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1. Introduction 

he purpose of this article is to give a practical and complete, T but not rigorous, exposition of the Fast Multipole Method 
(FMM). The aim is to give the computational physicist or engineer 
a sufficiently clear understanding of the method that he or she will 
be able to implement it with a minimum of difficulty. For 
mathematical background and rigor, we refer the reader to 
Rokhlin’s papers [ 1, 21. 

The FMM provides an efficient mechanism for the numerical 
convolution of the Green’s function for the Helmholtz equation 
with a source distribution. It can be used to radically accelerate the 
iterative solution of boundary-integral equations. In the simple 
single-stage form presented here, it reduces the computational 
complexity of the convolution from O(N2)  to O(N”’), where N is 
the dimensionality of the problem’s discretization. By implementing 
a multistage FMM [ 1,2], the complexity can be further reduced to 
O(NlogN).  However, even for problems that have an order of 
magnitude more variables than those currently tractable using 
dense-matrix techniques ( N  lo’), we estimate that the perform- 
ance of the single-stage algorithm should be near optimal. 

Our development is given in terms of the method of moments 
[3,4] (MOM), rather than the Nystrom method [5]. We do this 
because 

Electrical engineers are more familiar with the MOM, 
and may therefore be more comfortable with the 
development. 

The prescription we present is sufficiently simple that 
it can be easily retrofitted to existing MOM codes. 

When used in the MOM, detailed comparisons to verify 
that results are identical to dense-matrix techniques 
are immediately available. 

FMM from the choice of discretization method, 
boundary-surface model, basis functions, etc. 

The reader is cautioned not to interpret our choice of presentation 
as representing a preference toward the MOM. On the contrary, we 
think that the Nystrom method is the appropriate tool for efficient 
and accurate boundary-integral-equation solvers. 

For the purposes of demonstration, we first consider the 
MOM for the scalar wave equation, with Dirichlet boundary condi- 
tions on the surface of a scatterer. This is done for notational con- 
venience only, the (naive) equivalent application to the electric-field 
integral equation (EFIE) being straightforward. (One can simply 
apply the scalar prescription to each Cartesian component of the 
vector expansion functions, and to their divergences; a more effi- 
cient method is described in Section 5 . )  

If the structure of this article seems somewhat confusing at an 
initial reading, it is because some considerations are intentionally 
delayed. We hope that the reasons for this become clear upon 
subsequent readings. In Section 2, we define notation, introduce the 
discretization of the scattering problem, relate the FMM to a more 
familiar fast algorithm, and introduce the fbndamental analytic 
apparatus of the FMM. A detailed prescription for FMM 
implementation, except for the choice of some important 
parameters of the algorithm, is given in Section 3 .  After the 
structure of the method is exhibited, these parameters (the number 
of terms used in the multipole expansion, and the directions at 
which far-field quantities are tabulated) are analyzed in Section 4. 
The algorithm for the scalar problem then having been being com- 
pletely defined, we exhibit the minor modifications necessary for 
application to vector (electromagnetic) scattering in Section 5 .  
Before concluding, a physical interpretation of the analysis behind 
the FMM is given in Section 6. 

2. Basics 

2.1 Notation We avoid all questions of singularity subtraction, as it 
is required only for matrix elements representing 
nearby interactions, and the computation of these is 
unchanged when the FMM is employed. 

Vectors in three-dimensional space are represented by bold- 
face type (x) The magnitude of a vector x is written as x = 1x1, unit 
vectors are written as i = x / x ,  and integrals over the unit sphere 
are written as j d 2 i .  The imaginary unit is denoted by i The presentation demonstrates the independence of the 
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2.2 Time-independent scattering and the Method of Moments 

A scattering problem [6, 71 can be defined by the scalar wave equa- 
tion 

( v2 + k 2 ) y  = 0, 

a Dirichlet boundary condition 

y(x)  = 0; x on S ,  (2) 

on the surface, S, of a bounded scatterer, and a radiation boundary 
condition. The method of moments [SI provides a discretization of 
the first-kind integral equation associated with this problem, giving 
a set of linear equations with a dense coefficient (impedance) 
matrix: 

We assume that the basis functions, A I ,  are real, and supported on 
local subdomains. The FMM provides a prescription for the rapid 
computation of the matrix-vector product 

( 4 )  

for an arbitrary vector I .  This rapid computation can then be used in 
an iterative (e.g., conjugate-gradient) solution of the discretized 
integral equation Z *  I = 6’, where, for an incident wave with wave 
vector k, 

Note that we have chosen to use the same functions for expansion 
and testing (the Galerkin method). Not only does this simplify the 
development somewhat, but it also results in superconvergence of 
the scattering amplitude [9, IO]. 

2.3 Comparison with the Fast Fourier Transform 

A discrete Fourier transform consists of multiplication by a 
dense N x N matrix F, with matrix elements 

2 ~ i k l  Fkr = exp- 
N 

The fast Fourier transform (FFT) works by using algebraic 
properties of F to construct a sparse factorization. 

and applying the sparse factors, I;.(.), one by one to the vector to 
be transformed, in lieu of a single multiplication by the matrix F. 
Because each of the factors has only O( N )  non-zero elements, this 
results in an algorithm that requires O(N log N )  operations. The 
single-stage FMM works by a similar decomposition of the matrix 
Z:  

where Z’ , V, and Tare all sparse. As described in detail in this arti- 
cle, this allows computation of the product of Z with an arbitrary 
vector (corresponding physically to the determination of the fields 
radiated by a known source distribution), with O( N”’) operations. 

The complexity can be further reduced to N 4 / 3 ,  N5’4,..., by recur- 
sive decomposition of Z’ and 6’: 

This is entirely analogous to the FFT if one factors 1,‘ into only two 
factors (independent of N), the result would be an O(N3”) algo- 

rithm We do not exhibit the details of the multi-stage FMM in this 
article 

In contrast to the FFT, the FMM decomposition is made 
possible by analytic rather than algebraic properties of the linear 
operator Thus, while the FFT factorization is exact, the FMM 
decomposition is approximate. However, this does riot constitute a 
practical limitation, as it is easy to control the FMM to achieve any 
desired level of precision (all the way to machine precision). 

2.4 Identities 

The FMM, as presented here, rests on two elementary 
identities. They, or formulas from which they may be easily derived, 
are found in many texts and handbooks on mathematical methods, 
such as M e n  [ 1 I ]  and Abramowitz and Stegun [ 121. The first, an 
expansion of the kernel in the integral, Equation ( 3 ) ,  for the imped- 
ance-matrix elements, is a form of Gegenbauer’s addition theorem, 

where j ,  is a spherical Bessel hnction of the first kind, hj’) is a 
spherical Hankel function of the first kind, 1; is a Legendre poly- 
nomial, and d < X .  When using this expansion to compute the field 
at x from a source at x’ ,  X will be chosen to be close to x - x’, so 
that d will be small. This relationship of the various vectors is 
sketched in Figure 1 .  The special functions are as defined in [12]. 
The second is an expansion of the product j / l $  in propagating plane 
waves. 

Substituting Equation (12) into Equation (1  I ) ,  we get 

0 

X J  X 

Figure 1. The basic geometry, illustrating the relationship 
between the locations x,x’  and the displacements X,x. 
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where we have performed the illegitimate but expedient interchange 
of summation and integration The key point is that we intend to 
precompute the function 

for various values of K .  This is not a function in the I ,  -+ 3c ,  but 
that need not concern us, as we obviously intend to truncate the 
sum in numerical practice. The number of kept terms, I. + I ,  will 
depend on the maximum allowed value of kd, as well as the desired 
accuracy. The choice of L is discussed in Section 4 It suffices, for 
the present, to note that, in order to obtain accuracy from Equa- 
tion (1 l) ,  it must be slightly greater than KD, where D is the maxi- 
mum value of d for which the expansion will be used Ignoring this 
question for now (except for noting that the required number of 
terms becomes small as I1 4 0), we have 

Using this, the impedance-matrix element, Equation (3). is 
given by 

(16) 

In infinite-precision arithmetic, and in the limit of large L,  this result 
would be independent of the choice of X (for X > Ix - x’ - XI). In 
practice, one chooses X to make x - x ’  - X relatively small, so that 
excellent accuracy can be obtained with a modest value of L.  (That 
this can be done by the grouping scheme described below is a con- 
sequence of the local support of the basis fhctions.) Notice that 
Equation (16) gives the impedance-matrix element (for well- 
separated interactions) in terms of the Fourier transforms with H ~ W  

niimher k of the basis functions, i.e. the basis functions’ far fields. 
The acceleration provided by the FMM comes from the fact that 
these far fields can be grouped together hcforr the integral over k  ̂
is performed. 

3. Algorithmic prescription 

3.1 Setup 

1 Divide the N basis functions into M localized groups, 
labeled by an index ni, each supporting about N/M basis 
functions. (For now, M is a free parameter. Later it will 
be seen that the best choice will be M - a.) Thus, 
establish a correspondence between the basis-function 
index, t7, and a pair of indices (ni,a), where a labels the 
particular basis function within the mth group. Denote 
the center of the smallest sphere enclosing each group as 
X,, . The grouping and index correspondence is shown, 
for a simple case, in Figure 2. 

2.  For group pairs (ni,n7’) that contain “nearby” basis 
functions [defined for now as those whose regions of 
support are separated by a distance comparable to or 
smaller than a wavelength, 271 / k ,  so that Equation (1 6) 
is valid], construct the sparse matrix Z’,  with matrix 
elements 

by direct numerical computation of the matrix elements, 
Equation ( 3 ) .  For all other pairs, ZLIm,,=, = 0. 

This part of the matrix computation is identical to 
what is conventionally done. All matrix elements, the 
computation of which requires subtraction of singulari- 
ties, belong to Z‘. If the l a r g e 4  limit is taken with a 
fixed discretization interval and nearness criterion, this 
step would require O ( N )  computations. In Section 4, 
we define nearby regions precisely, and it turns out that 
their volume increases as fi, so that this step requires 
O( N ” ~ )  computations. 

For K directions k ,  compute the “excitation vectors” 
(Fourier transforms of the basis functions) 

where k is considered to be a parameter of the problem, 
not a variable. Because K needs to be chosen to give 
accurate numerical quadrature for all harmonics to some 
order a L - kD, K a L’ - (kD)’, and because (from 
geometrical considerations) kD 3c m, this step 
requires O(N’ / M )  computations. 

For each pair (n7,ni’) for which Z;lml,ar = 0 (regions 
that are not nearby), compute the matrix elements 

m=M-1 m=2 

Figure 2. The grouping for a simple surface. It is assumed, for 
purposes of illustration only, that each patch supports only one 
basis function. The correspondence n(m,a) is abbreviated in 
Table 1. 

Table 1. The abbreviated correspondence n t) (m,a)for the 
grouping shown in Figure 2. 

1 1 1 
1 2 2 
1 3 3 
1 4 4 
2 1 5 
2 2 6 
2 3 7 
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4. Required number of multipoles and directions 

In this section: 
(19) 

for the same K directions k^ as the previous step, where 
L 0~ f i .  If done in a naive manner, this computation 
requires 0(KLM2 - M ’ / 2 N 3 / 2 )  operations. However, it 

can be accomplished more rapidly in a number of ways, 
the most elegant being the fast Legendre expansion 
~ 3 1 .  

3.2 Fast Matrix-Vector Multiplication 

Rapid computation of the vector elements 

is accomplished by the following steps: 

1 

2 

3 

and 

Compute the KM quantities 

which represent the far fields of each group ni. This step 
requires O( KN - N’ / M )  operations. 

These represent the Fourier components of the field in 
the neighborhood of group ni, generated by the sources 
in the groups that are not nearby. This step requires 
O( KM’ - M N )  operations. 

The first term is the standard MOM computation of near 
interactions, and the second term gives the far interac- 
tions, in terms of the far fields generated by each group. 
This step requires O(xN - N 2  / M )  operations. 

Straightforward substitution of Equations (1  S), (1 9), (2 1 ), 
(22) into Equation (23), and of Equations (14)-(16) into 

Equation (20), shows that the two expressions for the vector B, 
Equations (23) and (20), give equal results. Thus, computation of 
the vector B reauires aNu + bN’ I M operations, where a and b 
are machine and implementation 
count is minimized by choosing 
O( N3’2) algorithm. 

10 

dependent. The total operation 
M = J b N l a :  the result is an 

We show how to choose the summation limit in the 
transfer function Tnfnl,(i), Equation (19), to achieve the 

desired accuracy (in the process, giving a precise defini- 
tion of nearby regions) 

We discuss how to choose the K directions k^ ,  for the 
tabulation of angular functions. 

One must choose L large enough that the multipole expansion 
of the Green’s function, Equation (1 l), converges to the desired 
accuracy As a function of I ,  the Bessel functions j l ( z )  and h/’)(z)  
are of roughly constant magnitude for I < z . For / > z ,  j l ( z )  decays 

rapidly and h!”(z) grows rapidly. While one must choose 
L > kd = klx - x’ - X,,,,,,1 (so that the partial-wave expansion has 
converged), L cannot be taken to be much larger than kX,,,,,., 
because the transfer function, Equation (14), will oscillate wildly, 
causing inaccuracies in the numerical angular integrations of Equa- 
tions (15) and (23). This condition is a consequence of the inter- 
change of summation and integration in Equation (13). An excellent 
semi-empirical fit to the number of multipoles required for single 
precision (32-bit reals) is 

where D 2 I /  k is the maximum d which will be required (the 
“diameter” of the basis-hnction groups). For double precision (64- 
bit reals), our estimate is 

If the L dictated by the appropriate formula exceeds kX,,,. ,  then 
the groups are too close to use the FMM, and their interaction must 
be represented in the sparse matrix Z‘ . 

The K directions i ,  at which the angular hnctions are tabu- 
lated, must be sufficient to give a quadrature rule that is exact for 
all spherical harmonics of order / < 2 L .  A simple method [2] for 
accomplishing this is to pick polar angles B such that they are zeros 
of PL(cosB), and azimuthal angles 4 to be 2L equally spaced 
points. Thus, for this choice of k  ̂ = (sin Bcos4,sin &in 4,cosB), 
K = 2L’. If more-efficient quadrature rules for the sphere (of the 
type described by McLaren [ 141) are used, then K r (4 / 3)L’. Since 
kD cx JN/M, this justifies the assertion made in Section 3.1 that 
K x N I M  

5. Application to electromagnetic fields 

In the solution of the electric-field integral equation, the 
impedance-matrix elements take the form [ 151 

3 

Z,,,. = -i ~ d 2 x ~ d ~ x ’ & ( x ) G ~ u ~ ( x  - x’),j&(x’), (26) 
J . J ’ = ~  .T J 

where 
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and the indices j,j’ label Cartesian components. As implied in 
Section I ,  one can integrate by parts, and simply use the scalar pre- 
scription, given above, on the three components o f f  and the scalar 
V * f  . This is not, however, the most economical procedure. By 
differentiating with respect to d under the integral in Equation (1 5), 
we get 

G,,,(X+d) t-jd2i(6,,. ik  - 

47T 

Now it can be easily seen that the scalar prescription presented in 
Section 3 can be modified to an electromagnetic one, by promoting 
the quantities V,,, s k , and g,, k to three-dimensional vectors, 
with 

, I ( - )  (7 

and using a dot product in the f d 2 i  term of B,,,, Equation (23). 

This method can be implemented using about half the storage of the 
four-fold use of the scalar formula, because the vector V,,, has 

only two independent components: 

6. Physical interpretation 

The physics of the Fh4M rests on the following fact: given a 
field, ~ ( x ) ,  which satisfies the wave equation 

(V2 + k 2 ) w ( x )  = 0 ,  

for all x outside a given sphere, the field can be reconstructed 
everywhere outside that sphere from its far field [16, 171. This 
means that if the field is radiated by a source density, A x ) ,  sup- 
ported only within a sphere of radius R centered at the origin, 

then the contribution of the “off-shell’’ (q2  # k 2 )  components in the 
Fourier expansion of the Green’s function [ 1 11, 

erklr-n‘l d3q elq (x-1’ )  

(32) - -  
4 ~ . r ( x - x ’ (  ’(27rf ( q 3 q 2  - k2 - i s ’  

(where E is a infinitesimal positive number, prescribing the correct 
treatment of the singularity at q2 = k 2 )  are determined for x > R 
(after integration over d 3 x ’ )  by the radiation condition and the “on- 
shell” components. The on-shell components, coming from the 
residue of the pole at (I’ = k 2 ,  give the imaginary part of the 
Green’s function, and the off-shell components give the real part. It 
is important that the off-shell part is riot determined by the on-shell 
part for x‘ < R .  This is related to the divergence of the series in 
Equation (1  1) for d > X. This interpretation explains why the far 
interactions can be computed [Equation (23)lfrom the radiation 
pattern s,(k^) of the nith group. It also clarifies why one only need 

keep two components in V, g, and s for the electromagnetic case: 
the electromagnetic far field is transverse, and has only two inde- 
pendent components, 

7. Conclusion 

Present methods for computing radar and other scattering 
cross sections are limited by computer-processing and memory 
requirements. The significance of the increase in problem size made 
possible by the FMM can be illustrated by considering the calcula- 
tion of RCS for X-band radar. With current methods, the size of the 
largest body that can be accurately modeled is a few feet. With the 
same computing resources, the techniques that we have described 
will increase this by at least an order of magnitude. Such computa- 
tional capabilities would significantly reduce the technological risk 
of expensive projects employing stealth technology. They may 
likewise revolutionize other applications of scattering computa- 
tions, such as high-frequency circuit modeling, sonar, and geo- 
physical applications. 

