to reproduce the Kohn−Sham kinetic energy or
the exchange-correlation potential from the electron den-

sity.37,42 Similarly, NCIs may induce the changes of electron
density, leading to a more-diffused distribution. Since
molecular structures are three-dimensional, the corresponding
electron density is a cubic matrix. The volume of density cubes
(∼803 voxels) varies according to the size of molecules. To
construct the deep learning model, the electron density cubes
of all molecules for the inputs must be normalized with the
largest cubic box [x:137, y:133, z:124] by taking the maximum
in the x,y,z directions of all the samples and zero padding is
employed in the vacant space.

Molecular Properties. In refs 20 and 21, 43 molecular
descriptors consisting of 25 quantum chemical and 18
structural properties were adopted as the inputs in the NCI
models. Herein the 18 structural descriptors were not
employed in this study, because the structural information
on S66 × 8, S22 × 5 and X40 × 10 is the same as their
respective source equilibrium structures in S66, S22, and X40
benchmark databases. In addition, four quantum chemical

Figure 1. DeepNCI framework consisting of two subnetworks EDNCI and CPNCI.

Figure 2. Flowchart of DeepNCI model and transfer learning scheme: (left) the training procedure of DeepNCI and (right) the transfer learning
strategy.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01305
J. Chem. Inf. Model. 2022, 62, 5090−5099

5092

https://pubs.acs.org/doi/10.1021/acs.jcim.1c01305?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01305?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01305?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01305?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01305?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01305?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01305?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01305?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01305?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


properties (the total charge on monomer A or B, the
polarizability of each monomer) were discarded for their
locality. The list of chemical descriptors used in this study is
given in Table S1 in the Supporting Information(SI).

Deep Architecture Construction. The proposed deep
architecture DeepNCI is represented in Figure 1. It is a fused
neural network that consists of two subnetworks that deal with
electron density in convolution layers and quantum chemical
descriptors by neural network dense layers, respectively; their
outputs are merged into a fully connected network for NCI
regression. All the hyper-parameters in the network are listed
in Table S2 in the Supporting Information.
In one subnetwork named as EDNCI (NCI CNN model

with electron density inputs), there are two convolutional
layers and three max-pooling layers to process the 3D electron
density cube. EDNCI can extract important information from
sparse electron density in cubes. The obtained representative
features are taken as inputs of fully connected dense layers.
The inputs of 3D electron density cube (137 × 133 × 124) are
highly dimensional, therefore two convolutional layers with
pooling are used to extract features and reduce the
dimensionality, which lowers the risks of the overfitting
problem. For this purpose, Drop-out strategy is also adopted.
In the other subnetwork called CPNCI(NCI NN model

with chemical property inputs), only a dense layer is used to
generate their representations, because we found the fully
connected neural network rather than CNN is more suitable
for nonsequential descriptors. The output features (EDNCI
128 and CPNCI 10) generated by two subnetworks are
merged into inputs of fully connected dense layers.
The experiments are run on the Tensorflow 3.5, with a

NVIDIA GeForce GTX 1080 Ti GPU. Adam optimizer with
β1 = 0.9, β2 = 0.999, and ε = 10−8 is used to optimize the
parameters at each iteration. The learning rate varies over the
course of training, according to the following equation:

= × _ _

decayed learning rate

learning rate decay rate (global step/decay steps)

where the learning rate = 10−4, global_step = 300, decay_steps
= 70, and decay_rate = 0.97.
Generally, several hours are needed to construct an optimal

training model. Because of GPU acceleration, predicting NCIs
for a molecule only costs tens of seconds.
The flowchart of modeling is shown in Figure 2. In feature

construction, two types of features are used for all the training,
validation, and test samples. During training, the training set
was used to train the parameters in EDNCI, CPNCI, and
DeepNCI, and the validation set was used to evaluate the
model and adjust the parameters. On the prediction, the
performance of model was evaluated by the test set. The
evaluation parameters, root-mean-square error (RMSE), mean
absolute error (MAE), and predictive squared correlation
coefficient (Q2) are defined by eqs 1−3 in the Supporting
Information. The transfer learning procedure is the same as
DeepNCI, except for data with a new task for related/similar
targets. Moreover, it uses the weights of the well-trained
DeepNCI as the initialization for training with the same
framework and hyperparameters.

