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The applicability of quantum mechanical methods is severely limited by their poor scaling. To circumvent the problem, linear- 
scaling methods for quantum mechanical calculations had been developed. The physical basis of linear-scaling methods is the 
locality in quantum mechanics where the properties or observables of a system are weakly influenced by factors spatially far 
apart. Besides the substantial efforts spent on devising linear-scaling methods for ground state, there is also a growing interest 
in the development of linear-scaling methods for excited states. This review gives an overview of linear-scaling approaches for 
excited states solved in real time-domain. 
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1  Introduction 

With the dawn of quantum mechanics, its accurate descrip-
tion of microscopic systems allows studies of processes and 
properties in different materials to be done via simulations 
on computers without doing experiments. In quantum 
chemistry, the major goal is to obtain solutions to the atom-
ic or molecular Schrödinger equation. However, in practice, 
the exact solution of the Schrödinger equation is intractable. 
Whereas viable approximations have been made, ab initio 
molecular orbital calculations are usually limited to small- 
and medium-size molecular systems. The obstacle lies in 
the rapid increase of computational cost when the systems 
get large. This poor algorithmic scaling of many existing 
quantum mechanical methods hinders their applications to 
large complex systems. 

A large number of linear-scaling computational methods 
are proposed for the ground state calculations [1, 2], allow-
ing simulations of large complex systems that are previous-
ly out of reach. Physical properties like optical absorption 
spectrum, nonlinear polarizabilities, dielectric constant and 

magnetic properties, however, cannot be accessed through 
ground state calculations. In addition, studies of chemical 
reactions require correct description of excited states. To 
obtain these properties, one has to resort to methods for 
excited states. In general, the computational demand of ex-
cited state calculations is substantially larger than ground 
state calculations. Despite of the increasing interest in ex-
cited state properties, relatively few linear-scaling methods 
have been developed for the excited states.  

There have been many computational methods developed 
for description of excited states. The present quantum me-
chanical methods for excited state properties fall into two 
categories: time-independent and time-dependent ap-
proaches. The time-independent approaches solve the sta-
tionary Schrödinger equation: 

k k kĤ E    

where Ĥ  is the Hamiltonian operator, and k  is the 

many-body wavefunction. The eigenvalues Ek and corre-
sponding eigenvectors k  are the energies and wave-

functions of different electronic states. By solving the 
time-independent Schrödinger equation, one can obtain 
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ground state and excited states of interest and this requires 
the explicit construction of excited states wavefunctions. 
Excitation energies, for instance, can be obtained from the 
difference of the energies of these states. On the other hand, 
the time-dependent approaches start with the electronic 
ground state wavefunction 0  and follow its time evo-

lution after switching on the time-dependent external exci-
tation. The time evolution of the wavefunction can be ob-
tained by solving the time-dependent Schrödinger equation: 

ˆ ˆ( ) ( ) ( )i t H V t t
t

      
  

where ˆ( )V t  is the time-dependent external perturbation. 

The excited state properties such as optical spectra can then 
be extracted from the temporal trajectory of the wavefunc-
tion. The advantage of this is that one temporal trajectory 
contains all frequency information which can be obtained 
by Fourier transformation. Alternatively, the excited state 
properties can also be obtained through a linear response 
treatment in frequency-domain, based on the time-depen-      
dent perturbation theory. The key quantity here is the linear 
response function which contains all the information of the 
excited states. 