Because the FMM accelerates computation of the matrix- 
vector product Z -  I ,  and thus only indirectly solution of Z* I = V ,  
we are frequently asked about the relative merits of direct and 
iterative solutions, and techniques to reduce the iterations required 
in a conjugate-gradient type of solution. These are important ques- 
tions, and are under study by us as well as many others. We con- 
sider them to be mostly beyond the scope of this article, but note 
that the FMM is compatible with “complexification,” and with 
preconditioning by a sparse matrix 

Although we have only demonstrated the use of the FMM for 
surface-scattering problems, its application to volume-integral 
equations (necessary for the analysis of penetrable inhomogeneous 
scatterers) is obvious. When comparison to other techniques for 
computing the fields of volume source distributions is made, it 
should be noted that in this case the matrix T in Equation (8) is a 
strict convolution, and as such can be applied by FFT, resulting 
immediately in an O(Nlog N )  algorithm, without hrther decom- 
position. 
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Abstract—Various methods for efficiently solving electromag-
netic problems are presented. Electromagnetic scattering prob-
lems can be roughly classified into surface and volume problems,
while fast methods are either differential or integral equation
based. The resultant systems of linear equations are either solved
directly or iteratively. A review of various differential equation
solvers, their complexities, and memory requirements is given.
The issues of grid dispersion and hybridization with integral
equation solvers are discussed. Several fast integral equation
solvers for surface and volume scatterers are presented. These
solvers have reduced computational complexities and memory
requirements.

Index Terms—Numerical methods.

I. INTRODUCTION

COMPUTATIONAL electromagnetics is a fascinating dis-
cipline that has drawn the attention of mathematicians,

engineers, physicists, and computer scientists alike. It is a
discipline that creates a symbiotic marriage between math-
ematics, physics, computer science, and various application
fields. Computational techniques for solving electromagnetic
wave scattering problems involving large complex bodies and
for analyzing wave propagation through inhomogeneous media
have been intensely studied by many researchers in the past
[1]–[12]. This is due to the importance of this research in many
practical applications, such as the prediction of the radar cross
section (RCS) of complex objects like aircraft, the interaction
of antenna elements with aircraft and ships, the environmental
effects of vegetation, clouds, and aerosols on electromagnetic
wave propagation, the interaction of electromagnetic waves
with biological media, and the propagation of signals in high-
speed and millimeter wave circuits.

Due to the large electrical dimensions of typical aircraft,
past efforts to ascertain their scattering cross section and
their interaction with antennas have exploited approximate
high-frequency techniques such as the shooting and bouncing
ray method [13]. However, the recent phenomenal growth in
computer technology, coupled with the development of fast
algorithms with reduced computational complexity and mem-
ory requirements, have made a rigorous numerical solution
of the problem of scattering from electrically large objects
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feasible. These numerical techniques involve either solving
partial-differential equations with the finite-difference method
(FDM) [6]–[9] or the finite-element method (FEM) [10]–[12]
which result in sparse matrices, or integral equations which
are converted into dense matrix equations using the method
of moments (MoM) [1]–[5].

In a previous paper [14], we underscored the importance
of reducing the computational complexity of computational
electromagnetics techniques, especially for large-scale electro-
magnetic problems. We reviewed several direct solvers with
reduced computational complexity whereby the solution is
sought for all right-hand sides. These direct solvers are the
recursive aggregate T-matrix algorithm (RATMA) [15], [16],
and the nested equivalence principle algorithm (NEPAL) [16],
[17]. In this paper, we will first review differential equation
solvers, and discuss their computational complexities. We next
focus on recent work in integral equation solvers, and contrast
their complexities with those of differential equation solvers.
Throughout, we will focus primarily on iterative solvers, which
are used ubiquitously for solving both differential and integral
equations. Iterative solvers, in general, require less memory
storage, and exhibit reduced computational complexities when
compared to direct solvers. Hence, they portend an important
method for large scale computing.

II. DIFFERENTIAL EQUATION SOLVERS

A popular way to solve electromagnetic problems is to
solve the associated partial differential equation directly.
These methods can be considered as the first fast solution
methods in electromagnetics because one can solve an

unknown problem with computational complexity less
than and memory requirement less than .
Differential equation solvers usually involve either the FEM
[10]–[12] or the FDM [6]–[9]. The pertinent matrix equation
is sparse with nonzero elements. Consequently, a
matrix–vector multiply can be performed in operations.
By properly ordering the elements, the bandwidth of the
pertinent matrix equation can be compressed and inverted
very efficiently [18]. Differential equation solvers are usually
applied to volumetric problems and, hence, the following
discussion is pertinent to volumetric cases.

Partial differential equations (PDE’s) for electromagnet-
ics can be roughly categorized into elliptic type (static or
Laplacian-like) for low frequencies, hyperbolic type (wave-
like) for high frequencies, and parabolic type (diffusion like)
for intermediate frequencies and lossy media. Elliptic PDE’s
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shave the advantage of positive definiteness [18]; hence, when
iterative methods are used to solve the associated matrix
equation, a definitive statement can be made about their
convergence rates. For instance, when the conjugate gradient
(CG) method [19], [20] is used to solve the Poisson equation,
it converges in steps in two dimensions, and in

in three dimensions. When the multigrid method
is used to solve the same equation, the number of iterations is
independent of the size of the problem [18]. As a consequence,
the total computational labor associated with the conjugate
gradient method to solve such problems scales as in two
dimesnions and in three dimensions, while it scales as

for multigrid methods.
For hyperbolic (wavelike) problems which are indefinite,

these computational complexities can only be regarded as
lower bounds, because with the change of geometry, resonance
can occur, and the number of iterations needed for convergence
in an iterative solver can diverge. Multigrid solvers exploit the
scale-invariant nature of an elliptic (Laplacian-like) equation
to reduce the computational complexity. But when applied
to the Helmholtz wave equation (hyperbolic), the computa-
tional complexity is not reduced, because the Helmholtz wave
equation is not scale invariant.

When the finite-difference time-domain (FDTD) method is
used to solve the wave equation directly in the time domain,
the computational complexity is the same as CG ( in two
dimensions and in three dimensions) where they are
lower bounds [21] except that FDTD generates the solution
for all time and, hence, all frequencies at once. It is also
an optimal algorithm in the sense that it generates
numbers in operations.

Of interest also is the spectral Lanczos decomposition
method (SLDM) [22], [23]. While it does not reduce the
computational complexity compared to CG, it offers an ad-
vantage when there are large regions of homogeneity. Also, it
can generate the solution for all frequencies without additional
computational cost [23]. For numerical simulation of waveg-
uides where a large section of uniformity exists, the method of
lines [24] and the numerical mode-matching method [25], [26]
offer an advantage over other differential equation methods in
terms of speed.

When applied to a scattering problem, a PDE solver requires
absorbing boundary conditions (ABC’s) [21] to truncate the
simulation region. Many ABC’s have been proposed so that
the sparsity of the matrix can be maintained. However, these
ABC’s are approximate and have to be imposed at a substantial
distance from the scatterer to reduce the errors incurred by
them. Recently, an absorbing material boundary condition
(AMBC), called perfectly matched layer (PML), has been
suggested by Berenger [27] and worked on intensely by a
number of workers [28]–[35]. This AMBC is particularly
well-suited for the parallel implementation of FDTD solvers
because it permits parallel computers to operate in a single-
instruction-multiple-data (SIMD) mode [28].

Another approach to truncate the simulation region is to
employ the eigen function expansion of the scattered field
outside a separable boundary. This separable boundary can
either be circular or elliptical in two dimensions and spherical

Fig. 1. Proper ordering of the elements of an FEM matrix that is cou-
pled to a surface integral equation causes the dense matrix to reside at
the bottom right-hand corner, making the system matrix suitable for the
matrix-partitioning method.

or spheroidal in three dimensions. The resultant method is
often referred to as the unimoment method [36]–[39]. Through
the use of coupled basis functions for the separable boundary,
the differential equation can be effectively decoupled from the
dense matrix generated from the eigen function expansion. The
dimension of this dense matrix is, however, rather small. In
two dimensions, it is about where is the largest linear
dimension of the scatterer.

Alternatively, surface integral equations (which can be
considered to be numerically exact ABC’s) can be used to
truncate the mesh of the differential equation solvers [40],
[41]. By so doing, the boundary of the simulation region can
be brought much closer to the surface of the scatterer, thereby
reducing the size of the simulation region and the number of
associated unknowns. However, such a method of “absorbing”
the outgoing wave results in a partially dense matrix in the final
matrix system for the problem.

By a proper ordering of the nodes in FEM [41], [42],
the dense matrix will reside only at the bottom right-hand
corner of the matrix system as shown in Fig. 1. In this
manner, the inverse of the matrix system can be found by the
matrix-partitioning method. When nested-dissection ordering
[43] is applied to the sparse part, and LU decomposition is
applied to the dense part, the overall computational complexity
is of in two dimensions, and of in three
dimensions. The memory requirements are in
two dimensions and in three dimensions [18].

When iterative methods are used to solve the matrix system
as shown in Fig. 1, the matrix–vector multiply from the dense
submatrix could become a bottleneck in three dimensions or
for thinly coated metallic scatterers. However, with the use of
fast integral equation solvers [44], [45] this bottleneck could be
removed. The example of hybridizing a fast integral equation
solver and FEM has been illustrated [46]. Fig. 2 shows the
comparison of such a calculation with experiments [47] when
applied to an elliptically contoured crack in a ground plane.
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Fig. 2. Backscatter RCS of an elliptic contoured crack in a ground plane as
a function of frequency at the incidence angle� = 70� (20� from grazing
incidence) and� = 85� (5�from the minor axis). The crack is 0.635 cm deep
and filled with air.

One of the drawbacks of differential equation solvers is the
grid dispersion error incurred [48]–[50]. The grid dispersion
error causes a wave to have a different phase velocity on a grid
compared to the exact solution. This error can be suppressed
by using a higher grid density, but at the expense of increased
computational labor. Because the error is cumulative, it is
particularly pronounced for simulation over a large region or
for large scatterers. To suppress the error, the grid density
has to increase as the simulation region increases in size.
For second-order accurate schemes, the grid density in one
dimension (number of points per wavelength) has to grow as

where is the “diameter” of the simulation region and
is the wave number of the wave [49]. Therefore, the number

of unknowns grows as in one dimension. Hence, in two
dimensions, the number of unknowns scales as while in
three dimensions, it scales as . A remedy for this is to
use a higher order accurate differential equation solver [51],
[52] or to couple the differential equation solver to an integral
equation solver when large homogeneous regions exist.

III. I NTEGRAL EQUATION SOLVERS

Alternatively, a scattering problem can be cast into an
integral equation. Integral equation solvers usually involve a
smaller number of unknowns than differential equation solvers
because only the induced sources are unknowns, whereas in a
differential equation, the field is the unknown. For example,
for a metallic scatterer, the induced current resides only
on the surface of the scatterer. Hence, for a scatterer in a
three-dimensional (3-D) space, the induced current exists in
a space of smaller dimensions, greatly reducing the number

of unknowns required to accurately represent the solution,
except for inhomogeneous scatterers. However, integral equa-
tion solvers result in dense matrices. If the matrix equation
is then solved by LU decomposition (Gaussian elimination)
or alternatively by an iterative technique such as the CG
or related methods [19], [20], the computational labor may
be excessive. LU decomposition requires operations
and memory storage and provides a solution for all
excitations of the scatterer. CG requires operations
per iteration for dense matrices, because the most costly step
in a CG iteration is in the matrix–vector multiply. In general,
the number of iterations grows with the electrical size of the
scatterer. A straightforward implementation of CG requires

memory storage, providing a solution that is valid for
only one excitation. However, it is possible to iteratively solve
the pertinent equation concurrently for multiple right-hand
sides, thereby exploiting as much as possible the redundancies
in the right-hand sides [53].

The high-computational complexity of the aforementioned
solution schemes precludes their application to the analysis
of scattering from large structures. Many researchers have
attempted to reduce the complexity of the traditional MoM
algorithm by reducing the computational labor of the pertinent
matrix–vector multiplies. For surface scatterers, Rokhlin [44]
proposed the fast-multipole method (FMM) to reduce the
computational complexity of matrix–vector multiplies in an
iterative method. Canning [54] has developed the impedance-
matrix localization (IML) method, which uses basis functions
that produce directed beams. This results in a sparse MoM
matrix, which in turn, expedites a matrix–vector multiply. The
IML works well for smooth surfaces, but not for nonsmooth
surfaces. In a similar spirit, the complex multipole beam
approach has been introduced [55], but it again works only
for smooth surfaces.

Wavelet transforms [56]–[61] have also been used to yield
sparse matrices that can be solved rapidly. Since wavelets
are scale invariant, they are well suited for solving static or
low-frequency (elliptic) problems. When wavelets are used
to sparsify matrices resulting from an integral equation of
static, they sparsify the matrices to elements,
reducing the operation count of a matrix–vector multiply
to . For wavelike problems, even though these
methods expedite matrix–vector multiplies, they do not reduce
the computational complexity [61] when the scatterer size
grows with respect to wavelength. Many methods have been
proposed in the past which, even though will reduce solution
time, do not reduce the computational complexity [62]–[65].

For volumetric scatterers, several recursive and nesting
algorithms have been developed to directly obtain the solutions
of integral equations for all right-hand sides [14]–[17]. Also,
in an iterative method, the FFT can be used to expedite the ma-
trix–vector multiply and reduce the computational complexity
and memory requirement for solving such scattering problems
[66]–[77].

Here, we will first discuss fast methods to solve volume
integral equations rapidly using FFT [66]–[72]. Then, for
surface integral equations, we will first discuss the use of
wavelet transforms to expedite matrix–vector multiplies in an
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iteration solution method. Finally, we will discuss the use of
the FMM related methods, and various multilevel algorithms
to accelerate matrix–vector multiplies in an iterative solver.

IV. I TERATIVE METHODS FORVOLUME SCATTERING

Scattering from a volumetric object can be analyzed effi-
ciently using iterative methods where the bottleneck is the
matrix–vector multiply involving a dense matrix. The ma-
trix–vector multiply represents the action of the Green’s op-
erator on induced currents in the scatterer. Since the Green’s
operator is translationally invariant, this action can be written
as a convolutional integral

(1)

where is the Green’s function and is the induced
current. Such action can be expedited using an FFT, with
a complexity of [66]–[70]. However, in three
dimensions, the Green’s function for electromagnetic scatter-
ing is highly singular (as in the dyadic Green’s function).
Therefore, a high sampling rate is needed to perform the
above convolution accurately. To mitigate the singularity of
the dyadic Green’s function, a difference operator is used to
approximate the differential operator in the dyadic Green’s
function in [67]. In a similar vein, [68] proposed the use of
a weak formulation of the integral equation plus a spherical
mean approximation. In [69], the induced current is expanded
in terms of a continuous function, even though the induced
current, which is proportional to E, should be a
discontinuous function.

Alternatively, we can discretize the above integral by pro-
jecting it on to a smaller subspace using the MoM [1],
converting the integral operator into a matrix operator. The
singularity of the Green’s operator is being mitigated by this
projection. When the subspace is spanned by subdomain basis
functions, and the mesh used is rectilinear, the pertinent ma-
trix is (block) Toeplitz [70]. Consequently, the matrix–vector
multiply can be performed exactly by using an FFT requiring

operations. Fig. 3 shows the bistatic RCS of a
layered sphere computed using such a method. The sphere is
modeled by 90 000 unknowns, and a matrix–vector multiply
can be performed in several minutes on a 10 MFLOPS
machine.

Alternatively, we can decompose the inhomogeneous scat-
terer into subscatterers, whose scattering is characterized by
a T matrix. Then a set of linear algebraic equations accounting
for the multiple scattering between the subscatterers is derived.
When the scatterers reside on a regular array, the pertinent
matrix equation has a Toeplitz structure, and the FFT can be
used to compute the matrix–vector multiply in
operations [71], [72].

Both this method and the MoM method avoid the singularity
of the Green’s function, and only a low sampling rate is needed
to perform the FFT accurately. Fig. 4 shows the bistatic RCS
of a dielectric sphere computed using such a method. This
method does not have low-frequency instability problems as
opposed to some FEM formulations as discussed in [78], [79].

Fig. 3. The bistatic RCS of a three-layered spherical scatterer. The solid line
is from the Mie series solution; the dashed line is for the numerical solution
using BiCG–FFT.a1 = 0:169 m, �r; 1 = 1:2, a2 = 0:339 m, �r;2 = 2:0,
anda3 = 0:508 m, �r; 3 = 2:4; with 31� 31� 31 grids. This problem has
about 90 000 unknowns and the frequency is 590 MHz (�0 = 0.508 m).

Comparison of the efficiency of the CG–FFT method and
recursive aggregate T-matrix algorithm (RATMA) has been
presented in [73], [74]. When a scatterer is lossless, RATMA
is superior to CG–FFT. But when the scatterer is lossy, the
number of iterations required is small, and CG–FFT is more
efficient than RATMA.

The CG–FFT method can also be used to expedite the
solution of the scattering from a cluster of randomly distributed
spheres and randomly distributed cylinders. When the subscat-
terers do not reside on a regular array, a precorrected method
can be used to derive a Toeplitz matrix structure, and FFT can
again be used to accelerate the matrix–vector multiply [71],
[76]. The precorrected FFT method has also been used in the
adaptive integral method (AIM) [77], which will be discussed
in greater detail in Section XI.

V. WAVELETS

There have been many attempts at using wavelets to solve
scattering problems [56]–[61]. Such approaches have met with
some success at lower frequencies due to the elliptic nature of
the electrostatic problem. For instance, wavelets can be used to
sparsify the boundary integral equation of electrostatics. The
originally dense matrix resulting from discretizing this integral
equation reaches a sparsity of after applying
a wavelet transform [80]. This sparsity occurs because the
integral operator belongs to the class of Calderon–Zygmund
operators [80], [81], where the kernel is infinitely smooth.
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Fig. 4. The bistatic RCS of a dielectric sphere computed using the
BiCG–FFT T-matrix method. The solid line is from the Mie series solution;
the dashed line is the numerical solution. Here, the radius equals 10�5

�0

and �r = 4:0. A 16 � 16 � 16 grid is used. The number of iterations
needed to solve this problem is independent of the number of unknowns at
such a low frequency.

A physical explanation is that at low frequencies, wavelet
function currents generate only localized fields. In other words,
in electrostatics the interaction between wavelet sources is
mainly short range. This is particularly so for interactions due
to the “fine features” of the sources. In addition, electrostatic
problems are scale invariant, as are the wavelet bases.

For PDE’s, the associated matrix is already sparse. Hence,
there is no apparent advantage to applying a wavelet trans-
form to such a matrix. However, for elliptic PDE’s (static),
the wavelet transform generates a matrix that can be easily
preconditioned so that the resultant condition number of the
matrix is of order one, irrespective of the size of the scatterer
[82]. As a result, when an iterative solver is used, the number
of iterations is independent of the problem size and it can be
solved in operations. Therefore, wavelets for elliptic
PDE’s offer advantages similar to those of multigrid.

