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I. INTRODUCTION

During the past few years there have been increasing interests
in understanding time-dependent quantum transport through
nanostructures. Both theoretical and experimental research
efforts have been carried out.1-13 There are two general approa-
ches to treat the time-dependent quantum transport problem
theoretically. One approach is to work in the frequency domain.
For instance, Floquet theory has been applied to study electron
transport under sinusoidal external voltage.14-17 By considering
all the frequencies and taking a Fourier transform of the results,
the transient current response of the system can be recovered.
Another approach is to work directly in the time domain and
obtain the real-time current response of the system. However,
until recently, most theoretical studies had been focused on
simple model systems in which the electronic devices of primary
interest are modeled by one- or few-level systems.3 It is thus
difficult to evaluate how the geometric and electronic structures
of specific nanosized structures or materials would influence the
transport process. Recently, time-dependent density-functional
theory (TDDFT) formalisms have been developed.7-12 A prac-
tical scheme has been proposed in order to simulate transient
currents through realistic nanoscale devices.7,10 In particular,
dynamic current response of carbon nanotube (CNT)-based
devices have been investigated.18 The TDDFT formalism is
based on an equation of motion (EOM) for the Kohn-Sham
(KS) reduced single-electron density matrix which is equivalent
to the well-known quantum kinetic equation. Alternatively, this

formalism can be viewed as the first-principles Liouville-von
Neumann equation.

In this manuscript, we generalize the TDDFT formalism7 to
calculate the current density distribution, and apply it to examine
the transient current through a (8,0) CNT coupled to the left and
right electrodes. In particular, we focus on analyzing the local
current distribution. This paper is organized as follows: In section
II, we outline our theoretical methodology and present the prac-
tical scheme for the evaluation of current density distribution.
The simulation results are analyzed and discussed in section III.
Finally, we conclude our findings in section IV.

II. METHODOLOGY

Electron density function of any time-independent real phy-
sical system made of atoms and molecules is real analytic except
at nuclei (a function is real analytic if it possesses derivatives of all
orders and agrees with its Taylor series in a neighborhood of
every point). This has been proved by Fournais et al. in 200419

and termed as time-independent holographic electron den-
sity theorem. Here, real analyticity or “holographic” property
implies that any nonzero volume piece of ground-state electron
density completely determines the electron density of the entire
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ABSTRACT: We have performed time-dependent density-
functional theory calculations to simulate the transient
electrical response of a carbon nanotube-based electronic
device. Time-dependent current density and electrostatic
potential distribution are calculated and analyzed. Strong local
vortices are observed for the current. In addition, the calcu-
lated dynamic admittance confirms that the dynamic response
of the two-terminal device can be mapped onto the equivalent
electric circuit reported in our previous work [Yam et al.
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system.20 For time-dependent systems, there also exists a holo-
graphic time-dependent electron density theorem.21 If the time-
dependent external potential field on a finite physical system, v(rB,
t), is real analytic in both rB and t, and its electron density at a given
time t0,F(rB,t0), is real analytic in rB-space, then there is a one-to-one
correspondence between v(rB,t) and the time-dependent electron
density within any finite subspace D, FD(rB,t).7 As a result, FD(rB,t)
determines uniquely all the electronic properties of the entire time-
dependent physical system. Therefore, the holographic time-
dependent electron density theorem proves the existence of an
exact density-functional theory for time-dependent open elec-
tronic systems. On the basis of the exact TDDFT for open
systems, a practical first-principles approach has been developed
to simulate transient electrical current through molecular
devices.

The derivation of our TDDFT formalism for open systems
starts from a closed EOM for the KS-reduced single-electron
density matrix of the entire system, σ(t):

i _σðtÞ ¼ ½hðtÞ, σðtÞ� ð1Þ
where h(t) is the KS Fock matrix. Figure 1 illustrates a simple
open system schematically. By using atomic orbital basis sets to
expand the density matrix, we can partition σ as