Within exact treatment, time-independent approaches 
and time-dependent approaches are equivalent and yield 
same results. It is, however, usually not the case when ap-
proximations are introduced. In general, time-independent 
methods are more computational demanding since explicit 
construction of wavefunction for each excited state is re-
quired. In time-independent picture, there are existing 
works devising linear-scaling methods, for instance, Møller- 
Plesset perturbation theory [3, 4], coupled cluster method 
[5−7], configuration interaction [8]. They, however, have 
been applied to ground states only. Instead, linear-scaling 
methods for excited states have been developed within the 
time-dependent framework, both in time-domain [9, 10] and 
frequency-domain [11−17]. In general, the linear-scaling 
time-domain methods are found to be more efficient while 
the iterative approaches in linear-scaling frequency-domain 
methods suffer convergence problem in resonant response 
[10]. It is noted that a recent frequency-domain method 
achieves linear-scaling with small prefactor by building 
localized molecular orbitals (LMOs) from subsystems [17]. 
As those linear-scaling methods for ground state, the physi-
cal basis of linear-scaling methods for excited states is the 
nearsightedness of density matrices [18]. They are based on 
the locality in quantum mechanics, which means that the 
properties of an object are influenced only by its immediate 
surroundings. Most linear-scaling algorithms are built 
around the reduced single-electron density matrix or its 
representation in terms of Wannier functions and take ad-
vantage of its decay properties. To achieve linear-scaling, 
the exponentially decay quantities can be neglected when 
they are smaller than some threshold value. Kohn [18] pro-

posed “the principle of the nearsightedness of equilibrium 
systems” to justify the locality of ground-state density ma-
trix. Chen and Mukamel [19] realized that the locality of 
density matrices persists for many excited states as well, 
and they showed that the off-diagonal matrix elements are 
negligible when the distance between the two orbitals is 
larger than some preset critical lengths. 

In this paper, we give an overview of linear-scaling 
methods for excited states solved in time-domain. Linear- 
scaling time-domain methods involve solving the Liouville- 
von Neumann equation, the localized density matrix (LDM) 
method [10] or the time-dependent Kohn-Sham (TDKS) 
equation using the non-orthogonal localized molecular or-
bitals (NOLMOs) [20]. Similar to linear-scaling ground 
state methods, the major computational bottleneck lies in 
the construction of Fock matrix and density matrices (or 
wavefunctions). We review here the numerical techniques 
to achieve linear-scaling computational time. Applications 
are given to demonstrate the effectiveness of the linear- 
scaling time-domain methods. 

2  Construction of Fock matrix 

To reflect the response to the change in electron density, 
Fock matrix is reconstructed in each time step when the 
electron density is updated. This involves the Coulomb part 
and exchange-correlation part. The Coulomb part gives the 
classical interaction between electron pairs and scales for-
mally as O(N4). The Coulomb potential is given by: 
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Fast multipole method (FMM) [21, 22] is developed in 
the 1980’s to accelerate the calculation of long-ranged forc-
es between classical point charges. It is later generalized to 
evaluate the Coulomb potential in the basis of Gaussian- 
type basis functions [23, 24]. Through multipole expansion, 
it allows one to group sources that lie close together and 
treat them as a single source. The method was first applied 
to the field of computational electromagnetics. The idea was 
then borrowed and implemented to efficiently treat the 
Coulomb interaction in Hartree Fock (HF) and density 
functional theory (DFT) calculations. 

For excited state calculations, the Coulomb part contri-
bution to the Fock matrix is given as follows: 

 
1

d d ( ) ( ) ( , )i j t  
 r r' r r r'

r r'
 (2) 

here  are the basis functions, and  is the time-dependent 
electron density constructed from the single-electron density 
matrix P(t), 

 ( , ) ( ) ( ) ( )i j ij
ij

t P t  r r r  (3) 
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In the FMM, the whole space is divided into boxes and 
the different charge distributions are assigned to the corre-
sponding boxes. Each box is further divided into half along 
each Cartesian axis until the charge distributions in each 
box at the lowest level are approximately constant, resulting 
in a hierarchy of boxes. Based on the distance between the 
boxes, the Coulomb potential is split into near-field and 
far-field contributions. For near-field potential, explicit an-
alytical integration is used. For far-field contribution, the 
Coulomb potential is represented by the multipole expan-
sion as follows: 
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(4)
 

where Z, , Q and O are, respectively, the monopole, dipole, 
quadrupole and octupole. R is the distance from the center 
of the box. The multipole expansion of the potential stems 
from charge distributions at higher level boxes can be con-
structed from their child boxes, resulting in a multipole ex-
pansion for each box representing all the charge distribu-
tions contained in it. Depending on the distance of the in-
teraction, the multipole expansions from different levels are 
converted into local Taylor expansions and the expansion 
coefficients are summed. Since the number of boxes in each 
level is constant, the Coulomb part of the Fock matrix can 
be evaluated with linear-scaling efforts. 