Unfortunately, for wavelike problems the associated integral
equation has an oscillatory kernel. In other words, wavelike
problems are not scale invariant. Hence, there is no clear
advantage to using a wavelet transform on such a kernel,
as one can show that the sparsity of the matrix cannot be
reduced to less than , the lower bound being related
to the Nyquist sampling rate in Fourier analysis [61]. The
physical explanation is that when the length scale of a wavelet
equals or exceeds the wavelength, it becomes an efficient
radiator. Hence, strong long-range interactions exist between
these basis functions irrespective of the problem size. The long

(a) (b)

Fig. 5. The matrices after wavelet transform appear sparse but are dense at
the bottom right-hand corner. The left one is for a circular cylinder, while
the right one is for an L-shaped cylinder. Daubechies wavelets with eight
vanishing moments are used.

range interaction in electrodynamics falls off as ; this decay
cannot be ignored even over large distances.

Local cosine transforms have been suggested as a remedy
to this problem [83]. Local cosine current functions radiate a
field that has a sharply directed beam pattern as in IML [54].
As a result, the matrix becomes sparse when the scatterer has
a smooth surface. However, when the surface is rough, the
local cosine current function loses its sharply directed beam
pattern, and the matrix loses its sparsity.

Given a matrix equation resulting from discretizing an
integral equation using the method of moments with a pulse
basis

(2)

the corresponding wavelet basis representation can be related
to the pulse basis representation by a matrix transform

(3)

where is unitary when the wavelet basis is orthonormal
(though nonorthogonal wavelets are also used). By using (3)
in (2), we have

(4)

or

(5)

where

(6a)

(6b)

The matrix is the moment-method matrix represented in
the wavelet basis. Fig. 5 [61] shows two matrices from a two-
dimensional (2-D) electrodynamic boundary integral equation
for a circular scatterer and an L-shaped scatterer after wavelet
transform using Daubechies wavelets [84]. It is seen that the
bottom right-hand corner of the matrix remains dense.

Fig. 6 [61] shows the matrix sparsity as a function of
the number of unknowns for the circular scatterer and the
L-shaped scatterer. It is clear that the fraction of nonzero
elements remains a constant after the scatterer has increased
to a certain size. Here, a discretization density of ten points
per wavelength is used throughout the study. Hence, as the
size of the scatterer increases, its dimension increases with
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Fig. 6. The percentage of nonzero elements as a function of the number
of unknowns. It is seen that the percentage does not go down after awhile
because of the long-range interaction of wavelets in electrodynamics.

respect to the wavelength. However, if we keep the size of the
scatterer constant with respect to the wavelength and increase
the discretization density to increase the number of unknowns,
then the sparsity of the matrix will increase as expected. The
wavelet transform removes oversampling of the unknowns
beyond the Nyquist rate.

VI. FAST MULTIPOLE METHOD

For surface structures, there exists no direct solver with
reduced computational complexity for efficiently solving the
integral equation of scattering. Therefore, one resorts to an
iterative solver whereby the computational complexity of a
matrix–vector multiply can be reduced. Many methods for
expediting matrix–vector multiplies have been proposed, but
the FMM and its variants [44], [45], [85]–[92] hold most
promise in providing a fast method that applies to scatterers
of arbitrary geometry. The detailed mathematical description
of the FMM for electromagnetic problems can be found in the
aforementioned references. Therefore, we will describe this
method from a heuristic viewpoint.

A matrix–vector multiply involving a dense matrix and
a dense vector requires operations. This is illustrated by
Fig. 7. In essence, every element of a vector communicates
with every other element directly. Clearly, operations are
needed. The above is like connectingcities with direct flight
routes. The number of flight routes increases as. However,
if “hubs” are introduced in the flight routes, then their number
can be reduced, as shown in Fig. 8, where the number of flight
routes becomes less than . Since Fig. 8 represents a two-
level structure, a matrix–vector multiply would have to be
effected in three stages. Therefore, a matrix element has to
be factored as a product of three terms. In other words, a
matrix–vector multiply can be expressed as

(7)

Fig. 7. A one-level matrix–vector multiply where all current elements talk
directly to each other. The number of “links” is proportional toN2 whereN
is the number of current elements.

In the above, we assume that theelements in the vector are
divided in groups with elements each. Therefore, there are
a total of groups . Moreover, it implies that a matrix

derived from the integral equation of scattering can be
factored as

(8)

The above factorization is achievable by using the addition
theorem, where corresponds to the center of theth group,
which contains the th element. This is possible forand
belonging to different nonoverlapping groups. Unfortunately,
in the above, a scalar number is converted into a product
of a vector, a matrix and a vector. Therefore, even though
the number of “routes” diminishes as shown in Fig. 8, the
number of operations is not reduced; it is still of . It
can be shown that the dimensions of and in (7) are
proportional to , the number of elements in the group it
represents. Fortunately, a change of basis to the plane-wave
basis diagonalizes the matrix . This diagonalization was
first achieved by Rokhlin [44]. Hence, one can write

(9)

where is now a diagonal matrix. By so doing, the number
of operations for a matrix–vector multiply as expressed by (7)
can be reduced for the nonnearest neighbor (nonoverlapping)
groups. Choosing the group size , the matrix–vector
multiply can be effected in operations [44], [45],
[85], [86]. Fig. 9 shows the use of the FMM to calculate the
electromagnetic scattering of a NASA almond [86].

VII. RAY-PROPAGATION FAST MULTIPLE

ALGORITHM (RPFMA)

In the FMM, a matrix–vector multiply is expressed as

(10)
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Fig. 8. A two-level matrix–vector multiply where “hubs” are established to
reduce the number of direct “links” between the current elements. This could
potentially reduce the complexity of a matrix–vector multiply.

Fig. 9. Monostatic RCS of a 1-m long NASA almond at 2.5 GHz in thexy

plane with� = 90�. Five unknowns are used per wavelength. The results are
computed with LU decomposition, and partially with FMM. The experimental
measurement by Ohio State University [3] is also given for comparison.

The first step

(11)

calculates the plane waves with-vectors on a sphere (or a
circle in two dimensions) radiated by the sourcesin group

. Then the second step

(12)

calculates the plane waves with different vectors on a
sphere received by group after the plane waves have been
translated through the space separating the centers of groups

and . Then, the last multiply

(13)

redistributes the plane waves received by groupto the th
element of the group.

If the groups and are far apart, it is clear that not
all plane waves on a sphere will participate in the interaction
between the elements of the two groups [87], [88]. In fact,

Fig. 10. Validations of CFIE [94] with MLFMA against the Mie series of the
bistatic RCS of a metallic sphere of radius 1 m at 2.4 GHz (�0 = 12:5 cm)
for VV polarization. 110 592 unknowns with a six-level FMM are used. The
RCS is normalized by�a2. The computation takes 24 h on a 10-MFLOPS
machine.

ray physics dictates that only a small fraction of the plane
waves accounts for the interaction between the two groups.
Therefore, the dimension of the matrix can be reduced to
manifest this ray physics. Then the cost of the operation in
(10) can be further reduced. Because of this, more intragroup
calculation is desired. In this case, we choose ,
and the complexity of a matrix–vector multiply can be further
reduced to .

A simplification of ray-propagation fast multiple algorithm
(RPFMA) is the fast far-field approximation (FAFFA) [89].
This method greatly simplifies the matrix elements for the
far interactions between the elements; hence, they can be
computed as needed. Therefore, an algorithm with
memory requirement is possible in this case.

VIII. M ULTILEVEL ALGORITHMS

A logical extension of the two-level FMM is a multilevel
algorithm [90]–[93]. In this case, the number of levels is
proportional to . If only operations are needed at each
level, this becomes an algorithm for matrix–vector
multiplies. Order operations can be maintained at each level
by interpolation and anterpolation [89], [90]. Fig. 10 shows
the use of the multilevel fast multipole algorithm (MLFMA)
to solve a 110 592 unknown problem on a workstation us-
ing the combined field integral equation [94]. The memory
requirement of this algorithm is , allowing large
problems to be solved on a small computer.

The matrix decomposition algorithm (MDA) and its multi-
level cousin (MLMDA) [95], [96] accelerate the iterative so-
lution of electromagnetic scattering problems involving large
scatterers. Unlike the FMM, which relies on an analytical diag-
onalization of the translation operator, the MDA and MLMDA
decompose MoM matrices using commonly available linear
algebraic techniques. The MDA and MLMDA directly exploit
the limited number of degrees of freedom (DoF) [97] that
characterize a field observed over a domain that is “well
separated” from a source domain.



540 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 3, MARCH 1997

(a) (b)

Fig. 11. (a) The MoM matrix. (b) Decomposed MoM matrix. Blocks repre-
senting near-field interactions are stored classically, while blocks representing
far-field interactions are stored as products of low-rank matrices (MDA) or
are aggregated and stored using an FFT-like scheme.

The MLMDA differs from the MDA in that off-diagonal
blocks of the MoM matrix are aggregated into larger entities
and decomposed using a multilevel algorithm that resembles
an FFT as shown in Fig. 11. The memory requirements and
the computational complexity of the MDA are while
those for the MLMDA asymptotically approach .
The MLMDA can easily be incorporated into existing MoM
programs. The MLMDA has been applied to the solution of
scattering problems involving large 2-D scatterers with 50 000
unknowns.

IX. FAST STEEPESTDESCENTPATH ALGORITHM (FASDPA)

The fast steepest descent path algorithm (FASDPA) [98],
[99] constitutes a novel two-level algorithm that hybridizes the
FMM and the MDA. Not unlike the FMM and the MDA, the
FASDPA starts from a spatial decomposition of the scatterer
into a large number of subscatterers, and interactions between
nearby subscatterers are accounted for directly. Interactions
between distant subscatterers are expressed in terms of a
small set of equivalent sources that exhaust the degrees of
freedom of the interaction field, as in the MDA. To permit
the algorithm to “recycle” information in a manner similar
to the FMM, the field radiated by each group is represented
in terms of a set of homogeneous plane waves. Equivalent
source amplitudes are obtained from the plane wave spectrum.
More specifically, the FASDPA expresses the interaction field
between distant groups as (8). However, in contrast to the
FMM, where the matrix represents a diagonal translation
matrix for homogeneous plane waves emanating from the
source, the matrix for the FASDPA is empty except for
a small translation block, appearing on the diagonal. The
computational complexity of the FASDPA is per
iteration without proceeding to a multilevel scheme. Fig. 12
compares the RCS of a corrugated semicircular structure
computed using the FASDPA with results obtained using the
MLMDA.

X. FAST ALGORITHM FOR ELONGATED STRUCTURES

Numerical algorithms for analyzing electromagnetic scatter-
ing from elongated objects, i.e., structures whose dimensions
extend primarily along one spatial axis and which are uniform
or of limited extent along the other two axes, are of great
practical interest. A nonexclusive list of potential applications
includes the analysis of scattering from rough surfaces, wing-

Fig. 12. Bistatic RCS of corrugated semicircular structurep = 1:57�,
their depth isd = 0:5�, and the structure is illuminated by a TMz plane
wave traveling along the directionr = 9� (N = 400) and r = 639�

(N = 25600).

like structures, truncated and quasiperiodic structures, as well
as the analysis of radiation from large phased-array antennas.
Several methods have been proposed to seek an efficient
solution to such problems [100], [101].

The equivalent source algorithm for elongated structures
(ESAES) [102] is a fast direct solver for analyzing scat-
tering from such structures. ESAES is conceptually similar
to RATMA for planar structures [100]—both are based on
a recursive characterization of increasingly larger subscat-
terers using scattering matrices of reduced dimensions and
both algorithms have computational complexity and

memory requirements. The ESAE S abandons
the plane wave representation of the 2-D Green’s function
employed in [100] in favor of a reduced spatial representation
of the fields that are scattered by an elongated object. This
reduced spatial representation permits the computation of the
fields radiated by quasi-aligned sources and observed over
an elongated domain in terms of that radiated by
equivalent sources. The concept of a reduced field representa-
tion is directly related to that of the limited number of degrees
of freedom that characterize fields radiated by electromagnetic
sources [97]. This reduced field representation can be obtained
by augmenting an existing MoM code with purely algebraic
techniques, e.g., a singular value or a rank revealing QR
decomposition. We have applied the ESAES to 2-D structures
that measure several thousand wavelengths in length. Fig. 13
shows the bistatic RCS of a finite periodic structure computed
using the ESAES and compares the results to those obtained
using the MLMDA.

XI. A DAPTIVE INTEGRAL METHOD

Even though precorrected FFT methods have been used in
the past to solve electrodynamic [71], [76] and electrostatic
problems [103], a note is in order on a related technique
developed by Bleszynskiet al. [77], termed the adaptive
integral method (AIM), which has been successfully applied
to the analysis of scattering from very complex structures.
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Fig. 13. Bistatic RCS of a finite triangular grating of lengthL = 594�,
P = 6�, andH = 1:1� for normal TM plane wave incidence. Backscatter
grating lobes can be observed.

As in the FMM, the AIM separately considers near- and far-
field interactions when evaluating a matrix–vector multiply.
To compute far-field interactions, sources supported by the
scatterer are projected onto a regular grid by matching their
multipole moments (up to a certain order) to guarantee the
approximate equality of their far fields. Next, the fields at
other grid locations produced by these grid-projected currents
are evaluated by a 3-D convolution. Knowledge of these fields
permits the computation of fields on the scatterer through
interpolation. The projection and interpolation operators are
represented by sparse matrices, while the convolution can
be effected using an FFT. Unfortunately, the near fields
radiated by these grid currents do not match those radiated
by the original sources. Therefore, near-field interactions are
evaluated directly, and corrected for errors introduced by the
far-field operator.

For volumetric scatterers, the computational and memory
costs associated with the AIM scale as and

, respectively. For surface scatterers, its computational
complexity scales as and its memory require-
ments as . The computational complexity and memory
requirements of the MLFMA are and, hence,
asymptotically scale more favorably than those of the AIM.
Nonetheless, the AIM competes with the MLFMA because the
FFT butterfly tree is devoid of the complex interpolation and
anterpolation operators inherent in MLFMA. Also, the AIM
concept is applicable to all problems exhibiting convolutional
structure and is easier to implement than MLFMA. As a result,
the AIM has been successfully applied to the analysis of
scattering from very large three dimensional structures.

XII. CONCLUSION

We have reviewed fast solution methods for efficiently
solving electromagnetic scattering problems. Fast solution
methods for electromagnetic scattering problems will have a
definite impact in the area of computer-aided design of many
technologies that rely on Maxwell’s equations.

Even though a matrix–vector multiply for scattering prob-
lems only requires operations both for volume
scattering and surface scattering problems, the number of

iterations needed remains unpredictable. Therefore, precon-
ditioning techniques for reducing the required number of
iterations in iterative methods are urgently needed in solv-
ing electromagnetic wave scattering problems. Finally, even
though direct solvers with reduced computational complexities
are available for volumetric scattering problems, no such
solvers exist for surface scatterers, except for colinear (or
almost coplanar) structures. Hence, this remains an open
problem.

ACKNOWLEDGMENT

The authors would like to thank the National Center for
Supercomputing Applications (NCSA) at the University of
Illinois, Urbana-Champaign, for the computer time provided.

REFERENCES

[1] R. F. Harrington,Field Computation by Moment Method.Malabar, FL:
Krieger Publ., 1982.

[2] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shape,”IEEE Trans. Antennas Propagat.,vol.
AP-30, pp. 409–418, Mar. 1982.

[3] M. I. Sancer, R. L. McClary, and K. J. Glover, “Electromagnetic
computation using parametric geometry,”Electromagne.,vol. 10, pp.
85–103, 1990.

[4] D. L. Wilkes and C.-C. Cha, “Method of moments solution with
parametric curved triangular patches,” inIEEE APS Int. Symp. Dig.,
London, Canada, July 1991, pp. 1512–1515.

[5] E. H. Newman, “Polygonal plate modeling,”Electromagn.,vol. 10, pp.
65–83, 1990.

[6] K. S. Yee, “Numerical solution of initial boundary value problems in-
volving Maxwell’s equations in isotropic media,”IEEE Trans. Antennas
Propagat.,vol. AP-14, pp. 302–307, May 1966.

[7] S. S. Zivanovic, K. S. Yee, and K. K. Mei, “A subgridding method for
the time-domain finite-difference method to solve Maxwell’s equations,”
IEEE Trans. Microwave Theory Tech.,vol. 39, pp. 471–479, Mar. 1991.

[8] K. S. Kunz and R. J. Luebbers,The Finite Difference Time Domain
Method for Electromagnetics.Boca Raton, FL: CRC, 1993.

[9] A. Taflove, Computational Electrodynamics: The Finite-Difference
Time-Domain Method. Boston, MA: Artech House, 1995.

[10] P. P. Silvester and R. L. Ferrari,Finite Elements for Electrical Engineers,
2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 1990.

[11] J. M. Jin, J. L. Volakis, and J. D. Collins, “A finite element-boundary in-
tegral method for scattering and radiation by two- and three-dimensional
structures,”IEEE Antennas Propagat. Mag.,vol. 33, pp. 22–32, June
1991.

[12] J. M. Jin,The Finite Element Method in Electromagnetics.New York:
Wiley, 1993.

[13] S. W. Lee, H. Ling, and R. C. Chou, “Ray tube integration in shooting
and bouncing ray method,”Microwave Opt. Tech. Lett.,vol. 1, pp.
285–289, Oct. 1988.

[14] W. C. Chew, “Fast algorithms for wave scattering developed at the
Electromagnetics Laboratory, University of Illinois,”IEEE Antennas
Propagat. Mag.,vol. 35, pp. 22–32, Aug. 1993.

[15] Y. M. Wang and W. C. Chew, “A recursive T-matrix approach for the
solution of electromagnetic scattering by many spheres,”IEEE Trans.
Antennas Propagat.,vol. 41, pp. 1633–1639, Dec. 1993.

[16] W. C. Chew, C. C. Lu, and Y. M. Wang, “Review of efficient
computation of three-dimensional scattering of vector electromagnetic
waves,”J. Opt. Soc. Amer. A,vol. 11, pp. 1528–1537, 1994.