Transferability. Transfer learning refers to the learning
model that has been trained in previous tasks, which can be
migrated to target data directly or in a continuous learning
manner, through parameters, features, and samples. It has been

widely applied on massive image classification issues, and
excellent performance on small-scale data has been obtained.
Generally, its advantages are (1) using labels in other similar
tasks that are easy-to-obtain tags, when the labels of the target
tasks are scarce; (2) offering a great starting point for modeling
a new database, which can dramatically accelerate the learning
process.
In our previous study, a homolysis bond dissociation energy

(HBDE) database containing 92 samples was reported. (The
molecule structures are given in Table S3 in the Supporting
Information.)49 It is a very small database, which is impossible
to be adopted for deep learning methods, since deep learning
networks are required to fit enormous parameters. To learn the
transferability and applicability of DeepNCI on small-scale
databases, we utilized the pretrained network based on NCI
data for the small HBDE database that contains a series of
nitric oxide (NO) carrier molecules.49 Herein, the parameter
transfer mode is applied, and the detailed framework of
transfer learning is shown in Figure 2. First, the entire
DeepNCI network with pretrained parameters is transferred to
the HBDE data. Then, the model is fine-tuned by the HBDE
training data and makes a prediction for the test set. In Figure
2, the left side shows the pretraining model, DeepNCI,
obtained by training NCI data, and the right side shows the
transferring model for the HBDE data. The same color
components in Figure 2 represent equivalent network modules
of DeepNCI model transferring to the target HBDE model. In
addition, the different color components stand for the specific
input and output layers of the transfer learning model.

■ RESULTS AND DISCUSSIONS
DeepNCI Performance. DeepNCI is a regression model

including two types of networks for the prediction of NCI

values. The training curve is shown in Figure S1 in the
Supporting Information, where the loss becomes steady after
∼150 epochs. Comparisons of DeepNCI performance with its
two subnetworks (EDNCI and CPNCI) and DFT-only
calculations were performed, based on the test set, and their
evaluation parameters are given in Table 1. Benefiting from the
multimodal synergies, DeepNCI model obviously achieved
better performance than both unimodal subnetworks, CPNCI
and EDNCI. The RMSE and MAE of DeepNCI were reduced
by 83% and 84% from DFT calculations, respectively, which
are just around half of any subnetworks errors. It suggests that
the merged strategy effectively unifies the advantages of the
subnetworks. However, EDNCI performed worse than
CPNCI, which might result from the primary descriptor, i.e.,
the calculated NCI by M062X/6-31G* used in the CPNCI
model. As we proposed in the correction model,19−22 the
DFT-calculated target is taken as the primary descriptor, which

Table 1. Evaluation Parameters of DFT, Various Machine
Learning Models on the Test Set

model
root mean square
error, RMSE

mean absolute
error, MAE

predictive squared
correlation coefficient,

Q2

DFT 1.13 0.82 0.887
EDNCI 0.55 0.35 0.973
EDNCI
+NCIDFT

0.26 0.18 0.994

CPNCI 0.38 0.28 0.987
DeepNCI 0.19 0.14 0.997
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makes improvement/correction easy, since all the essential
information on the NCI target has been included. Therefore,
we add only this key feature into the EDNCI model (EDNCI
+NCIDFT in Table 1) to determine how the model performs.
Unsurprisingly, the RMSE of EDNCI+NCIDFT has been
remarkably improved to 0.26 kcal/mol after adding the key
feature. Another test, CPNCI modeling without the key

feature, is also performed, where the RMSE goes up to ∼1.1
kcal/mol. This also illustrates that abstracted features from the
electron density cube are more representative than quantum
chemical property descriptors without the primary descriptor,
and either subnetwork plays an important role in the fused
multimodal.
To learn the significance of the primary descriptor, the

permutation error method is performed for all quantum
chemical properties, and the histogram of RMSE increase
induced by randomly changing the order of descriptors is
shown in Figure S2 in the Supporting Information. In the
figure, the RMSE increase of DFT calculated NCI is much
larger than other descriptors, which indicates its prominent
significance. The second important group of quantum chemical
descriptors includes polarizability, potential energy, kinetic
energy, ELUMO+1, etc. Note that the polarizability is one of
driving forces for changing electron density shape/distribution;
and most other important descriptors are related to the
electron energy. These may imply certain electronic character-
istics are some major factors to predict NCIs. The scatter plots

Figure 3. Plots of the calculated versus benchmark interaction energies for the training set, test set, and validation set in different models.