In general, the near-field evaluation constitutes a domi-
nant part in the computational effort. There are various 
methods to reduce the computational cost. Different recur-
sive relations [25] had been introduced to speedup the eval-
uations of two-electron integrals. The J-engine method [26] 
sums the density matrix directly during the evaluation of 
two-electron integrals, thus avoiding explicit construction of 
the full set of two-electron integral intermediates. Resolu-
tion of identity (RI) methods [27] speedup the calculations 
by fitting the electron density with a set of auxiliary basis 
functions. This approach is further accelerated by combin-
ing with the multipole methods, the multipole accelerated 
RI-J (MARI-J) method [28]. 

The formation of the Fock matrix involves also the ex-
change and correlation (XC) terms. Employing the local 
basis functions, evaluation of the XC potential, XC  and 
its derivatives scales naturally linear with system size. Due 
to the nature of the XC potential, the integral 

 XC XCd ( ) ( ) ( )i ji j     r r r r  (5) 

cannot be solved analytically and one has to resort to nu-
merical quadrature [29], 

 
grid

XC XC( ) ( ) ( )

ANN

A i i j
A i

i j p w    r r r  (6) 

where pA is the nuclear partition function and wi is the 
weights of grid point i. Due to the local nature of the basis 
functions, only a constant number of basis function pairs 
contribute for each grid point in Eq. (6). Efficient screening 
techniques [30] are developed and linear-scaling behavior is 
readily achieved. 

For HF and hybrid DFT methods, there is also a contri-
bution from the so-called exact exchange. Although the 
contributions of exact exchange to the Fock matrix arise 
from the same set of integrals, the FMM cannot be applied 
to the exchange terms because the FMM requires the con-
traction of charge distributions with the density matrix from 
the beginning. However, linear-scaling can be achieved by 
exploiting the decay of the density matrix with distance. 
Exact exchange thus involves only a finite number of sig-
nificant terms and several methods have been developed 
which exploit the locality of the density matrix to reach a 
linear-scaling behavior for the exact exchange evaluation 
[31−33]. 

3  The LDM method 

The time-domain LDM method [9] is the first linear-scaling 
method for excited states, developed in 1998 at semi-   
empirical level. It was later implemented with time-dependent 
density-functional theory (TDDFT) [34, 35] and 
time-dependent density-functional tight-binding method 
(TDDFTB) [36]. The LDM method has been applied widely 
to simulate the optical processes of a variety of complex 
molecular systems such as light harvesting systems [37], 
carbon nanotubes (CNTs) [38], polymer aggregates [39], 
water clusters [36] and silicon quantum dots [40]. 

3.1  Formulation 

The LDM method solves the Liouville-von Neumann equa-
tion: 

  ( ) ( ), ( )i P t F t P t
t





  (7) 

which is equivalent to the time-dependent Schrödinger 
equation. Here F(t) is the time-dependent Fock matrix and 
P(t) is the reduced single-electron density matrix. Eq.(7) 
gives the equation of motion (EOM) for propagation of the 
density matrix in real time. Starting from Eq. (7), P(t) can 
be partitioned into two parts, 

 (0)( ) ( )P t P P t   (8) 

where P(0) is the single-electron density matrix representing 
the ground state in the absence of the external perturbation, 
and P(t) is the difference between P(t) and P(0). The Fock 
matrix in Eq. (7) can be divided into three parts, 

 (0)( ) ( ) ( )F t F F t f t    (9) 
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where F(0) is the ground state Fock matrix and ( )F t  

gives the induced Fock matrix due to the change in electron 
density, and f(t) represents the interaction between an elec-
tron and the external field (t). In atomic orbital (AO) rep-
resentation, 

 ˆ( ) ( )ij i jf t t     r  (10) 

Eq. (7) can be rewritten as: 

 
  
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For the first-order induced density matrix P(1), the second 
term on RHS is eliminated and its dynamics can be de-
scribed by the following equation: 

      (1) (0) (0) (0)[ , ] [ , ] [ , ]i P F P F P f P  (12) 