[17] C. C. Lu and W. C. Chew, “The use of Huygens’ equivalence principle
for solving 3-D volume integral equation of scattering,”IEEE Trans.
Antennas Propagat.,vol. 43, pp. 500–507, May 1995.

[18] O. Axelsson and V. A. Barker,Finite Element Solution of Bound-
ary Value Problems: Theory and Computation.New York: Academic,
1984.

[19] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,”J. Res. Nat. Bur. Standards,Sect. B, vol. 49,
pp. 409–436, 1952.

[20] T. K. Sarkar, “On the application of the generalized biconjugate gradient
method,”J. Electromagn. Waves Applicat.,vol. 1, no. 3, pp. 223–242,
1987.



542 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 3, MARCH 1997

[21] W. C. Chew,Waves and Fields in Inhomogeneous Media.New York:
Van Nostrand Reinhold, 1990; Piscataway, NJ: IEEE Press, 1995
(reprint).

[22] V. Druskin and L. Knizhnerman, “Two polynomial methods of calcu-
lating functions of symmetric matrices,”USSR Comput. Mathem. Phys.,
vol. 29, no. 6, pp. 112–121, 1989.

[23] , “A spectral semidiscrete method for the numerical solution of
3-D nonstationary problems in electrical prospecting,”Izv. Acad. Sci.
USSR: Phys. Solid Earth,no. 8. pp. 63–74, 1988.

[24] U. Schulz and R. Pregla, “A new technique for the analysis of the dis-
persion characteristics of planar waveguides,”Arch. Elek. Ubertragung,
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Übertragungstech (AËU), vol. 32, no. 4, pp. 157–164, 1978.

[95] E. Michielssen and A. Boag, “Multilevel evaluation of electromagnetic
fields for the rapid solution of scattering problems,”Microwave Opt.
Tech. Lett.,vol. 7, no. 17, pp. 790–795, Dec. 1994.

[96] , “A multilevel matrix decomposition algorithm for analyzing
scattering from large structures,” in11th Annu. Rev. Progress ACES,
Monterey, CA, Mar. 1995, pp. 614–620.

[97] O. M. Bucci and G. Franceschetti, “On the degrees of freedom of
scattered fields,”IEEE Trans. Antennas Propagat.,vol. 37, pp. 918–926,
July 1989.

[98] E. Michielssen and W. C. Chew, “Fast integral equation solver using
plane-wave basis representation along the steepest descent path,” in
URSI Radio Sci. Meet. Dig.,Newport Beach, CA, June 1995, p. 301.

[99] , “The fast steepest descent path algorithm for analyzing scattering
from two-dimensional scatterers,”Radio Sci.,to be published.

[100] W. C. Chew and C. C. Lu, “A fast recursive algorithm to compute the
wave scattering solution of a large strip,”J. Comput. Phys.,vol. 107,
pp. 378–387, 1993.

[101] K. Pak, C. H. Chan, and L. Tsang, “A SMFSIA method for the elec-
tromagnetic scattering from a two-dimensional (3-D scattering problem)
perfectly conducting random rough surface,” inIEEE AP-S Int. Symp.
Dig., Seattle, WA, June 1994, pp. 451–453.

[102] E. Michielssen, A. Boag, and W. Chew, “Scattering from large elon-
gated objects: Direct solution inO(N log2 N) operations,” in Symp.
Electromagn. Theory,St. Petersburg, Russia, May 1995, pp. 464–467.

[103] J. R. Phillips and J. K. White, “Efficient capacitance computation of
3-D structures using generalized pre-corrected FFT methods,” inProc.
3rd Topical Meet. Elect. Performance Elect. Packaging,Monterey, CA,
Nov. 2–4, 1994, pp. 253–256.

Weng Cho Chew(S’79–M’80–SM’86–F’93), for photograph and biography,
see p. 245 of the February 1997 issue of this TRANSACTIONS.

Jian-Ming Jin (S’87–M’89–SM’94) received the
B.S. and M.S. degrees in applied physics from Nan-
jing University, China, in 1982 and 1984, respec-
tively, and the Ph.D. degree in electrical engineering
from the University of Michigan, Ann Arbor, in
1989.

He joined the faculty of the Department of Elec-
trical and Computer Engineering at the University of
Illinois at Urbana-Champaign in 1993, after working
as a Senior Scientist at Otsuka Electronics, Inc.,
Fort Collins, CO. He has published more than 40

articles in refereed journals, authored the book,The Finite Element Method
in Electromagnetics(New York: Wiley, 1993), and co-authored another book,
Computation of Special Functions(New York: Wiley, 1996). He is currently an
Associate Editor of the IEEE TRANSACTIONS ONANTENNAS AND PROPAGATION.
His current research interests include computational electromagnetics, scat-
tering and antenna analysis, electromagnetic compatibility, and magnetic
resonance imaging.

Dr. Jin is a member of Commission B or USNC/URSI and Tau Beta Pi.
He is a recipient of the 1994 National Science Foundation Young Investigator
Award and the 1995 Office of Naval Research Young Investigator Award.

Cai-Cheng Lu (S’93–M’95) was born in Hubei,
China, on October 12, 1962. He received the B.S.
and M.S. degrees, both in electrical engineering,
from Beijing University of Aeronautics and As-
tronautics, China, in 1983 and 1986, respectively,
and the Ph.D. degree from University of Illinois at
Urbana-Champaign, in 1995.

Currently, he is working as a Research Scientist
at the Center for Computational Electromagnetics at
the University of Illinois at Urbana-Champaign. He
has been working on developing efficient algorithms

for the simulation of wave interactions with complex structures. His interests
are in the computational electromagnetics, scattering, and inverse scattering.

Dr. Lu is a member of Phi Kappa Phi.

Eric Michielssen (M’95), for photograph and biography, see this issue, p. 353.

Jiming M. Song (S’92–M’95), for photograph and biography, see p. 245 of
the February 1997 issue of this TRANSACTIONS.



































































1488 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 10, OCTOBER 1997

Multilevel Fast Multipole Algorithm
for Electromagnetic Scattering

by Large Complex Objects
Jiming Song,Member, IEEE, Cai-Cheng Lu,Member, IEEE, and Weng Cho Chew,Fellow, IEEE

Abstract—The fast multipole method (FMM) and multilevel
fast multipole algorithm (MLFMA) are reviewed. The number of
modes required, block-diagonal preconditioner, near singularity
extraction, and the choice of initial guesses are discussed to apply
the MLFMA to calculating electromagnetic scattering by large
complex objects. Using these techniques, we can solve the problem
of electromagnetic scattering by large complex three-dimensional
(3-D) objects such as an aircraft (VFY218) on a small computer.

Index Terms—Electromagnetic scattering, numerical analysis.

I. INTRODUCTION

RECENTLY, many researchers in the electromagnetics
community have investigated iterative solvers for integral

equations of electromagnetic scattering problems. The integral
equation is discretized into a matrix equation by the method
of moments (MoM). The resultant matrix equation is then
solved by, for example, the conjugate gradient (CG) method,
requiring operations for the matrix-vector multiplies
in each iteration, where is the number of unknowns.
A number of techniques have been proposed to speed up
the evaluation of the matrix-vector multiply. The impedance
matrix localization (IML) technique [1] allows the MoM
matrix to be replaced by a matrix with localized clumps of
large elements. The use of wavelet basis functions [2] reduces
the solution time by a constant factor but not the computational
complexity. The complex multipole beam approach (CMBA)
[3] represents the scattered field in a series of beams produced
by multipole sources located in the complex space, but it
is efficient only for smooth surfaces. The multilevel matrix
decomposition algorithm (MLMDA) [4] permits a fast matrix-
vector multiply by decomposing the MoM matrix into a large
number of blocks, each describing the interaction between
distant scatterers. The multiplication of each block with a
vector is executed using a multilevel scheme that resembles a
fast Fourier transform (FFT).

The fast multipole method (FMM) [5]–[9] was originally
proposed by Rokhlin to evaluate particle simulations and
to solve static integral equation rapidly. Barnes and Hut
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[10] and Hernquist [11] performed-body simulation using
hierarchical method which is simpler than the FMM. But its
computational complexity of is more than that of
the FMM, which is where is the number of particles.
The FMM was extended by Rokhlin to solve acoustic wave
scattering problems [12] and then to solve electromagnetic
scattering problems by many researchers in both two dimen-
sions [13]–[17] and three dimensions [18]–[20]. A two-level
FMM reduces both the complexity of a matrix-vector multiply
and memory requirement from to where
is the number of unknowns. A three-level FMM reduces it
to [12], [21]. With a nonnested method, using the
ray-propagation fast multipole algorithm (RPFMA) [16], [17],
a two-level FMM reduces the complexity to also.
The multilevel fast multipole algorithm (MLFMA) [22]–[25]
further reduces the complexity and memory requirement. Dem-
bart and Yip [23], [24] have implemented the MLFMA using
signature function, interpolation, and filtering, with a complex-
ity of . Song and Chew [25], implemented the
MLFMA with complexity and memory require-
ment using translation, interpolation, anterpolation (adjoint
interpolation), and a grid-tree data structure.

The numerical results for the radar cross section (RCS) of
some simple objects like the sphere, cube, and the NASA
almond are reported in [19], [20], and [25]. Since they are
closed smooth objects that are not very thin, the combined
field integral equation (CFIE) with uniform grids has a small
condition number and converges very fast. In this paper, we
will apply the MLFMA to large complex three-dimensional (3-
D) objects such as an aircraft (VFY218). The number of modes
required, preconditioner, near singularity extraction, and the
choice of the initial guess will be discussed.

II. M ULTILEVEL FAST MULTIPOLE ALGORITHM (MLFMA)

To implement a multilevel fast multipole algorithm
(MLFMA), we enclose the entire object in a large cube
first, which is then partitioned into eight smaller cubes. Each
subcube is then recursively subdivided into smaller cubes until
the edge length of the finest cube is about half a wavelength.
Cubes at all levels are indexed. At the finest level we find
the cube in which each basis function resides by comparing
the coordinates of the center of the basis function with the
center of cube. We further find nonempty cubes by sorting.
Only nonempty cubes are recorded using tree-structured data

0018–926X/97$10.00 1997 IEEE
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Fig. 1. Relative error in the dynamic scalar potential truncated for the first
L+ 1 terms (3) as functions of the distancer=� for d=� = 0:4 where cost
= d̂ � r̂.

at all levels [10], [11]. Thus, the computational cost depends
only on the nonempty cubes.

A. Number of Modes

The addition theorem for 3-D dynamic scalar Green’s
function has the form [18], [26]

(1)

where is the wavenumber, is a spherical Bessel function
of the first kind, is a spherical Hankel function of the first
kind, is a Legendre polynomial, and are two vectors,
and are their amplitudes with , and and are their unit
vectors, respectively. In this paper, time convention is
used. Using small argument approximations ofand , we
obtain the addition theorem for the 3-D static Green’s function

(2)

In numerical simulations, the infinite series in (1) and (2) are
truncated as

(3)

(4)

For the static case, the number of modes () needed in (4)
depends on the ratio ofto for a given desired accuracy. This
means that we can use the same number of modes for different
cube sizes. Due to oscillatory nature of dynamic fields, the
dynamic case is more complicated than the static case. In
Figs. 1 and 2 we plot the relative error in (3) as functions
of for different and . Fig. 1 is for and
Fig. 2 is for . From these two figures, the accuracy
does not increase even whenincreases beyond 2. When

Fig. 2. Relative error in the dynamic scalar potential truncated for the first
L+ 1 terms (3) as functions of the distancer=� for d=� = 0:8 where cost
= d̂ � r̂.

Fig. 3. Number of modes needed in (3) as functions ofkd for different
accuracies (̂d � r̂ = 1; r=� =1). Some semi-empirical formulas are plotted
for comparison.

increases, the number of modesrequired to maintain the
same accuracy increases.

In Fig. 3, we plot the number of modesneeded in (3) as
functions of for different accuracies. Some semi-empirical
formulas are plotted on the same figure for comparison. To
obtain less than 0.1 relative error

(5)

should be used in (3), and

(6)

should be used for less than 10 relative error. Equation
(6) is the same as the one given in [18] for single precision.
The FMM is applied to off-diagonal matrix elements only,
which are two to three orders less than diagonal matrix
elements for electromagnetic scattering problems. Hence, from
our numerical experience, calculated from (5) suffices for
decent current solutions and RCS.

The MLFMA is used to speed up the matrix-vector multiply
in the iterative methods. It decomposes the matrix-vector
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Fig. 4. Comparison of the convergence of solutions of CFIE using the
biconjugate gradient (BiCG) method for a 1-m NASA almond at 2.5 GHz
with or without different preconditionings.

multiply into two sweeps [27]: the first sweep consists of
constructing multipole expansions for each nonempty cube
at all levels. Since the multipole expansions are used for
calculating the fields outside the cube, they are called outer
multipole expansions. As one progresses from the finest level
to the coarsest level, the cube becomes larger and the number
of modes required in the multipole expansions increases. To
construct outer multipole expansions for each nonempty cube
at all levels, the outer multipole expansions are computed
at the finest level and then the expansions for larger cubes
are obtained using interpolation and shifting. The second
sweep consists of constructing local multipole expansions
contributed from well-separated cubes at all levels. At the
coarsest level, the local multipole expansions contributed
from well-separated cubes are calculated using translation.
At the other levels, the local expansions for smaller cubes
include the contributions from parent cubes using shifting
and anterpolation (adjoint interpolation) [28] and from well-
separated cubes at this level but not well-separated ones at the
parent level. The anterpolation matrix is the transpose of the
interpolation matrix.

B. Block-Diagonal Preconditioner

The CPU time for iterative methods is proportional to the
number of iterations needed to get the desired accuracy. The
convergence rate depends on spectral properties of the MoM
matrix. Hence, one may want to transform the original matrix
equation into that has
the same solution, but with a more favorable spectral property
where is called a preconditioner.

If basis functions in one of the finest cubes are considered
as one group, the matrix has block structure and can be
further divided as

(7)

where matrices and account for nearby interactions
and can be derived directly from the MoM matrix and
is the block-diagonal part. The matrix accounts for far
interactions and is performed by the MLFMA. Choosing

Fig. 5. Number of iterations as functions of incident angles for different
initial guesses: using zero initial guess for all angles and using the solution of
the previous angle as the initial guess for the next angle with/without phase
corrections.

as a preconditioner, we have

(8)

Since can be replaced by its LU decomposition (LUD)
form for , the block-diagonal preconditioner needs no
extra memory and no extra CPU time in each matrix-vector
multiply. is a block-diagonal matrix with a block size of

, which is the number of unknowns in one cube. When
is a constant, the LUD of takes

operations. In Fig. 4, we plot the normalized residual
norm as functions of iteration numbers for cases without
preconditioning, diagonal preconditioning, and block-diagonal
preconditioning. We find the current solution for a 1-m NASA
almond at 2.5 GHz for the wave incidence on the tip. The
incident electric field is parallel to its broad side. It is observed
that block-diagonal preconditioning converges much faster
than the other two.

C. Near-Singularity Extraction and Choice of Initial Guess

For very thin objects (like a wing), CFIE (combined field
integral equation) [29] has a smaller condition number than
those of an electric field integral equation (EFIE) and a mag-
netic field integral equation (MFIE). The null-space solutions
of the EFIE will not radiate and null-space solutions of the
MFIE will radiate. Therefore, both the EFIE and the MFIE
cannot give correct current solutions, while the EFIE gives
a correct RCS but the MFIE does not. However, the CFIE
always gives a correct current solution as well as a correct
RCS.

For finite-thickness objects only the self terms have a singu-
larity and only self-singularity extraction [30] is needed. For
very thin objects, both self- and near-singularity extractions
[31] are required to obtain correct matrix elements.

For iterative solutions of monostatic RCS, different incident
angles require different iterative solutions. Since a small
change in the incident angle corresponds to a small change in
the current, we use the current solution from the previous angle
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Fig. 6. Monostatic RCS of the wing (2080 flat triangular patches divided
from Northrop curvilinear quad patch model) at 300 MHz as functions of�

in the horizontal plane.

with phase correction as the initial guess for the next angle.
This technique reduces the number of iterations significantly.
As an illustration, we calculate the monostatic RCS from
the VFY218 at 100 MHz for vertical (VV) polarization. The
VFY218 is shown in the inset of Fig. 7(a). The wings of the
VFY218 are on the - plane (horizontal plane). Zero degree
( ) corresponds to the incidence angle on the nose. The
VFY218 is in (15.5 m) from nose to tail, 350.4 in (8.9 m)
from one wing to another, and 161.4 in (4.1 m) from top to
bottom. In Fig. 5, we plot the number of iterations for different
incident angles using three kinds of initial guesses. The first
case, which uses zero as the initial guess for all angles, needs
about 85 iterations on the average for each angle. The second
case, which uses the solution of the previous angle (2step
size) as the initial guess for the next angle, needs about 65
iterations per angle. The third case, which uses the phase-
corrected solution of the previous angle as the initial guess for
the next angle, needs only about 30 iterations per angle.

III. N UMERICAL RESULTS

The MLFMA has been implemented based on flat triangular
patches and curvilinear quad patches using both Galerkin’s
method and line matching where the testing functions are
constant along the line joining the centers of two adjacent
patches. For curvilinear quad patches, generalized rooftop
functions are used as basis functions [30]–[32]. The Rao,
Wilton, and Glisson (RWG) [33] basis functions are used for
flat triangular patches. The number of modescalculated from
(5) is used for numerical simulations. The code is verified by
comparing the results with those in the published literature
for conducting objects with different shapes like sphere, plate,
cube, NASA almond, etc. Our numerical results agree very
well with the analytical solutions, the measurements, and
the LUD solutions. Both the memory requirements and the
CPU time per iteration are of and a 110 592
unknown problem can be solved within 24 h on a SUN
Sparc10 [25] (6 h for setup, 17 h for 29 iterations to real

(a)

(b)

Fig. 7. Monostatic RCS of the aircraft VFY218 (Northrop curvilinear quad
patch model) at 100 MHz as functions of� in the horizontal plane. The
measurement data are from the Naval Air Warfare Center. (a) VV polarization.
(b) HH polarization.

0.001 normalized residual error, and 1 h for calculating 901
points of bistatic RCS).