Figure 4. Violin plots of prediction errors of NCIs in different models.
The errors of the test set are calculated with NCIbenchmark − NCIModel.

Table 2. Results on reported 121 molecules by different
models

method
root mean square
error, RMSE

mean absolute
error, MAE

predictive squared
correlation coefficient,

Q2

GRNN21 0.50 0.35 0.99
Hete-SE20 0.31 0.20 0.99
DeepNCI 0.12 0.08 0.99
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for the calculated versus the benchmark NCIs values by various
models are shown in Figure 3. It is obvious that the calculated
values by multimodal DeepNCI agree with the benchmark
values better than those by both subnetwork models, which
exhibited DeepNCI superiority. The NCI prediction values for
the test set are listed in Table S4 in the Supporting
Information.
The violin plots of predictive errors for DeepNCI, EDNCI

and CPNCI are shown in Figure 4. They begin with a box plot;
then, a rotated kernel density plot is added to each side of the
box. It can be seen that the error of DeepNCI only spans a
narrow range of errors (−1.2−0.5), almost all of the test
samples achieve the chemical accuracy. This shows the
multimodal DeepNCI has been strengthened by fusing two
machine learning models. In addition, an uncertainty 0.23
(0.07) kcal/mol has been estimated by run 30 trainings with a
randomized validation set.

NCI Model Comparisons. We compared DeepNCI with
GRNN (single machine learning model)20 and Hete-SE
(ensemble learning model).21 The comparison results for the
reported 121 molecular database are shown in Table 2. The
results of GRNN and Hete-SE were taken directly from refs 20
and 21. Moreover, the training and test datasets in DeepNCI
were set the same as that in our reported experiments. From
the evaluation parameters in Table 2, it is noted that the NCI
improvement for 121 molecules by DeepNCI is superior to

single and ensemble models (RMSE: 0.12 vs 0.31 or 0.50 kcal/
mol).
The scatter plots of the calculated versus the benchmark

NCIs values for the reported 121 molecules by three models
are shown in Figure 5. It has been shown that the results
calculated by DeepNCI are obviously better, compared to that
observed by GRNN and Hete-SE. In Figure 5c, the calculated
NCI values by DeepNCI are closer to the y = x straight line
than that by either Hete-SE or GRNN in Figures 5a and 5b.
The correlation coefficient (R2) between predicted and
benchmark NCIs on the lower right corner increases with
the accuracies of models. Again, this shows that deep learning
is more capable than simple and ensemble machine learning
models, which indicates representative molecular features
might have been extracted by DeepNCI. Recently, data sets
S66 × 8 and X40 × 10 used to model NCI were reported in ref
27, where the smallest MAEs of S66 × 8 and X40 × 10 datasets
by their NCI corrected schemes are 0.1 and 0.18 kcal/mol,
respectively. In our model, MAEs for these two datasets are
0.06 and 0.08 kcal/mol, respectively. This suggests DeepNCI
may be a fine model for NCI corrections.

Feature Visualization. To explore extracted features by
DeepNCI, the t-SNE was used to visualize the high-
dimensional features through a three-dimensional map. The
visualization of features is shown in Figure 6, and the color bar
corresponds to NCI values. It can be seen that all samples are
mixed together in Figure 6a, when plotting with CNN

Figure 5. Plots of calculated values versus benchmark interaction energies for reported 121 molecules by a series of models: (a) GRNN, (b) Hete-
SE ensemble, and (c) DeepNCI.

Figure 6. T-SNE visualization of two states of obtained features in three dimensions: (a) 3D CNN extracted feature layer and (b) merged feature
layer.
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extracted features from the electron density cube. Whereas, in
Figure 6b, after DeepNCI merged multilayer processing,
formed features can explicitly separate NCI samples to several
clusters. It implies that the deep architecture DeepNCI may
extract important representations from input features and

merging them can further enhance the representative, thus
model predictive capability. That is to say, DeepNCI is able to
generate significant features to recognize molecules with
similar NCI or having close NCI values, and distinguish
molecules dominating with different types of NCIs.