More specifically, Eq. (12) can be written as: 
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Solving Eq. (13) alone does not lead to the linear-scaling of 
computational time, because the matrix multiplication in-
volved is intrinsically scales as O(N3). The key for the linear- 
scaling lies in the reduction of the dimension of the reduced 
single-electron density matrix which is based on the fact 
that the density matrix has a localized character. This local-
ity holds not only for the P(0) but also for (1)P . Specifi-

cally, (0)
ijP  is set to zero for rij > l0, where rij is the distance 

between the matrix elements i and j. Consequently, (0)
ijF  

becomes zero for the same rij; and (1)
ijP  is set to zero 

when rij > l1, here l0 and l1 are cutoff lengths. For a fixed 
pair of i and j, the summations over k in Eq. (13) is finite 
and independent of system size. This leads to linear-scaling 
computation of the first and third terms on the RHS of Eq. 
(13). The second term on the RHS involves also the update 
of Fock matrix where the numerical algorithms introduced 
in Section 2 are used to evaluate this term with line-
ar-scaling efforts. 

Alternately, a threshold criterion can be used to take the 
advantage of matrix sparsity, i.e. a matrix element can be 
safely neglected when it is below a certain threshold value. 
Asymptotically the number of significant elements in the 
matrices grows linearly with the system size. Eq. (13) in-
volves only matrix multiplications and additions, and these 
matrix manipulations can thus be carried out with linear- 
scaling effort. A standard way is to represent the matrices in 
a compressed sparse row (CSR) or modified compressed 
sparse row (MSR) format [41]. The matrix multiplication is 

then simply carried out by multiplying one pair of matrix 
elements at a time. Matrix additions or subtractions are 
straightforward and are far less expensive than multiplica-
tions. 

Whereas different electronic structure methods have dif-
ferent Fock matrices, the EOM of density matrix (Eq. (7)) 
remains the same. The LDM method has been implemented 
with semi-empirical TDHF, first-principles TDDFT and 
TDDFTB Hamiltonians. Semi-empirical models, such as 
PPP, INDO, and MDNO, consider only the valence elec-
trons and neglect the differential overlaps for AOs on the 
same or different atoms. Among these different models, the 
expressions for Fock matrix F may be different. The general 
semi-empirical Fock matrix is given by 

 , ,( ) ( )(2 )ij ij kl ij kl ik lj
kl

F t T P t V V    (14) 

where T is the time-independent one-electron integrals be-
tween AOs. The second and third terms on the RHS are the 
Coulumb and exchange contributions to the Fock matrix, 
respectively. In first-principles TDDFT, the exchange term 
is replaced by the exchange-correlation (XC) functional, 

    XC
, ,( ) ( )( )ij ij kl ij kl ij kl

kl

F t T P t V V  (15) 

VXC is the XC integral. In TDDFT, adiabatic approximation 
is commonly used where the static XC functional is evalu-
ated with the time-dependent density and the memory is 
neglected. To improve the efficiency, an approximate DFT 
Hamiltonian, DFTB [42] is also implemented in LDM 
method. The TDDFTB Fock matrix is given by: 

 0 1
( ) ( ) ( )

2ij ij ij ia ja a
a

F t H S q t      (16) 

where H0 is the time-independent Hamiltonian of a refer-
ence density.  gives a measure of the electron-electron in-
teraction and decays asymptotically as 1/r. For the on-site 
cases, the Hubbard-like parameter is taken from atomic 
DFT calculations and represents the chemical hardness of 
the respective element. S is the overlap matrix and q gives 
the Mulliken charge evaluated from the density matrix, 

 ( ) ( )a ij ij
i a j

q t S P t


    (17) 

The update of Fock matrix is much more efficient in the 
DFTB method. It is shown from Eq. (16) that overlap ma-
trix appears in the time-dependent part of the Fock matrix. 
In contrast to TDHF and TDDFT, the computational effort 
of constructing DFTB Fock matrix scales naturally linear by 
utilizing the sparsity of the overlap matrix and linear-scaling 
techniques introduced in Section 2 are not required. 