Fig. 6 shows the monostatic RCS of a wing at 300 MHz
using the LUD for the EFIE and the MLFMA for the CFIE.
The wing size is 60 in 100 in 2.4 in and is originally
modeled by Northrop using curvilinear quad patches. Dividing
each quad patch as two flat triangular patches leads to a 3120
unknown problem. The wing is on the- plane, and zero
degree ( ) corresponds to normal incidence to the 60 in
short edge. The thickness in thedirection is only about 2%
to 4% of the lengths in the and directions. If the near-
singularity extraction is not used, we cannot obtain a correct
RCS from the CFIE. Using the near-singularity extraction, we
obtain a good RCS agreement between the EFIE and the CFIE.
This 3120 unknown problem can also be solved using the LUD
on a workstation. It is found that the RCS calculated using the
MLFMA agrees very well with that using the LUD for both
the EFIE and the CFIE. In Fig. 6, we plot the RCS calculated
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(a)

(b)

Fig. 8. Monostatic RCS of the aircraft VFY218 (Northrop curvilinear quad
patch model) at 300 MHz as functions of� in the horizontal plane. The
measurement data are from the Naval Air Warfare Center. (a) VV polarization.
(b) HH polarization.

using the LUD for the EFIE and the MLFMA for the CFIE
only. Good agreement is observed between the results.

Fig. 7(a) and (b) shows the monostatic RCS for the aircraft
(VFY218) at 100 MHz as functions of in the horizontal plane
using the Northrop curvilinear quad patch model for horizontal
(HH) and VV polarizations, respectively. Zero degree ( )
corresponds to an incidence angle on the nose. A five-level
MLFMA is used. The measurement data are from the Naval
Air Warfare Center, China Lake, CA. Good agreement be-
tween the numerical results and the measurements for both HH
and VV polarizations is observed. For this 25 508 unknown
problem, the MLFMA needs 167 MB of memory for this
single-precision code and requires 45 h of the CPU time on
one processor of an SGI Challenge machine (32 bits for each
word, 25 Mflops based on the LINPACK benchmark) for 182
incident angles. In contrast, the LUD solution is estimated to
need 5.2 GB of memory and 400 h of the CPU time for LUD
and calculations for each incident angle. We estimate

that only for 1600 incident angles, the MLFMA would need
the same CPU time as the LUD solution. But it needs memory
(167 MB) much less than the LUD solution (5.2 GB). The
comparison is more in favor of MLFMA when becomes
larger.

The longest edge in the Northrop VFY218 curvilinear quad
patch model is 0.106 at 100 MHz. We use the same model
to predict the RCS at 300 MHz using the MLFMA. The
monostatic RCS for HH and VV polarizations is shown in
Fig. 8(a) and (b), respectively. The numerical results are in
good agreement with the measurements.

IV. CONCLUSIONS

The MLFMA has been implemented for both flat triangular
patch and curvilinear quad patch geometry descriptions to
speed up the matrix-vector multiplies. Both the memory re-
quirements and the CPU time per iteration are of .
Using a block-diagonal preconditioner, near-singularity ex-
traction, and phase corrected previous solution for the initial
guess, we can solve for the electromagnetic scattering by large
complex 3-D objects such as an aircraft (VFY218) on a small
computer.
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Optimal Interpolation of Translation Operator in
Multilevel Fast Multipole Algorithm
Özgür Ergül, Student Member, IEEE, and Levent Gürel, Senior Member, IEEE

Abstract—Lagrange interpolation of the translation operator
in the three-dimensional multilevel fast multipole algorithm
(MLFMA) is revisited. Parameters of the interpolation, namely,
the number of interpolation points and the oversampling factor,
are optimized for controllable error. Via optimization, it becomes
possible to obtain the desired level of accuracy with the minimum
processing time.

Index Terms—Lagrange interpolation, multilevel fast multipole
algorithm, translation operator.

I. INTRODUCTION

THE multilevel fast multipole algorithm (MLFMA) [1], [2]
requires translations to convert the radiated fields of the

basis clusters into incoming waves for the testing clusters. In
a matrix–vector multiplication, translations are performed be-
tween the clusters that are at the same level but far from each
other. Through the factorization of the Green’s function, transla-
tion operators are independent from the radiation and receiving
patterns of the basis and testing clusters, respectively [3]. To be
employed repeatedly, these operators are calculated and stored
in the memory before the iterations.

Since direct calculation of the translation operators requires
operations, where is the number of unknowns, pro-

cessing time for their setup increases rapidly and becomes sub-
stantial as problem size grows. As a remedy, a two-step com-
putation is suggested based on the interpolation of the transla-
tion operator [4]: First, the translation operator is expressed as a
band-limited function of a variable and it is sampled at
points with respect to this variable. Second, the operator is eval-
uated at the required points by interpolation from the previous
samples. With an efficient interpolation algorithm, processing
time for the calculation of the translation operators is reduced
to .

In [4], Lagrange interpolation was proposed to efficiently fill
the translation matrices for large problems. However, the pa-
rameters of the interpolation, namely, the number of interpola-
tion points and the oversampling factor, were fixed. With the
parameters fixed, the interpolation error is not controllable and
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the processing time is not minimized. In this paper, we revisit
the Lagrange interpolation of the translation operators and op-
timize the parameters of the interpolation to obtain the desired
level of accuracy with minimum processing time. The optimal
parameters are compared to the fixed parameters to demonstrate
the improvement obtained with the optimization.

II. LAGRANGE INTERPOLATION OF THE

TRANSLATION OPERATORS

A three-dimensional (3-D) translation operator between a
pair of basis and testing clusters at the same level can be written
as

(1)

where is the spherical Hankel function of the first kind, is
the Legendre polynomial, is the wavenumber, and is a unit
vector representing the angular directions. The centers of the
basis and testing clusters are separated by the vector , where

(2)

The summation in (1) is truncated at , where is the number
of multipoles required to accurately represent the spectral con-
tents of both the translation operator and the related radiation
and receiving patterns. Considering cubic clusters with edges
and using the excess bandwidth formula [5] for the worst case
scenario [6]

(3)

where is the desired number of digits of accuracy.
In Fig. 1(a), the truncation number is plotted with respect

to and for different values of the cluster size increasing
by a factor of two from to , where is the wave-
length. For any problem, corresponds to the size of the
clusters at the lowest level of the multilevel tree structure. On
the other hand, the size of the largest clusters depends on the
size of the problem. Fig. 1(a) demonstrates that grows rapidly
as the cluster size increases. For a fixed , however, increases
gradually with respect to and the variation is small for large .

Processing time required to calculate the translation operator
in (1) is measured on a 1.8-GHz 64-bit Opteron-244 processor.
In Fig. 1(b), the processing time is plotted with respect to the
same parameters as in Fig. 1(a). The values are given for a
single interaction between a pair of basis and testing clusters
while a typical problem requires the calculation of numerous
cluster–cluster interactions. Since , the processing

0018-926X/$20.00 © 2006 IEEE
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Fig. 1. (a) Truncation number as a function of d and the cluster size a. (b) Pro-
cessing time to compute the translation function for a single cluster–cluster in-
teraction. In both figures, there are nine curves for different values of the cluster
size increasing by a factor of two from 0:25� to 64�. The lowest and highest
curves correspond to 0:25� and 64�, respectively.

time to evaluate (1) for a fixed is . In addition, the
number of angular directions is and the processing
time to evaluate (1) becomes for a cluster–cluster in-
teraction. For low levels of MLFMA, , which
is acceptable although the number of clusters in these levels is

. However, for the largest clusters of a problem,
and . Therefore, as becomes

large, the processing time required to calculate the translation
operators for a problem is dominated by the evaluations for
the high-level clusters, although the number of these clusters is

. In addition, the setup time for the translation matrix be-
comes dominant compared to the time required for other parts
of MLFMA, even the matrix–vector multiplications that can be
performed in time.

Defining the variable , the translation op-
erator can be expressed as a band-limited function of [4] as

(4)

Choosing an oversampling factor and sampling the op-
erator along from to at equally
spaced points ( represents the floor operation), i.e., at

and , the transla-
tion operator can be obtained by Lagrange interpolation at any
point as

(5)

where represents the translation function perturbed by the
interpolation error

(6)

and

Fig. 2. (a) Magnitude and (b) phase of the translation function with respect to
' for the case of a = 4�, d = 3, and DDD = x̂xx2a.

(7)

In (5) and (7), is the number of interpolation points employed
at each side of the target location .

III. OPTIMAL INTERPOLATION

Fig. 2(a) and (b) depicts the magnitude and phase of the trans-
lation operator, respectively, for two clusters separated by

, where . The number of accurate digits is 3 and
. We perform the direct calculation of the translation

operator, where the function is evaluated at the required points
by using (4). In the direction, there are sam-
ples that are equally spaced from to . In the direction,
there are samples (zeros of the Legendre polyno-
mial) and they are not equally spaced. Then, there are a total of

distinct directions to evaluate the transla-
tion operator. It should be noted that the transform from (1) to
(4) not only depends on , but also on the relative positions of
the clusters, i.e., it also depends on .
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Fig. 3. (a) Interpolation error and (b) processing time with respect to interpo-
lation parameters p and s for the translation function in Fig. 2.

Before the translation matrix is filled via Lagrange interpo-
lation, the parameters and must be determined. For fixed
values of and , we perform a scan over the and param-
eters to find their optimal values. Fig. 3(a) demonstrates the in-
terpolation error with respect to and for the case in Fig. 2.
The interpolation error is defined as

(8)

where and represents the sampling
points. The interpolation error decreases when or is in-
creased. In this case , which means that MLFMA com-
putes the interactions with three digits of accuracy. Thus,
pairs leading to larger than error are not allowable. In other
words, the error introduced by the interpolation of the transla-
tion operator should be adjusted according to the desired level
of accuracy.

This strategy yields a set of pairs satisfying the error
criterion. Optimization is completed by choosing the pair
with the minimum processing time. As shown in Fig. 3(b), pro-
cessing time (measured on a 1.8-GHz 64-bit Opteron-244 pro-
cessor) to evaluate the translation operator increases as or is

TABLE I
SPEEDUP OBTAINED BY USING THE OPTIMAL (p; s) PAIR FOR a � 4�

increased. Then, there exists an optimal pair satisfying the
desired level of accuracy with the minimum processing time. We
scan the parameters and for various values of and . All
possible values of according to the one-box-buffer scheme [6]
are also checked. In the end, we obtain the optimal values listed
in Table I with the corresponding speedup compared to the di-
rect calculation. We note that the values presented in Table I do
not depend on the computer platform. The optimal pairs
are valid for and they are found to be independent of

. For smaller clusters, such as or , the interpolation
does not lead to a significant speedup, and therefore, we prefer to
calculate these translations directly. In the case of much smaller
clusters, such as or , direct calculation is faster
than the interpolation for any pair satisfying the desired
accuracy.

Fig. 4(a) and (b) compares the optimal pairs to the fixed
values suggested in [4]. In Fig. 4(a), the interpo-

lation error is plotted with respect to the box size from to
and for different levels of accuracy, i.e., for and

corresponding to and relative errors,
respectively. In the optimized case, the error is always below
the desired level of accuracy. However, with fixed parameters,
the error is not controllable and is localized around . The
corresponding speedup is plotted in Fig. 4(b), where it increases
with increasing box size and decreases with increasing number
of accurate digits in the optimized case. This relationship is also
evident in Table I. Comparing Fig. 4(a) and Fig. 4(b), the fol-
lowing observations can be made.

1) For and , fixed satisfies the desired
level of accuracy but the optimal pairs provide higher
speedup.

2) For and , the fixed seems to give
higher speedup compared to the optimal pairs, how-
ever, the accuracy is not satisfied with the fixed parameters.

Based on these observations, we conclude that optimization is
essential to improve the interpolation of the translation operator.

IV. RESULTS

To demonstrate the overall improvement obtained with in-
terpolation, we present the results of a scattering problem in-
volving a conducting sphere of radius . This is a 1,462,854-
unknown problem solved by a parallel MLFMA implementa-
tion with seven levels. The problem is solved on a cluster of 32
2.6-GHz Pentium-4 Celeron processors. The box size is
for the lowest level and for the highest level. As an example,
if the number of accurate digits is set to 3, then takes values
from to . We use the one-box-buffer scheme and reduce the
number of translations by exploiting the symmetry [7]. During
the setup phase of the program, each processor checks all of its
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Fig. 4. (a) Interpolation error and (b) corresponding speedup for different box
sizes from 4� to 64� and for d = 2; 3; 4; 5. (DDD = x̂xx2a).

cluster–cluster interactions to eliminate the unneeded transla-
tions.

In Fig. 5(a), processing time for the calculation of the trans-
lation operators is plotted with respect to . For both types of
calculations (direct and interpolated), the maximum is chosen
among the processing times spent by 32 processors. In Fig. 5(b),
the speedup obtained by the interpolation method over direct
calculation is plotted as a function of . The speedup is over

up to .

V. CONCLUSION

In this paper, we revisited the Lagrange interpolation of the
translation operator in 3-D MLFMA. We optimized the number
of interpolation points and the oversampling factor . In this
way, the error becomes controllable and the processing time re-
quired to satisfy the desired level of accuracy is minimized.

Fig. 5. (a) Processing time to compute the translation operators for a 1,462,854-
unknown sphere problem. (b) Speedup obtained with optimal interpolation com-
pared to direct calculation of the translation operators.
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Fast and accurate solutions of extremely
large integral-equation problems
discretised with tens of millions of
unknowns

L. Gürel and Ö. Ergül

The solution of extremely large scattering problems that are

formulated by integral equations and discretised with tens of millions

of unknowns is reported. Accurate and efficient solutions are

performed by employing a parallel implementation of the multilevel

fast multipole algorithm. The effectiveness of the implementation is

demonstrated on a sphere problem containing more than 33 million

unknowns, which is the largest integral-equation problem ever solved

to our knowledge.

Introduction: For numerical solutions of scattering problems in

electromagnetics, integral-equation formulations provide accurate

results when they are discretised appropriately by using small

elements with respect to wavelength [1]. Simultaneous discretisations

of the scatterer and the integral equations lead to dense matrix

equations, which can be solved iteratively using efficient acceleration

methods, such as the multilevel fast multipole algorithm (MLFMA)

[2]. However, accurate solutions of many real-life problems require

discretisations with millions of elements, which result in matrix

equations with millions of unknowns. For the solutions of these

large-scale problems, MLFMA must be parallelised, but this is not

trivial owing to the complicated structure of the algorithm [3–5]. In

this Letter, we report an implementation of the parallel MLFMA that

is able to solve problems discretised with tens of millions of

unknowns. Specifically, we present the results of a scattering problem

involving a sphere of radius 96l, where an accurate solution requires a

discretisation with more than 33 million unknowns. To the best of our

knowledge, this is the solution of the largest integral-equation

problem reported up to now.

Parallel implementation of MLFMA: MLFMA performs the matrix-

vector multiplications related to an N�N dense matrix equation in

o(NL) time using o(NL) memory, where L¼O(logN) is the number of

levels of the tree structure, which is constructed by recursively

dividing the computational domain into sub-domains (clusters).

MLFMA calculates the far-field interactions between the radiating

(basis) and receiving (testing) elements in a group-by-group manner

consisting of three stages: aggregation, translation and disaggrega-

tion. For each matrix-vector multiplication required by the iterative

solver, these stages are performed on the tree structure in a multilevel

manner. There are also O(N) near-field interactions that are calculated

directly and stored in the memory to be used multiple times.

In the aggregation step, radiation patterns of the clusters are

computed from the bottom of the tree structure to the top. Before the

iterations, radiation patterns of the basis functions are calculated and

stored in the memory. Owing to the nature of the Helmholtz equation,

sampling rates of the radiation patterns depend on the sizes of the

clusters. Using the excess-bandwidth formula and considering the

worst-case scenario [6], we determine the number of samples for

each level according to the desired accuracy. The samples are chosen

uniformly in the f direction while they are selected as the Gauss-

Legendre points in the y direction. During the aggregation process,

sampling rates of the consecutive levels are matched by employing a

local Lagrange interpolation algorithm with enhanced accuracy [7].

For the parallelisation of the aggregation process, we choose a level

of distribution (LoD) to divide the clusters among the processors. Using

a load-balancing algorithm, the levels below the LoD are distributed

among the processors by assigning each cluster and its parent cluster to

the same processor. In this way, aggregation operations can be

performed independently in each processor from the bottom of the

tree structure up to the LoD without any communication [8]. In the

higher levels above the LoD, however, radiation patterns are distributed

among the processors, instead of the clusters [5]. This is required in

order to improve the load balancing since the higher levels include

fewer clusters with densely-sampled fields. Then, an all-to-all

communication is required at the LoD to switch between the two

strategies applied in the lower and higher levels of the tree structure.

We also note that one-to-one communications are required in the higher
ELECTRONICS LETTERS 26th April 2007 Vol. 43
levels, where the fields are distributed among the processors and the

interpolations in a processor require samples that are stored in other

processors [5].

In the translation stage of MLFMA, radiated fields of the clusters are

converted into incoming fields for other clusters. Translations are

performed between pairs of clusters when the clusters are far from each

other while their parent clusters are electromagnetically close to each

other. Using a one-box-buffer scheme, there are O(1) translation opera-

tions for each cluster in any level. Translation functions to perform these

operations are calculated and stored in memory before the iterations.

Using regularly-spaced cubic clusters, we significantly reduce the

number of different translation functions required for each level [9]. In

addition, calculation of the translation operators is accelerated by using

local interpolation techniques that are optimised according to the desired

level of accuracy [10]. Each translation operator is an infinite summation

that must be truncated [2], where the truncation number is also

determined by the excess-bandwidth formula [6].

In the lower levels below the LoD, some of the translations can be

performed in each processor without any communication, while the rest

are related to the clusters that are assigned to different processors so that

communications to complete these translations are inevitable. We

carefully organise the required data transfers by matching the

processors appropriately using a communication map. For the upper

levels above the LoD, all translations can be performed without any

communication; this is another advantage of distributing fields instead

of clusters [5]. After the translations, the disaggregation stage is

performed as the inverse of the aggregation process. Incoming fields

are calculated for each cluster from the top of the tree structure to

the lowest level. The incoming field to a cluster is a combination of the

incoming field to its parent cluster and the incoming fields due to

the translations. We use transpose interpolation to accurately match the

different sampling rates of the successive levels [7]. At the end of

the disaggregation, a numerical integration is performed for each testing

function in the lowest level to complete the matrix-vector

multiplications related to the far-field interactions. Finally, matrix-

vector multiplications related to near-field interactions are performed

directly. For high efficiency, it is crucial to distribute the near-field

interactions among the processors according to a load-balancing

strategy, which usually leads to different partitioning schemes for the

near-field and far-field interactions [8].