σ ¼
σL σLD σLR

σDL σD σDR

σRL σRD σR

2
664

3
775 ð2Þ

where σL, σD, and σR are the diagonal blocks corresponding to
the left electrode L, the device regionD, and the right electrode R,
respectively; σDL is the off-diagonal block between D and L, and
σRL, σLD, σRD, σLR, and σDR have similar definitions. We can also
partition the KS Fock matrix h in the same manner. Thus, we can
get the EOM for σD:

i _σD ¼ ½hD, σD� þ ∑
R¼L, R

ðhDRσRD - σDRhRDÞ

¼ ½hD, σD�- i ∑
R¼L,R

QR ð3Þ

where QL and QR are the dissipative terms due to L and R,
respectively. According to the holographic time-dependent elec-
tron density theorem, QR is in principle a functional of the

electron density in the reduced systemD, FD(rB,t). Transforming
FD into σD, a formally closed form of eq 3 can be recast as follows:

i _σD ¼ ½hD½ rB, t; σDð rB, tÞ�, σDð rB, tÞ�
- i ∑

R¼L,R
QR½ rB, t; σDð rB, tÞ� ð4Þ

Employing the Keldysh nonequilibrium Green’s function
(NEGF) formalism, we have

QRðtÞ ¼ -∑
Z þ¥

-¥
dτ½G<ðt, τÞΣa

Rðτ, tÞ þ Gaðt, τÞΣ<
Rðτ, tÞ

þH:c:� ð5Þ
where G< and Ga are the lesser and advanced Green’s functions
respectively, and Σ< and Σa are the lesser and advanced self-
energies, respectively. In the practical numerical calculation of
QR, the adiabatic wide-band limit (AWBL) approximation3,7,22 is
adopted, where the bandwidths of both electrodes are assumed
to be infinitely large and the self-energy ΣR is treated as energy
independent. The time-dependent electric current through elec-
trode R (R = L or R) can be calculated as

IRðtÞ ¼ - Tr½QRðtÞ� ð6Þ
The transient dynamics of the device D is solved by directly
integrating eq 4 subjected to the potential boundary conditions at
the left and right interfaces of the simulation box.

The reduced single-electron density matrix σD(t) can be
partitioned into two parts: σD

(0) and δσD(t), where δσD(t) is
the induced electron density matrix by the external field.23,24 We
have

δFð rB, tÞ ¼ ∑
μ, ν ∈ D

δσμνðtÞχ�νð rBÞχμð rBÞ ð7Þ

where δF(rB,t) is the induced electron density, and χμ(χν) is the
μ(ν)th atomic basis function.

The current density operator is ĵBð rBÞ ¼ ð2iÞ-1∑sf½rψ̂†
s ð rBÞ�

ψ̂sð rBÞ- ψ̂†
s ð rBÞrψ̂sð rBÞg, where ψ̂s

†(ψ̂s) is the creation
(annihilation) operator for an electron occupying molecular orbital
ψs. Similarly, spanned by an atomic basis set {χν}, the induced
current density jB(rB,t) is expressed by,

jBð rB, tÞ ¼ ð2iÞ-1 ∑
μ, ν∈D

δσμνðtÞ½χμð rBÞrχ
�
νð rBÞ

- χ
�
νð rBÞrχμð rBÞ� ð8Þ

Usually χμ(rB) is a real function, and hence χμ*(rB) = χμ(rB), we have

jBð rB, tÞ ¼ - ∑
μν
Im½δσμνðtÞ�χμð rBÞrχνð rBÞ ð9Þ

Therefore, jB(rB,t) is only determined by the imaginary part of
δσD(t). In principle, only the longitudinal component of the current
density can be obtained by TDDFT calculation, i.e., the longitudinal
current density has real physical meaning while the transverse
component does not. However, in practice, it has been argued that
KS current density jB(rB,t) is a good approximation to exact value for
both longitudinal and transverse components.25 It should be noted
that the magnetic field is neglected in TDDFT.26,27 It can be
included in time-dependent current density functional theory
(TDCDFT).28-30 Di Ventra et al. have developed a TDCDFT
method for open systems via real-time propagation of a stoc-
hastic Schr€odinger equation.29 Yuen-Zhou et al. have proposed

Figure 1. Schematic representation of the experimental setup for
quantum transport through a molecular device. L, R, and D denote
the left electrode region, right electrode region and device region,
respectively. L andR are connected to an external bias. SL(SR) represents
the interface between D and L(R). It should be noted that we include
adequate part of the electrodes, i.e., shaded areas in the schematic
diagram, into D, so that SL(SR) will show bulk properties of L(R).