Orthogonal basis is assumed in Eq. (7), the non-ortho-          
gonal basis employed in TDDFT and TDDFTB needs to be 
orthogonalized. Cholesky decomposition of the overlap 
matrix is used to orthogonize the Fock matrix and density 
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matrix, Alernatively, Eq. (12) represented in non-orthogonal 
basis can be solved directly [43]. 
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(18)

 

3.2  Applications 

The LDM method has been applied to evaluate the optical 
spectra of different complex molecular systems. The optical 
spectrum can be obtained as the Fourier transform of the 
induced dipole moment which is computed from the in-

duced density matrix (1)P . Liang et al. [44] applied the 
LDM method with PPP Hamiltonian to study the excited 
state properties of CNTs. Figure 1 shows the computational 
time versus the system size N. The number of carbon atoms 
in the CNTs ranges from 416 to 6656. A time interval of 
[−0.5 fs, −0.3 fs] with a time step of 0.01 fs is used. The 
cutoff lengths l0 and l1 are set to 15 Å and the CPU time is 
clearly proportional to the system size N. 

Figure 2 plots the absorption spectra for C320H16, C512H16 
and C1024H16 (8,0) CNTs simulated with the LDM method. 
FMM has been employed to construct the Fock matrix. The 
absorption spectra are similar in the high frequency region 
( > 1.5 eV) with slight red shifts of the absorption peaks as 
the tube length increases and the spectral shape looks quite 
different in the low frequency region. Inspection of the in-

duced density matrices (1)P  reveals that the small ab-

sorption peak at the very low energy region ( < 0.3 eV) 
corresponds to electronic excitations of electron-hole pairs 
between two ends of the nanotube, and disappears as the 
tube length increases. 

Wang et al. [36] applied the LDM method with DFTB  

 

Figure 1  CPU time for the excited-state calculation of 3-dimensional 
CNTs. The time interval is [−0.5 fs, −0.3 fs] with the time step of 0.01 fs. 
The cutoff lengths l0 and l1 are 15 Å. 26 atoms are included in the lowest 
level of the FMM box. (Figure adapted from Ref. [44]). 

 
Figure 2  Absorption spectrum of C320H16, C512H16 and C1024H16 calculated 
using the LDM method with PPP Hamiltonian. The cutoff lengths l0 and l1 
are 36 Å . The dotted line stands for C1024H16, the dashed line for C512H16, 
and the solid line for C320H16. (Figure adapted from Ref. [44]). 

Hamiltonian to calculate the optical response of 3-dimensional 
water clusters [(H2O)216]n (n = 1, 2, 3, 4). Figure 3(a) shows 
the CPU time for a time propagation of 1 fs. The CPU time 
scales as O(N2) with the system size when no cutoff is ap-
plied, while it scales linearly using the LDM method with 
cutoff lengths l0 and l1 equal to 10 Å. The calculated ab-
sorption spectra of (H2O)864 are plotted in Figure 3(b), the 
black line represents the full TDDFTB calculation and red 
dots show the calculation with LDM method. It can be seen 
from Figure 3(b) that the error due to the cutoff of (1)P  is 
negligible. This is due to the fact that excitations of the sys-
tem are mostly localized on a single water molecule and 
only influenced by nearby water molecules. A small cutoff 
length for (1)P  is thus adequate to obtain accurate ab-
sorption spectra. 

4  TDKS with NOLMOs 

Apart from the Liouville-von Neumann equation, there are 
also works devising methods to solve time-dependent 
Schrödinger equation with linear-scaling effort. Cui et al. 
[20] reformulated the TDKS equation in terms of NOL- 
MOs  and obtained 

 i H
t
 



  (19) 

Eq. (19) has the same form as the Schrödinger equation in 
canonical molecular orbital representation, except that the 
wave functions are replaced by the NOLMOs. The NOL-
MOs are the most localized representation of electron since 
the constraint of orthogonality is absent. In AO representa-
tion, NOLMOs can be expressed as 

 
AO

( ) i i
i

t c     (20) 

and the density matrix can be obtained via Eq. (21) 
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Figure 3  (a) CPU time for water clusters with TDDFTB method in the 
time-domain with a propagation time of 1 fs (empty square: LDM method 
with 10 Å cutoff; filled square: full calculation). (b) Absorption spectra of 
(H2O)864 calculated with TDDFTB method in the time-domain (black line: 
full calculation; red line: LDM method with 10 Å cutoff). 