Table 1: MLFMA solution of a sphere problem with 33 791 232
unknowns

Geometry size (diameter) 192l

Number of processors 16

Number of levels 9

Smallest cluster size 0.19l

Total number of clusters 5 904 951

Number of clusters in lowest level 4 344 205

Number of near-field interactions 3 732 101 432

Truncation numbers (2 digits of accuracy) 6 to 546

Number of iterations (BiCGStab and 10�3 residual error) 21

Setup time (minutes) 177

Solution time (minutes) 265

Time for matrix-vector multiplication (s) 370

Memory for translation functions (GB) 2

Memory for radiation=receiving patterns (GB) 56

Memory for nearfield interactions (GB) 28

Memory for aggregation=disaggregation arrays (GB) 79

Results: To demonstrate the efficiency and accuracy of our imple-

mentation, we present the results of a sphere problem with radius 96l.

The discretisation of the problem with a mesh size of l=10 leads to

33 791 232 unknowns when Rao-Wilton-Glisson [11] functions are

employed as the basis and testing functions on triangular domains.

The scattering problem is formulated with the combined-field integral

equation [1] and iteratively solved by a biconjugate-gradient-

stabilised (BiCGStab) algorithm. The solution is performed on a

cluster of quad-core Intel Xeon 5355 processors connected via an

Infiniband network and the results are summarised in Table 1, where

we list the clustering information, processing times and memory

usage. Using a block-diagonal preconditioner, only 21 iterations are
No. 9



required to reduce the residual error below 10�3. Parallelising the

solution into 16 processes, the iterative solution is completed in

265 min. Finally, the bistatic radar cross-section (RCS) values are

shown in Fig. 1, where the computed values sampled at 0.1� are in

agreement with the analytical curve obtained by a Mie-series solution.

In the Figure, 180� corresponds to the forward-scattering direction

and the root-mean-square error [3] of the RCS is only 0.915 dB in the

170–180� range.

Fig. 1 Bistatic RCS of sphere of radius 96l
Computational values obtained by solution of 33 791 232-unknown problem are
in agreement with analytical curve obtained by Mie-series solution

Conclusions: We have presented the integral-equation solution of a

scattering problem involving a sphere of radius 96l discretised with

33 791 232 unknowns, which corresponds to the solution of a dense

matrix equation with more than 1015 nonzero elements. This is the

largest integral-equation problem reported to date. By employing an

efficient implementation of the parallel MLFMA, it becomes possible

to solve such large-scale problems on relatively inexpensive computa-

tional platforms.
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Hierarchical parallelisation strategy for
multilevel fast multipole algorithm in
computational electromagnetics

Ö. Ergül and L. Gürel

A hierarchical parallelisation of the multilevel fast multipole algorithm
(MLFMA) for the efficient solution of large-scale problems in compu-
tational electromagnetics is presented. The tree structure of MLFMA is
distributed among the processors by partitioning both the clusters and
the samples of the fields appropriately for each level. The parallelisa-
tion efficiency is significantly improved compared to previous
approaches, where only the clusters or only the fields are partitioned
in a level.

Introduction: Surface integral equations are commonly used to formu-
late electromagnetic scattering and radiation problems involving compli-
cated three-dimensional objects with arbitrary shapes [1]. By
discretising the integral-equation formulations, we obtain dense matrix
equations. They can be solved iteratively by accelerating the matrix-
vector multiplications using the multilevel fast multipole algorithm
(MLFMA) [2]. Using MLFMA, matrix-vector multiplications related
to an N � N dense matrix equation can be performed in O(Nlog N )
time using O(Nlog N ) memory. However, accurate solutions of many
real-life problems require discretisations with millions of unknowns,
which cannot be solved easily by the sequential implementations of
MLFMA running on a single processor. To solve such large problems,
it is helpful to increase computational resources by assembling parallel
computing platforms and at the same time by parallelising MLFMA.
In this way, it has become possible to solve problems with 20–30
million unknowns on relatively inexpensive computing platforms [3–8].
On the other hand, parallelisation of MLFMA is not trivial owing to
the complicated structure of this algorithm. Simple parallelisation strat-
egies usually fail to provide efficient solutions because of the communi-
cation among the processors and the unavoidable duplication of some of
the computations over multiple processors [9]. In this Letter, we present
a hierarchical strategy for the efficient parallelisation of MLFMA. We
compare our strategy with previous parallelisation schemes to demon-
strate the improved efficiency, especially when the number of processors
is large.

Tree structure of MLFMA: Elements of an N � N matrix obtained by
the discretisation of a surface integral equation correspond to the inter-
actions of the basis and testing functions defined on the surface of the
object. MLFMA performs the matrix-vector multiplications efficiently
by calculating these interactions in a group-by-group manner involving
three main stages, i.e. aggregation, translation and disaggregation [2].
These stages are performed in a multilevel scheme using a tree structure
constructed by including the scatterer in a cubic box and recursively
dividing the computational domain into subboxes. During the aggrega-
tion stage, radiated fields at the centres of the clusters (nonempty boxes)
are calculated proceeding from the bottom of the tree structure to the
highest level. Then, the translation stage is performed by translating
the radiated fields at the centres of the clusters to the incoming fields
at the centres of other clusters in the same level. Finally, the total incom-
ing fields at the centres of the clusters are calculated from the top of the
tree structure to the lowest level during the disaggregation stage.
In the lowest level of the multilevel tree, there are O(N ) clusters. The

number of clusters decreases from each level to the next upper level and
it becomes O(1) in the highest level involving translations. The number
of samples for the radiated and incoming fields depends on cluster size
as measured by the wavelength. Therefore, fields of the clusters in the
lower levels are sampled coarsely, while the fields of the clusters in
the higher levels require finer sampling. Considering the number of clus-
ters and the samples of the fields, all levels of MLFMA have O(N ) com-
plexity in terms of processing time and memory. As a consequence, an
efficient parallelisation of MLFMA should attempt to obtain the best
partitioning for each level by minimising the communications and dupli-
cations among the processors.

Partitioning of multilevel tree: For the parallelisation of MLFMA, the
main task is to distribute the tree structure among the processors. A
simple partitioning of a three-level tree is shown in Fig. 1a, where the
levels are represented by two-dimensional rectangular boxes including
ELECTRONICS LETTERS 3rd January 2008 Vol. 44
various numbers of clusters (horizontal dimension) and samples of the
fields (vertical dimension). Each level is partitioned among eight pro-
cessors. In the simple partitioning scheme, clusters in all levels are dis-
tributed among the processors and each cluster at any level is assigned to
a single processor. This strategy works efficiently for lower levels invol-
ving many clusters. For higher levels, however, it is difficult to distribute
small numbers of clusters among the processors without duplication [9].
In addition, dense communications among the processors during the
translations become significant for higher levels since large amounts
of data are transferred, which reduces the efficiency of the parallelisation
significantly [6, 9].

Fig. 1 Various strategies for partitioning of tree structure of MLFMA

a Simple partitioning, where clusters are distributed in all levels
b, c Hybrid partitioning with shared and distributed levels
d Hierarchical partitioning

To improve the parallelisation efficiency, a hybrid partitioning
approach is introduced in [6], where different strategies are applied for
lower and higher levels of the tree structure. As shown in Figs. 1b and
1c, the simple partitioning scheme is preserved in lower (distributed)
levels so that the clusters in these levels are still distributed among the
processors. In higher (shared) levels, however, processor assignments
are made on the basis of the fields of the clusters, not on the basis of
the clusters themselves. In other words, each cluster is shared by all pro-
cessors and each processor is assigned to the same portion of the fields
of all clusters. In this way, higher levels are distributed efficiently among
the processors, since the fields in those levels have high sampling rates.
In addition, the translations in the shared levels can be performed effi-
ciently without any communication among the processors.
The hybrid partitioning strategy increases the parallelisation efficiency

significantly compared to the simple partitioning approach. Nevertheless,
there are some levels at the middle of the tree structure (such as level 2 in
Fig. 1) where distributing neither the fields nor the clusters among the pro-
cessors is efficient. For such levels, even though distributing the fields
eliminates the communication during the translations, dense
communication is required elsewhere, i.e. for the interpolation and
anterpolation operations during the aggregation and disaggregation
stages, respectively [6]. Although such one-to-one data transfers are not
problematic for higher levels (such as level 3 in Fig. 1), they become
important for lower levels, where the number of processors is comparable
to the number of samples. Therefore, even if the numbers of the shared
and distributed levels are optimised, sufficient parallelisation efficiency
may not be achieved.
In this Letter, we introduce a hierarchical partitioning scheme to

further improve the parallelisation efficiency compared to the hybrid
approach. This strategy is illustrated in Fig. 1d, where the partitioning
is performed in both directions (clusters and samples of the fields) for
all levels; we adjust the partitioning appropriately by considering the
numbers of clusters and the samples of the fields at each level. In the
lowest level, the clusters are distributed among the processors without
any partitioning for the fields. Then, in the next level (level 2), the
samples of the fields are divided between pairs of processors, while
we reduce the number of partitions for the clusters by a factor of two.
As we proceed to higher levels, the numbers of partitions for the clusters
and the fields are systematically decreased and increased, respectively. In
this way, the computations for all levels are distributed among the pro-
cessors with improved load-balancing compared to partitioning with
respect to only clusters or only samples of the fields.
No. 1



With the strategy of partitioning in both dimensions, three different
types of communications are required for each level (except for the
lowest level) in the hierarchical parallelisation scheme. Consider level
2 in Fig. 1d; some of the processors need to communicate during the
translations because of the partitioning of the clusters. Similarly, one-
to-one communications are required during the aggregation and disag-
gregation stages owing to the partitioning of the fields. In addition to
these, we also need data exchanges among the processors to modify
the number of partitions between any two consecutive levels.
Although the hierarchical partitioning increases the types of communi-
cation compared to the simple and the hybrid approaches, the amount
of data transferred is not increased and the number of communication
events is reduced. Hence, larger data packages are transferred at fewer
times. This improves both communications and the load-balancing
significantly.

Results: To demonstrate the improved efficiency of the hierarchical par-
allelisation, we present the solution of a scattering problem involving a
conducting sphere of radius 20 l discretised with 1 462 854 unknowns.
The sphere is illuminated by a plane wave and seven-level MLFMA is
used to solve the problem on a cluster of quad-core Intel Xeon 5355 pro-
cessors connected via an Infiniband network. Fig. 2 shows the efficiency
when the solution is parallelised into 2, 4, 8, 16, 32, 64 and 128
processors.

Fig. 2 Parallelisation efficiency for solution of scattering problem involving
sphere of radius 20 l discretised with 1 462 854 unknowns

The parallelisation efficiency is defined as

1p ¼
2T2
pTp

ð1Þ

where Tp is the processing time of the solution with p processors. Fig. 2
shows that the hierarchical parallelisation improves the efficiency signifi-
cantly compared to both simple and hybrid parallelisation approaches.
All parallelisation schemes are optimised via load-balancing algorithms.
Although the hybrid parallelisation, which includes three shared levels,
performs better than the simple parallelisation scheme, its efficiency
drops below 30% for 128 processors. In this case, the hierarchical
ELECTRON
parallelisation provides 60% efficiency, which corresponds to 38-fold
speed-up compared to the two-processor solution. Using 128 processors
and the hierarchical parallelisation scheme, the total processing time,
including the setup and the iterative solution with 27 BiCGStab iter-
ations, is only 300 s for this 1.5-million-unknown problem.

Conclusions: Using a hierarchical strategy, the parallelisation efficiency
of MLFMA can be improved significantly. Compared to previous
approaches based on partitioning in one direction (only clusters or
only samples of the fields), hierarchical parallelisation provides higher
efficiency, especially when the number of processors is large.
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Efficient Parallelization of the Multilevel Fast
Multipole Algorithm for the Solution of Large-Scale

Scattering Problems
Özgür Ergül, Student Member, IEEE, and Levent Gürel, Senior Member, IEEE

Abstract—We present fast and accurate solutions of large-scale
scattering problems involving three-dimensional closed conductors
with arbitrary shapes using the multilevel fast multipole algo-
rithm (MLFMA). With an efficient parallelization of MLFMA,
scattering problems that are discretized with tens of millions
of unknowns are easily solved on a cluster of computers. We
extensively investigate the parallelization of MLFMA, identify
the bottlenecks, and provide remedial procedures to improve the
efficiency of the implementations. The accuracy of the solutions
is demonstrated on a scattering problem involving a sphere of
radius 110 discretized with 41 883 638 unknowns, the largest
integral-equation problem solved to date. In addition to canon-
ical problems, we also present the solution of real-life problems
involving complicated targets with large dimensions.

Index Terms—Electromagnetic scattering, fast solvers, integral
equations, multilevel fast multipole algorithm (MLFMA), parallel
algorithms.

I. INTRODUCTION

S URFACE integral equations are commonly used to formu-
late scattering problems involving three-dimensional con-

ducting bodies with arbitrary shapes [1]. These formulations pro-
vide accurate results when they are discretized appropriately by
using small elements with respect to wavelength. Simultaneous
discretizations of the scatterer and the integral equations lead to
dense matrix equations, which can be solved iteratively using ef-
ficient acceleration methods, such as the multilevel fast multi-
pole algorithm (MLFMA) [2]. However, accurate solutions of
many real-life problems require discretizations with millions of
elements leading to matrix equations with millions of unknowns.
To solve these large problems, it is helpful to increase computa-
tional resources by assembling parallel computing platforms and
at the same time by parallelizing the solvers.

Of the various parallelization schemes for MLFMA, the most
popular use distributed-memory architectures by constructing
clusters of computers with local memories connected via fast
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networks [3]–[11]. Parallelization tools are available, such as
the message passing interface (MPI). Such tools provide many
communication protocols to organize parallel solutions. How-
ever, parallelization of MLFMA is not trivial because of the
complicated structure of this algorithm [11]. Simple paralleliza-
tion strategies usually fail to provide efficient solutions because
of the communications between the processors and the unavoid-
able duplication of some of the computations over multiple pro-
cessors. Consequently, there have been many efforts to improve
the parallelization of MLFMA by minimizing duplications and
communications [7]–[12]. Thanks to these efforts, it has become
possible to solve 20–30 million unknowns on relatively inexpen-
sive computing platforms [8], [9], [13].

In this paper, we present the details of a parallel MLFMA
implementation for the efficient solution of scattering problems
involving tens of millions of unknowns. We extensively investi-
gate the parallelization procedure by focusing on different parts
of the algorithm and identifying the obstacles to paralleliza-
tion efficiency. Our approach involves load-balancing and parti-
tioning techniques to distribute the tasks equally among the pro-
cessors and to minimize the interprocessor communications. We
demonstrate the accuracy and efficiency of our implementations
on canonical problems involving sphere geometries of various
sizes. Specifically, we are able to solve problems with more than
40 million unknowns on relatively inexpensive platforms. In ad-
dition to canonical problems, we also solve real-life problems
involving complicated geometries discretized with large num-
bers of unknowns.

The scattering problems considered in this paper involve
closed surfaces, which can be formulated with the com-
bined-field integral equation (CFIE) [1]. CFIE provides
better-conditioned matrix equations than the electric-field
integral equation (EFIE) and the magnetic-field integral equa-
tion (MFIE) [14]–[16]. Using CFIE, iterative convergence is
achieved rapidly and it can be further accelerated by employing
simple and efficient preconditioners.

The rest of the paper is organized as follows. In Section II,
we examine the MLFMA solutions, focusing on the computa-
tional requirements. Section III explores efficient parallelization
of MLFMA by investigating each part of the algorithm in detail.
Section IV presents the results, followed by our concluding re-
marks in Section V.

II. SOLUTION OF INTEGRAL EQUATIONS BY MLFMA

For the solution of scattering problems involving three-di-
mensional conducting bodies with arbitrary shapes, discretiza-
tion of the surface integral equations leads to dense

0018-926X/$25.00 © 2008 IEEE
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matrix equations

(1)

where represents the unknown coefficients of the basis func-
tions for to model the surface current
density, i.e.,

(2)

Expressions for the matrix elements ( , , and ) and
the elements of the right-hand side vector ( , , and )
for EFIE, MFIE, and CFIE, respectively, are presented in [17].
For the solution of problems involving closed surfaces, CFIE is
preferable since it is free of the internal-resonance problem [18]
and provides better-conditioned matrix equations than EFIE and
MFIE [14]–[16]. This favorable quality of CFIE is crucial for
the rapid convergence of iterative solutions. In this paper, CFIE
is discretized by employing Rao-Wilton-Glisson (RWG) [19]
functions defined on planar triangles for numerical solutions.

A. Solutions With MLFMA

MLFMA splits the matrix-vector multiplications (MVMs) re-
quired by the iterative solvers as

(3)

In (3), the near-field interactions denoted by are calcu-
lated directly and stored in memory, while the far-field interac-
tions are computed approximately in a group-by-group
manner. For a single-level fast multipole algorithm, we calculate
the far-field interactions as presented in [20]. In MLFMA, those
interactions are calculated in a multilevel scheme using a tree
structure constructed by including the scatterer in a cubic box
and recursively dividing the computational domain into sub-
boxes. The tree structure of MLFMA includes
levels. At level from 1 to , the number of nonempty boxes
(clusters)1 is , where and . Each
MVM involves four main stages.

• Near-field interactions: In MLFMA, near-field interactions
are used directly to perform the multiplication

(4)

The number of near-field interactions is proportional to
and the near-field matrix has a sparsity of

.
• Aggregation: Radiated fields at the centers of the clusters

are calculated from the bottom of the tree structure to the
highest level.

1In this paper, the term “cluster” is used in two different contexts. Its meanings
in “clusters of computers” and to indicate the nonempty boxes in the MLFMA
tree should be distinguishable from the context.