Application Domain. The above analyses show that
DeepNCI is capable of giving highly accurate NCI predictions.
However, with limited data, it has application constraints.
Therefore, to reveal DeepNCI applicability, an application
domain (AD) has been defined by the K-nearest-neighbor
(KNN) method. Via KNN, the Euclidean distances between all
training samples and their K-nearest neighbors are calculated
by merged features (138) in the merged layer; herein, K is

Figure 7. Radar plot of DeepNCI application domain illustrated by the external test set (A24). The orange dotted line indicates the threshold
(1.67) and blue dots are the Dave values of test samples.

Table 3. Results on HBDE Data Based on Various Models

method RMSE of HBDE data (kcal/mol)

DFT 5.31
DeepNCI 0.24
MIV-BPNN 0.33
GP-GRNN 0.31

Figure 8. T-SNE visualization of (a) CNN extracted features and (b) merged features on the HBDE dataset.
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optimized to 5. The average of five distances for each sample is
expressed as Dave. The 95th percentile of all Dave is taken as the
domain threshold. If the Dave value of a test sample is equal or
less than the threshold, it is considered to be inside the AD.
The prediction uncertainty increases as data go beyond the
threshold. The threshold (1.67) of DeepNCI is illustrated in
Figure 7. With a defined AD, the Dave value of two external test
sets (A2450 and neutralized molecules in SCAI: Representative
amino acid side chain interactions in proteins)51 is calculated.
For clarity, only the Dave of A24 is shown in Figure 7. It is
noted that all the Dave values of A24 samples are inside the AD,
and the prediction errors (shown in Table S5 in the
Supporting Information) for external datasets are in similar
accuracy as that of the test set. Calculated NCIs and Dave of
SCAI are shown in Table S6 and Figure S3, respectively, in the
Supporting Information, where it shows some molecules
outside of AD have large prediction errors. This suggests
that the KNN-defined AD can reasonably guide the user to
employ the DeepNCI model. In addition, we must say that the
predictable range of NCI values is approximately −20−0 kcal/
mol for neutralized molecules, corresponding to the training
data. Moreover, the current version of programs only can
compute samples with the cubic box volume within x:137 ×
y:133 × z:124. We have tested inputs with an enlarged cubic
box to 200 × 200 × 200, and the results are comparable to that
in the lower dimension model; however, the calculation time is
∼6 times greater than that. Therefore, to determine the reason,
further optimization for the model is ongoing.

Transferability. To test the transferability of DeepNCI, the
transfer learning for small-scale HBDE data has been
performed. The descriptors of HBDE are shown in Table S7
in the Supporting Information. In the transferability test, the
weights from trained DeepNCI are taken as the initialization of
transfer learning, and the model is fine-tuned by the training
set of HBDE data without changing hyperparameters and the
framework. A comparison has been made on the prediction for
the same dataset obtained in MIV-BPNN and GP-GRNN49 to
determine if transfer learning is feasible. Table 3 gives the
RMSEs of HBDE data by different methods. It can be seen that
the transfer learning result is similar to the highest precision
among simple machine learning models. This indicates that
DeepNCI can offer a good starting point for another related or
similar task. For analyzing extracted features for HBDE, t-SNE
visualization of CNN-abstracted features and merged features
on HBDE data are displayed in Figure 8. Similarly, the fine-
tuned model built on extracted features can aggregate intraclass
or discriminate interclass HBDE data. Apparently, the
rambling data in Figure 8a become an ordered distribution
in Figure 8b, because of extracted important features by the
fused model. From above transfer learning results, it suggests
that DeepNCI can be transferred to relative or similar tasks,
and, in this way, solving some small sampling problems
becomes possible.

■ CONCLUSION
In this work, a novel multimodal deep architecture regression
model, DeepNCI, is proposed to correct the DFT-calculated
NCIs. Two networks dealing with DFT calculated electron
density and quantum chemical properties are fused to build the
multimodal regression. The multimodal can take effective
information from multiple channels of its subnetworks;
therefore, predictions with the multimodal architecture out-
perform either subnetwork. The DFT M062X/6-31G*

calculations by DeepNCI are improved to ∼0.2 kcal/mol
deviating from the CCSD(T)/CBS calculation. From the
model performance and the t-SNE feature visualization, it can
be found that DeepNCI can generate representative and
comprehensive features well to distinguish molecules from
different NCI dominant categories. A defined KNN AD can
explicitly show the uncertainty of a prediction for user
applications. Moreover, the model can be transferred to
related target modeling, and thus, some small sampling
problems may be solved via its transferability.
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