   


  1 *( )ij i jP t c S c  (21) 

Here, c is the coefficient matrix. It should be noted that S−1 
is the inverse of overlap between NOLMOs. As NOLMOs 
are localized in space, each NOLMO spans only a finite set 
of AO in the system. Thus, the NOLMO sparsity is trans-
ferred to the coefficient matrix of molecular orbitals. This 
allows a linear-scaling computational effort for solving Eq. 
(19). One key point of the NOLMO approach is to maintain 
the sparisty of NOLMOs during the time propagation. As 
time proceeds, NOLMOs will become more delocalized and 
the sparsity of coefficient matrix is lost. The NOLMOs need 
to be reconstructed to ensure that the coefficient matrix re-
mains localized. Therefore, the key of the O(N) calculation 
is that the coefficient matrix remains localized upon the 
repeated reconstruction of NOLMOs. 

Cui et al. [20] applied the TDKS/NOLMO approach to 
simulate the absorption spectra of long chain saturated al-
kanes and conjugated alkenes with DFTB Hamiltonian. The 
same system has also been studied using LDM method with 
first-principles TDDFT [35]. Figure 4 plots the optical 
spectra of linear alkane, C60H122. Several cutoff lengths are 
employed to truncate the coefficient matrix. The interval 
time for reconstruction of NOLMOs is 1 au and the total  

 

Figure 4  The main peak of optical spectra of C60H122 with different cut-
off lengths. Black diamonds: no cutoff; red diamonds: 10.6 Å; blue circles: 
8.5 Å; blue diamonds: 7.4 Å. (Figure adapted from Ref. [20]). 

propagation time is 100 au. It is clear that the error of 
TDKS/NOLMO approach decreases with the increase of the 
cutoff length. 

5  Time integration 

The EOMs of density matrix (Eq. (13)) or NOLMOs (Eq. 
(19)) are solved by numerical integration in time-  domain. 
Common algorithms for time-domain integration include 
the Runge-Kutta method [45], the Exponential Midpoint 
method (EMM) [46] and the Magnus method [47]. A 
straightforward choice is the fourth order Runge-Kutta 
method. It has been implemented in both LDM method and 
the TDKS/NOLMOs approach. For the fourth order Runge- 
Kutta method, the ground state density matrix/NOLMOs are 
taken as the initial state. The density matrix/NOLMOs of 
the next time step are determined by the present value plus 
the weighted average of four increments evaluating at dif-
ferent times. This requires four evaluations of the Fock ma-
trix for each time step. The largest possible time step is de-
termined by the largest absolute eigenvalue of the Fock ma-
trix [48] and normally a small time step has to be used to 
obtain accurate solution. 

As an alternative, a high order method, the Chebyshev 
expansion method [49] is exploited in the LDM method. 
The solution for Eq. (13) is given by 
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where L̂  is the Liouville operator. The exponential term 
ˆi te L  is expanded using Chebyshev expansion. Here Jn() 

is the Bessel function of the first kind. Pn is given by 
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∆ is a positive number greater than largest eigenvalue of the 
Liouville operator for the expansion to converge. With 

(1) ( )P t  obtained from Eq. (22), any (1) ( ')P t  with t’ < t 
can be determined through the above Chebyshev expansion 
with a minor additional effort. The Chebyshev expansion 
converges exponentially due to the exponential decay of the 
Bessel function Jn() when n is larger than . It has been 
shown that Chebyshev expansion is much more efficient 
than fourth order Runge-Kutta method [50]. 

6  Conclusions 

Linear-scaling quantum mechanical methods for excited 
states have been well developed, opening the way to study 
large complex molecular systems such as polymers, proteins, 
DNA, nano-materials and clusters which are previously 
intractable. In this article, we review the linear-scaling 
time-domain methods for excited states which are efficient, 
robust and can be readily implemented. Numerical algo-
rithms are discussed and several applications are shown to 
demonstrate the effectiveness of these linear-scaling meth-
ods. 
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