Fig. 1. Tree size and the number of near-field interactions for the solutions of
the sphere problems using top-down strategy to construct the multilevel tree.

• Translation: Radiated fields are translated into incoming
fields. For a basis cluster at any level, there are testing
clusters to translate the radiated field.

• Disaggregation: The incoming fields at the centers of the
clusters are calculated from the top of the tree structure to
the lowest level. At the lowest level, the incoming fields
are multiplied by the receiving patterns of the testing func-
tions and angular integrations are performed to complete
the MVM.

In our MLFMA implementations, radiated and incoming
fields are sampled uniformly in the direction, while we use
the Gauss-Legendre quadrature in the direction [21]. There
are a total of samples required for a
cluster in level , where is the truncation number, i.e., the
number of harmonics used to calculate the translation opera-
tors. To determine the value of for each level, we use the
excess bandwidth formula considering the worst-case scenario
according to a one-box-buffer scheme [22], i.e.,

(5)

where is the box size at level and is the desired digits of
accuracy. Oscillatory nature of the Helmholtz solutions requires
that the truncation number and the sampling rate for the radi-
ated and incoming fields depend on cluster size as measured by
the wavelength . During the aggregation and disag-
gregation stages, we employ local Lagrange interpolation and
anterpolation methods to match the different sampling rates of
the consecutive levels [23], [24].

B. Computational Requirements of MLFMA

When MLFMA is used, memory requirement for a MVM
is proportional to the tree size , i.e.,

(6)
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TABLE I
MAJOR PARTS OF MLFMA AND THEIR COMPUTATIONAL REQUIREMENTS

The processing time is also related to the tree size as

(7)

where represents relative weights for levels .
Asymptotically, as increases, becomes and
the complexity of the MVM is . Although this is
true in general, measurements may present deviations from the
ideal case depending on the construction technique for the tree
structure, even when is very large. For example, we usually
employ a top-down strategy to build the multilevel tree for large
problems. In this strategy, the smallest possible cubic box is
used to enclose the target completely. Then, the computational
domain is recursively divided into subdomains until the size of
the clusters in the lowest level is in the – range. In
Fig. 1, tree size is plotted as a function of the number of un-
knowns for the solution of scattering problems involving sphere
geometries of various sizes, when the top-down strategy is used
to construct the multilevel tree and the number of accurate digits

is 2. The radius of the sphere changes from to cor-
responding to 3723 and 41 883 648 unknowns (edges), respec-
tively, using triangulation. We observe that the tree size
oscillates around the curve. Due to such local vari-
ations, processing time and memory requirement for the MVMs
with respect to cannot be strictly proportional to . As
an example, the tree size grows only by 50% when the number
of unknowns increases from 23 405 664 to 41 883 648. Then,
the memory requirement for the MVMs increases by about 50%,
which is below the asymptotical estimation of 85%.

The radiation and receiving patterns of the basis and testing
functions are sampled according to the sampling rate of the
lowest level clusters. Using the RWG functions, these patterns
are calculated analytically and stored in memory before the iter-
ative solutions. Applying a Galerkin scheme and using the same
sets of basis and testing functions, CFIE implementations re-
quire only two sets of patterns for each RWG function [25]. We
also reduce the number of samples to
using the symmetry of the patterns. Although the processing

time to calculate the radiation and receiving patterns is negli-
gible, significant amount of memory is required to store them.

Similar to the radiation and receiving patterns, translation op-
erators are also calculated and stored in memory before the iter-
ations. Using cubic (identical) clusters, there is a maximum of

different translations in each level, independent
of the number of clusters [7]. Although using cubic clusters re-
duces the number of translation operators significantly, we also
need interpolation methods to calculate these operators in
time [26], [27]. With the optimization of the interpolations, both
calculation time and memory for the translation operators are
insignificant compared to the other parts of the implementation,
especially when the problem size is large.

Processing time for the initial setup of MLFMA (prior to the
iterative solution) is dominated by calculating near-field inter-
actions and it is proportional to . The amount of memory
to store the near-field interactions is also significant and com-
parable to the memory used for the radiation and receiving pat-
terns. Asymptotically, and the near-field interac-
tions has a complexity of . However, similar to the MVMs,
local variations in the processing time and memory requirement
for the near-field interactions may exhibit behavior different
than the asymptotical estimation. This is because, as depicted
in Fig. 1, the number of near-field interactions oscillates around
the curve when a top-down strategy is used to construct
the tree structure. Consequently, variation in processing time
and memory with respect to can be higher or lower than the
asymptotically linear estimate.

As a summary, Table I lists the major parts of MLFMA and
their computation requirements for the solution of large prob-
lems.

III. EFFICIENT PARALLELIZATION OF MLFMA

Because of its complicated structure, parallelization of
MLFMA is not trivial. Simple parallelization schemes usually
lead to inefficient solutions due to dense communications
between the processors, duplication of computations, and
unbalanced distribution of the workload among processors.
Several issues must be carefully considered to obtain an effi-
cient parallelization of MLFMA [7]–[12].



2338 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 8, AUGUST 2008

Fig. 2. Communications performed in each MVM to match the near-field and
far-field partitioning schemes.

• Partitioning: For high efficiency, it is essential to distribute
the tree structure among the processors with minimal du-
plication. This is achieved by using different partitioning
strategies for the lower and higher levels of the tree struc-
ture [11]. In the lower levels (distributed levels), there are
many clusters with small numbers of samples for the ra-
diated and incoming fields. Therefore, it is appropriate to
distribute the clusters in these levels by assigning each of
them to a single processor. In higher levels (shared levels),
however, it is easier to distribute the fields among the pro-
cessors by assigning each cluster to all processors, since
there are a few clusters in these levels with large numbers
of samples. Calculation of the far-field interactions are or-
ganized according to the partitioning of the tree structure
(far-field partitioning).

• Load-balancing: Parallelization cannot be achieved effi-
ciently without distributing the tasks equally among the
processors. We apply load-balancing for both the dis-
tributed and shared levels to improve the parallelization
of the far-field interactions. For high efficiency, it is also
essential to distribute the near-field interactions using a
load-balancing algorithm [12].

• Communications: In parallel MLFMA, processors need to
communicate with each other to transfer data. Using ap-
propriate partitioning schemes and load-balancing algo-
rithms significantly reduces the data traffic. However, the
remaining communications must be organized carefully.
For high efficiency, it is also essential to use high-speed
networks to connect the processors.

In the following subsections, we provide the details of the effi-
cient parallelization of MLFMA.

A. Setup Part

The setup part consists of preparing the near-field interac-
tions, radiation and receiving patterns, translation operators, and
preconditioners for the iterative solutions.

1) Near-Field Interactions: Near-field interactions should
be distributed among the processors using a load-balancing
algorithm. Considering the sparse near-field matrix, the rows

are assigned to the processors in such a
way that all processors have approximately equal numbers of
near-field interactions (near-field partitioning). Distributing the
rows equally among the processors usually fails to provide good
load-balancing, even for the solution of problems involving

Fig. 3. All-to-all communications performed at LoD to change the far-field
partitioning scheme from the distributed levels to the shared levels.

symmetrical geometries, such as a sphere. After distribution,
the near-field interactions are calculated in each processor
without any communication.

2) Radiation and Receiving Patterns: According to the far-
field partitioning of the tree structure, the lowest-level clusters
are distributed among the processors. Then, each processor cal-
culates and stores the radiation and receiving patterns of the
basis and testing functions included in its local tree.

3) Translation Operators: In the setup of MLFMA, each pro-
cessor is tasked with calculating a set of translation operators
that will be required during the MVMs. For a translation at a
distributed level, where each cluster is assigned to a single pro-
cessor, the operator is calculated by the processor working on
the testing cluster. Due to symmetry, a translation operator can
be used for many interactions in a level. Therefore, in the dis-
tributed levels, some of the translation operators are duplicated
and included in more than one processor; this is allowable be-
cause of the negligible cost of the operators at the low levels.
There is no duplication in the shared levels, where the fields
are distributed and the translation operators are also partitioned
among the processors.

4) Preconditioner: With CFIE, iterative solvers can be easily
accelerated by employing simple and efficient preconditioners
[15]. We use the block-diagonal preconditioner (BDP) [2] based
on the self interactions of the lowest level clusters. The con-
struction of BDP requires negligible time and memory, and its
efficient parallelization is relatively easy to achieve.

B. Solution Part

For the iterative solutions, we employ Krylov subspace al-
gorithms that are parallelized efficiently [28]. These algorithms
require MVMs and the solutions of a sparse equation involving
the preconditioner matrix , i.e.,

(8)

(9)

where and are the input and output vectors, respectively;
both are distributed according to the far-field partitioning. Be-
fore an MVM or a preconditioner solution, the partitions of the
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Fig. 4. Interpolations in the shared levels involving one-to-one communica-
tions.

Fig. 5. Processor pairing for the translations in the distributed levels.

input vector are combined together using the “gather” opera-
tion of MPI. Each MVM involves the use of near-field interac-
tions, as well as the calculation of the far-field interactions via
the aggregation, translation, and disaggregation stages.

1) Near-Field Stage: To match the near-field and far-field
partitioning schemes during the MVMs, all-to-one and
one-to-all communications are required, as depicted in Fig. 2.
After the near-field computations are performed in negligible
time, the partitioning of the output vector is modified for the
iterative solver. The processing time for these communications
is also negligible.

2) Aggregation Stage: In the highest distributed level, which
we call the level of distribution (LoD), the clusters are dis-
tributed among the processors using a load-balancing algorithm
that considers the combined load of all descendants (children,
grandchildren, etc.) of each cluster at LoD. The combined load
for a cluster is the size of the subtree attached to the cluster; we
account for all descendants, each weighted by the number of
field samples. The load-balancing algorithm assigns the whole
branch of the tree starting at an LoD cluster to the same pro-
cessor. Then, in the distributed levels, each cluster and all its
subclusters are assigned to the same processor. In this way, the
aggregation stage up to LoD can be performed without any com-
munication. At LoD, the partitioning scheme is changed by em-
ploying an all-to-all communication, as shown in Fig. 3. For
each cluster, the samples of the radiated field stored in a pro-
cessor is distributed among all processors. In the shared levels

Fig. 6. Anterpolations (transpose interpolations) in the shared levels involving
one-to-one communications.

TABLE II
COMMUNICATIONS REQUIRED IN THE MATRIX-VECTOR MULTIPLICATIONS BY

PARALLEL MLFMA

above LoD, samples on the - space are
partitioned along the direction.

From LoD to the highest level , the aggregation stage in-
volves one-to-one communications that are required for the in-
terpolation of the fields. This is illustrated in Fig. 4, where an
interpolation is performed on the samples of cluster . As an
example, only the interpolation in processor 2 is depicted al-
though similar operations are also performed in the other pro-
cessors. To compute the data at each sample in the fine grid, a set
of samples are used in the coarse grid. Even though a local in-
terpolation method is used, some of those coarse samples may
be located in other processors. Therefore, one-to-one commu-
nications are performed to provide the required data (inflation).
After the data is prepared, interpolation and shifting operations
are performed to include the contribution of the cluster in the
radiated field of its parent cluster .

We note that the communications in the shared levels are
mainly required between the processors located “close to each
other.” In other words, the processor with index requires data
from its “neighbors,” i.e., and . On the other hand,
depending on the partitioning and the number of interpolation
points, more data might be required from other processors next
to the neighbors. We apply a load-balancing algorithm to dis-
tribute the fields appropriately so that the amount of the data
transferred among all processors is minimized. However, as the
number of processes increases and the fields are distributed over
many processors, dense one-to-one communications cannot be
avoided; this may reduce the efficiency of the parallelization.

Finally, for each problem, we carefully choose the number of
distributed and shared levels by an optimization. For this pur-
pose, we assign LoD to a series of possible levels and monitor
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Fig. 7. Parallelization efficiency for the solution of a scattering problem in-
volving a sphere of radius 24� discretized with 2 111 952 unknowns.

the distribution of the clusters and the fields. For some of the
levels (higher levels), distribution of the fields is better than the
distribution of the clusters, i.e., samples of the fields can be par-
titioned evenly among the processors, but not the clusters. For
the others (lower levels), however, clusters can be partitioned
easily, while it is difficult to partition the fields among the pro-
cessors. Then, we choose LoD such that distributing the fields
(clusters) is more preferable for all levels above (below) LoD.
The choice of LoD depends on the tree structure (hence the ge-
ometry of the target) as well as the number of processors. How-
ever, our measurements show that, for a given problem, LoD is
insensitive to the latter parameter if only a small number (e.g.,
2 to 16) of processors are employed.

3) Translation Stage: The translation stage is one of the
most critical parts for the efficiency of the parallelization. This
is because dense one-to-one communications are required be-
tween the processors for the translations in the distributed levels.
In general, each processor sends some data (radiated fields) to
all other processors. We organize these communications using
a communication map, which consists of interaction layers to
match the processors. For processors, it can be shown that the
communications can be achieved in steps, as depicted in
Fig. 5 for a 6-process case. After the processors are paired, the
following operations are performed on the receiver and sender
sides.

• The sender and receiver determine the cluster-cluster inter-
actions involving the basis clusters on the sender side and
testing clusters on the receiver side.

• The radiated fields of the basis clusters are sent one by one.
• When the radiated field of a basis cluster is received by the

receiver, all of the translations involving this basis cluster

Fig. 8. Processing time and parallelization efficiency for various categorized
parts of the MVMs for the solution of a scattering problem involving a sphere
of radius 24� discretized with 2 111 952 unknowns.

and the testing clusters owned by the receiver are per-
formed. This ensures that the same data is not transferred
more than once.

To improve the efficiency of the translations, we use non-
blocking send and receive operations of MPI to transfer the
data. In the shared levels, all the translations are performed
without any communication since the fields are distributed
among the processors and a processor is assigned to the same
portion of the radiated or incoming fields for all clusters.

4) Disaggregation Stage: The disaggregation stage is gener-
ally the inverse of the aggregation stage. The incoming fields are
calculated at the center of each cluster from the top of the tree
structure to the lowest level using the anterpolation and shift
operations. For a cluster in level , the incoming field is
the combination of the translated field from the far-field clus-
ters and the incoming field to the center of its parent. In the
shared levels, anterpolation produces samples in the coarse grid,
some of which should be sent to the “neighboring” processors.
This is illustrated in Fig. 6, where processor 2 performs the an-
terpolation operation on the samples of cluster for its sub-
cluster . Some of the resulting data in the coarse grid is used
locally, while the rest are sent to other processors, i.e., exactly
the reverse of the interpolation. As the disaggregation opera-
tion proceeds down to LoD, the partitioning is changed via an
all-to-all communication. Then, the disaggregation is performed
from LoD to the lowest level without any communication. In the
lowest level, each processor performs the angular integrations
and produces a partition of the output vector .

To sum up, Table II lists the communications required at each
stage of the MVMs.
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TABLE III
SOLUTIONS OF LARGE SPHERE PROBLEMS WITH MLFMA PARALLELIZED INTO 16 PROCESSES

IV. RESULTS

First, we demonstrate the efficiency of MLFMA paralleliza-
tion for the solution of a scattering problem involving a sphere
of radius . The problem is discretized with 2 111 952 un-
knowns and solved on a cluster of Intel Xeon processors con-
nected via an Infiniband network. Fig. 7 depicts the efficiency
(with respect to the solution with a single processor) when the
solution is parallelized into 2, 4, 8, 12, and 16 processes. The
parallelization efficiency is defined as

(10)

where is the processing time of the solution with pro-
cesses. Fig. 7(a) shows that the overall efficiency (setup and it-
erative solution) is above 85% when the number of processes
is 16. In this case, efficiency ratios for the setup and the so-
lution parts are about 97% and 80%, respectively. We observe
in Fig. 7(a) that the setup part is parallelized very efficiently,
since this part is communication-free and the computations (es-
pecially the near-field interactions) are perfectly distributed to
the processors using a load-balancing algorithm.

In Fig. 7(b), we present the parallelization efficiency for the
aggregation, translation, and disaggregation stages, in addition
to the overall efficiency for the MVMs. The near-field stage
is not considered because of its negligible time. We observe
that aggregation and disaggregation stages are parallelized with
about 87% efficiency, while efficiency for the translation stage

is 59% for the 16-process case. To further investigate the paral-
lelization, Fig. 8 presents processing time and efficiency (with
respect to the solution with 2 processors) for various categorized
parts of the MVMs. Our observations are as follows.

• Aggregation and disaggregation stages in the distributed
levels ( for this problem) constitute the sig-
nificant part of the processing time of MVM. These stages
are perfectly parallelized, thanks to the load-balancing al-
gorithm for distributed levels.

• The parallelization efficiency of the aggregation and dis-
aggregation stages in the shared levels (from to

in this problem) is also quite high. However,
the efficiency drops to about 80% for the 16-process case.
This is due to the increasing amount of one-to-one com-
munications for interpolations and anterpolations.

• Parallelization efficiency of the communication-free (in-
traprocessor) translations is in the 80%–100% range. All
of the translations in the shared levels and some of those in
the distributed levels are communication-free.

• Translations that are performed with communications
(interprocessor translations) and all-to-all communica-
tions performed at LoD exhibit reduced efficiency as the
number of processes increases. Since they take longer
processing time, the interprocessor translations affect the
overall efficiency more than the all-to-all communications.

In general, interprocessor translations are the bottleneck of the
parallelization. Since these translations are performed in the dis-
tributed levels, their negative contributions can be minimized
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by increasing the number of shared levels. However, aggrega-
tion and disaggregation in low levels cannot be performed effi-
ciently by partitioning the coarsely sampled fields. As discussed
in Section III, we carefully determine the number of distributed
and shared levels to optimize the parallelization efficiency for
the solution of each problem.

In Table III, we present the solutions of very large scattering
problems involving spheres of radii , , and , which
are discretized with 23 405 664, 33 791 232, and 41 883 648 un-
knowns, respectively. For all three problems, 9-level MLFMA
is employed and parallelized into 16 processes. The numbers
of distributed and shared levels are 6 and 3, respectively.
Using a top-down strategy, the cluster size in the lowest level
is – . Each of the tree structures contains about
six million clusters and most of them are used in the lowest
level. The number of near-field interactions increases with the
problem size and the sparsity of the near-field matrix is almost
constant. The near-field interactions are calculated with 1%
error. The smallest and largest truncation numbers are also
listed in Table III when the far-field interactions are calculated
with two digits of accuracy.

Table III shows that the setup time increases proportionally to
since the sparsity of the near-field matrix is constant and the

number of near-field interactions is proportional to . On the
other hand, the processing time for the MVMs, which is related
to the tree size, increases more slowly than . As dis-
cussed in Section II, these local deviations from the asymptot-
ical estimates are expected depending on the clustering tech-
nique used for the tree structure. As depicted in Fig. 1, the tree
size and the number of near-field interactions oscillate around
the and curves, respectively. Local varia-
tions of these quantities corresponding to the three large prob-
lems in Table III are magnified in the inset of Fig. 1. We ob-
serve that the tree size (hence the computational requirements
for the MVMs) increases slower than the asymptotical estimate
of . On the other hand, due to a top-down clustering
scheme, the number of near-field interactions (hence the com-
putational requirements for the near-field part) grows faster than

. We emphasize that this behavior is local and depends
on the strategy to construct the tree structure, the overall com-
plexity of MLFMA is still .

We also observe in Table III that the maximum number of
biconjugate-gradient-stabilized (BiCGStab) iterations to reduce
the residual error below is 21. Using the BDP, iterative
solution of the 42-million-unknown problem requires only 290
min, while each MVM is performed in 441 s. Table III also lists
the total memory usage for different parts of the algorithm using
the single-precision representation for the complex numbers.

In Fig. 9, we further present the details of the solution of
the 23-million-unknown problem involving a sphere of radius

. In Fig. 9(a), the total processing time is depicted for
all processes from 1 to 16. After the input and the clustering
part , computations of the translation operators and the
radiation/receiving patterns require negligible time. Cal-
culation of the near-field interactions dominates the setup
time, which is about 94 min. Then the solution part , in-
volving a total of 34 MVMs, is performed in about 155 min.
The processing time for a MVM is depicted in Fig. 9(b),

Fig. 9. Time diagrams for the solution of a scattering problem involving
a sphere of radius 80� discretized with 23 405 664 unknowns. (a) Overall
time includes the input and clustering parts , calculation of the translation
matrices , calculation of the near-field interactions , calculation of the radi-
ation and receiving patterns , and the iterative solution . (b) Matrix-vector
multiplications include the near-field stage , aggregation in the distributed
levels , all-to-all communications in LoD , aggregation in the shared
levels , translations without communications , translations with commu-
nications , disaggregation in the shared levels , and disaggregation in the
distributed levels followed by the receiving operation . In the diagrams, white
areas correspond to waits before the operations that require synchronization.

including the near-field stage , aggregation/disaggregation
in the distributed levels , all-to-all communications ,
aggregation/disaggregation in the shared levels , communi-
cation-free (intraprocessor) translations , and interprocessor
translations . The most problematic parts in terms of par-
allelization efficiency, i.e., all-to-all communications and
interprocessor translations, require negligible time compared
to other parts of the MVM. This is commonly observed with
large-sized problems and supports the conclusion that the par-
allelization efficiency for a fixed number of processes usually
increases as the problem size grows.

To present the accuracy of the solutions, Fig. 10 depicts
the normalized bistatic radar cross section values
in decibels (dB) for a sphere of radius discretized with
41 883 648 unknowns. We believe this is the solution of the
largest integral-equation problem ever reported. Solutions of
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Fig. 10. Bistatic RCS (in dB) of a sphere of radius 110� discretized with 41 883 648 unknowns from 160 to 180 , where 180 corresponds to the forward-
scattering direction.

integral-equation problems with 20 million and 33 million
unknowns were reported in [8] and [13], respectively. Ana-
lytical values obtained by a Mie-series solution is plotted as
a reference from 160 to 180 , where 180 corresponds to
the forward-scattering direction. Fig. 10 shows that the com-
putational values sampled at 0.1 are in agreement with the
analytical curve. For more quantitative information, we define
a relative error as

(11)

where and are the analytical and computational RCS
values, respectively, is the -norm defined as

(12)

and is the number of samples. The relative error is 3.87%,
4.67%, and 4.67% in the 160 –170 , 170 –180 , and 0 –180
ranges, respectively. We note that the relative error in the RCS
values is about 5%, although we calculate the near-field and
far-field interactions with 1% error. The extra error is due to
the low-order discretization of CFIE. For the same discretiza-
tion of a scattering problem with the RWG functions, MFIE
(thus, CFIE) is consistently inaccurate to calculate the scattered
fields compared to EFIE, even MFIE (and CFIE) is better condi-
tioned than EFIE [29]. A remedy to this accuracy problem is to
use higher-order basis functions, such as the linear-linear basis
functions discussed in [17].

Finally, we present the solution of a real-life problem in-
volving the Flamme, which is a stealth airborne target, as de-
tailed in [30]. The scattering problem is solved at 16 GHz and
the maximum dimension of the Flamme is 6 m, corresponding
to . Using triangulation, the problem is discretized
with 24 782 400 unknowns. Fig. 11 presents the bistatic RCS
values in when the target is illuminated by a plane wave
propagating in the - plane at a 30 angle from the axis
(from ). Both and polarizations are considered.

Fig. 11. Bistatic RCS (in dBm ) of the stealth airborne target Flamme at 16
GHz. Maximum dimension of the Flamme is 6 m corresponding to 320�. The
target is illuminated by a plane wave propagating in the x-y plane at a 30 angle
from the x axis, as also depicted in the inset.

The copolar RCS values are plotted on the - plane as a func-
tion of the bistatic angle . In the plots, 30 and 210 corre-
spond to the back-scattering and forward-scattering directions,
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respectively. Solution of this problem is performed by a 10-level
MLFMA (6 distributed and 4 shared levels) parallelized into
16 processes. After the setup, which takes about 104 min, the
problem is solved twice (for two polarizations) in about 490
min. Using BiCGStab and BDP, the numbers of iterations to re-
duce the residual error below are 42 and 35, respectively,
for the and the polarizations of the plane-wave excitation.
Both near-field and far-field interactions are calculated with 1%
error and the total memory usage is 139 GB using the single-pre-
cision representation.

V. CONCLUDING REMARKS

In this paper, we consider fast and accurate solutions of large-
scale scattering problems discretized with tens of millions of
unknowns using a parallel MLFMA implementation. We inves-
tigate the parallelization of MLFMA and improve the efficiency
of the implementations. Some of the major steps for the efficient
parallelization of MLFMA are as follows.

• Distribute the near-field interactions equally among the
processors using a load-balancing algorithm.

• Determine the shared and distributed levels appropriately
by choosing an optimal LoD.

• Distribute the clusters in LoD among the processors by
considering the combined load of all descendants of each
cluster.

• Assign each cluster and its subclusters to the same pro-
cessor for the levels below LoD.

• Distribute the samples of the fields among the processors
using a load-balancing algorithm (to reduce one-to-one
communications) for the levels above LoD.

• Use a communication map to pair the processors for the
translations in the distributed levels. Transfer the required
data using nonblocking send and receive operations.

We demonstrate the accuracy of our implementations by con-
sidering a canonical scattering problem involving a sphere of
radius discretized with 41 883 638 unknowns. To the best
of our knowledge, this is the largest integral-equation problem
ever solved.2 In addition to the solution of various extremely
large canonical problems, we also demonstrate the effective-
ness of our implementation on a real-life problem involving the
Flamme geometry with a size larger than .
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A Hierarchical Partitioning Strategy for an
Efficient Parallelization of the Multilevel

Fast Multipole Algorithm
Özgür Ergül, Student Member, IEEE, and Levent Gürel, Fellow, IEEE

Abstract—We present a novel hierarchical partitioning strategy
for the efficient parallelization of the multilevel fast multipole al-
gorithm (MLFMA) on distributed-memory architectures to solve
large-scale problems in electromagnetics. Unlike previous paral-
lelization techniques, the tree structure of MLFMA is distributed
among processors by partitioning both clusters and samples
of fields at each level. Due to the improved load-balancing, the
hierarchical strategy offers a higher parallelization efficiency than
previous approaches, especially when the number of processors
is large. We demonstrate the improved efficiency on scattering
problems discretized with millions of unknowns. In addition, we
present the effectiveness of our algorithm by solving very large
scattering problems involving a conducting sphere of radius 210
wavelengths and a complicated real-life target with a maximum
dimension of 880 wavelengths. Both of the objects are discretized
with more than 200 million unknowns.

Index Terms—Large-scale problems, multilevel fast multipole
algorithm, parallelization, scattering problems, surface integral
equations.

I. INTRODUCTION

S URFACE integral equations are commonly used to
formulate scattering and radiation problems involving

three-dimensional conducting bodies with arbitrary shapes [1].
The application of boundary conditions for the electric field
and the magnetic field on the surface of an object leads to the
electric-field integral equation (EFIE) and the magnetic-field
integral equation (MFIE), respectively. For closed surfaces,
EFIE and MFIE can be combined to obtain the combined-field
integral equation (CFIE), which is free of the internal-reso-
nance problem [2]. Numerical solutions of integral equations
require the discretization (e.g., triangulation) of surfaces. Then,
unknown surface currents are expanded in a series of basis
functions, and integral equations are tested by employing a
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set of testing functions. Finally, solutions of resulting
dense matrix equations provide the expansion coefficients,
which can be used to compute the scattered or radiated electric
and magnetic fields everywhere.

Surface integral equations provide accurate results when
they are discretized appropriately by using small elements with
respect to wavelength. Therefore, when a problem involves
a large object with dimensions of several wavelengths, its
accurate discretization leads to a large matrix equation with
hundreds of thousands of unknowns. Such a large problem can
be solved iteratively, where the required matrix-vector multi-
plications (MVMs) are performed efficiently by the multilevel
fast multipole algorithm (MLFMA) [3]. For an dense
matrix equation, MLFMA reduces the complexity of MVMs
from to , allowing for the solution of large
problems with limited computational resources. On the other
hand, accurate solutions of many real-life problems require
discretizations with millions of elements, leading to matrix
equations with millions of unknowns, which cannot easily be
solved with sequential implementations of MLFMA running on
a single processor. To solve such large problems, it is helpful
to increase computational resources by assembling parallel
computing platforms and, at the same time, by parallelizing
MLFMA.

The parallelization of MLFMA is not trivial because of the
complicated structure of this algorithm. Simple parallelization
techniques usually fail to provide efficient solutions, due to
communications among processors, poor load-balancing of the
workload, and unavoidable duplications of computations over
multiple processors. Advanced parallelization techniques have
been developed to improve the parallelization of MLFMA by
using novel partitioning strategies, load-balancing algorithms,
and optimizations for communications [4]–[11]. This way, it
has become possible to solve problems with tens of millions of
unknowns on relatively inexpensive computing platforms with
distributed-memory architectures [4]–[6], [9], [10].

Recently, we developed a hierarchical partitioning strategy
that is well suited for the multilevel structure of MLFMA [12].
With the enhanced load-balancing offered by the hierarchical
strategy, parallelization of MLFMA can be improved signifi-
cantly. In this paper, we provide the details of our parallelization
algorithm. We employ canonical problems involving sphere ge-
ometries of various sizes for the comparison of the hierarchical
strategy with previous approaches. We show that the efficiency
of the parallelization is improved drastically, especially when
the number of processors is large. Improved efficiency provided

0018-926X/$25.00 © 2009 IEEE
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by the hierarchical strategy is also demonstrated on scattering
problems discretized with more than 100 million unknowns. Fi-
nally, we present the solutions of very large scattering problems
involving a sphere of radius and a stealth airborne target
with a maximum dimension of , which are discretized with
204,823,296 and 204,664,320 unknowns, respectively, and
denotes the wavelength.

The rest of the paper is organized as follows. In Section II, we
summarize an efficient implementation of MLFMA, focusing
on the main stages of the algorithm. Section III presents the
parallelization of MLFMA using the hierarchical partitioning
strategy. We investigate the communications among processors
in Section IV and compare our parallelization technique with the
previous approaches in Section V. Finally, numerical results are
presented in Section VI, followed by our concluding remarks in
Section VII.

II. MULTILEVEL FAST MULTIPOLE ALGORITHM

For perfectly-conducting objects, discretizations of surface
integral equations lead to dense matrix equations in the
form of

(1)

where the matrix elements for can be
interpreted as electromagnetic interactions of discretization ele-
ments, i.e., basis and testing functions. The matrix equation (1)
can be solved iteratively via a Krylov subspace algorithm, where
the required MVMs are performed efficiently by MLFMA [3].
In general, MLFMA splits MVMs as

(2)

where near-field interactions denoted by are calculated di-
rectly and stored in memory to perform the partial multiplica-
tions , while multiplications involving far-field interac-
tions, i.e., , are performed approximately and efficiently.
In this section, we briefly describe an efficient implementation
of MLFMA by summarizing the main stages of the algorithm.

A. Discretization of the Object

Without losing generality, we consider a smooth object
with an electrical dimension of , where is the
wavenumber. Discretization (triangulation) of the object with

mesh size leads to unknowns, where .
As basis and testing functions, we use Rao-Wilton-Glisson
(RWG) [13] functions defined on planar triangles.

B. Clustering

To calculate electromagnetic interactions in a multilevel
scheme, a tree structure is constructed by placing the object in
a cubic box and recursively dividing the computational domain
into subdomains, until the box size is about . A multilevel
tree structure with levels

is obtained by considering nonempty boxes (clusters)1. At level
from 1 to , the number of clusters can be approximated as

(3)

where . In other words, the number of clusters
decreases approximately by a factor of four from a level to the
next upper level.

The tree structure in MLFMA can be constructed by using
a top-down or a bottom-up strategy [10]. In the top-down
strategy, the size of the largest cube enclosing the object is
minimized, while the size of the smallest boxes at the lowest
level depends on the size of the object and the number of levels.
In the bottom-up strategy, however, the size of the smallest
boxes is fixed to some value (such as ), and the sizes of the
boxes at higher levels are recursively doubled until the whole
object is enclosed by the largest box. For a given problem, one
of the two strategies can be preferable in terms of efficiency
and accuracy.

C. Sampling

For each cluster in the tree structure, radiated and incoming
fields are defined and sampled on the unit sphere. We choose
samples regularly spaced in the direction and use the
Gauss-Legendre quadrature in the direction [14]. For level

, the number of samples is and
along and directions, respectively, where

is the truncation number determined by the excess bandwidth
formula [15], i.e.,

(4)

In (4), is the box size at level , and is the desired digits
of accuracy. The sampling rate depends on the cluster size as
measured by the wavelength , and the total
number of samples can be approximated as

(5)

where .

D. Far-Field Interactions

In MLFMA, far-field interactions are calculated in a
cluster-by-cluster manner using the diagonalization and fac-
torization of the homogenous-space Green’s function [14]. In
each MVM, three main stages, i.e., aggregation, translation,
and disaggregation, are performed as described below.

1) Aggregation: In this stage, radiated fields of clusters are
calculated from the bottom of the tree structure to the highest
level . At the lowest level, radiation patterns of basis
functions, which are calculated during the setup of MLFMA, are
multiplied with the coefficients provided by the iterative solver

1In this paper, � represents the number of effective levels, where MLFMA
stages, i.e., aggregation, translation, and disaggregation, are performed. The ac-
tual number of levels is �����, but the highest two levels are not used directly
in MLFMA.
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and combined to obtain the radiated fields of the smallest clus-
ters. Then, the radiated fields of clusters at higher levels are ob-
tained by shifting and combining the radiated fields of clusters
at lower levels. During the aggregation stage, we use a local
Lagrange interpolation between successive levels to match dif-
ferent sampling rates for fields.

2) Translation: In this stage, radiated fields computed during
the aggregation stage are translated into incoming fields. For
each cluster at any level, there are clusters to translate
the radiated field to. In addition, using the symmetry of cubic
(identical) clusters, the number of different translation operators
is , independent of the level [4]. Translation operators are
calculated during the setup of MLFMA in processing
time using local interpolation methods [16].

3) Disaggregation: This stage involves the calculation of
total incoming fields at cluster centers from the top of the tree
structure to the lowest level. At the highest level, the total in-
coming field for a cluster is obtained by the combination of
incoming fields due to translations. At lower levels, however,
the incoming field to the center of a cluster involves a contribu-
tion from the incoming field to the center of its parent cluster.
We use transpose interpolation (anterpolation) between consec-
utive levels during the disaggregation stage to match different
sampling rates of the levels [17]. Following the disaggregation
operations at the lowest level, incoming fields are received by
the testing functions. Similar to the radiation patterns of basis
functions, receiving patterns of testing functions are also calcu-
lated during the setup of MLFMA.

Considering the three stages of MLFMA, the processing time
and memory required for all operations at level is proportional
to the product of the number of clusters and the number of sam-
ples, i.e.,

(6)

We note that all levels of MLFMA have equal importance with
complexity in terms of processing time and memory.

E. Near-Field Interactions

In MLFMA, there are also near-field
interactions, which are calculated directly in the setup stage of
the program and stored in memory to be used multiple times
during the iterations. These interactions are between the basis
and testing functions that are located close to each other. We
use singularity extraction techniques [18]–[21] and Gaussian
quadratures [22] in order to calculate the near-field interactions
accurately and efficiently.

III. HIERARCHICAL PARALLELIZATION OF MLFMA

The main task in the parallelization of MLFMA on dis-
tributed-memory architectures is partitioning the multilevel tree
structure among processors. Simple parallelization techniques,
based on distributing clusters among processors, usually fail
to provide efficient solutions. This is mainly due to dense
communications between processors, duplication of compu-
tations, and unbalanced distribution of the workload among
processors [7], [8]. Since such problems arise mostly at the

Fig. 1. Distribution of a four-level tree structure among eight processors using
the hierarchical partitioning strategy.

higher levels of MLFMA, a hybrid parallelization technique,
which applies different partitioning strategies for the lower
and the higher levels, is developed to improve the efficiency
[7]–[10]. In this technique, processor assignments are made on
the basis of fields of clusters at the higher levels. In other words,
each cluster at higher levels is shared by all processors, while
each processor is assigned to the same portion of fields for
all clusters. Even though the hybrid parallelization technique
increases the parallelization efficiency significantly, compared
to simple parallelization approaches, the improvement can be
insufficient, especially when the number of processors is large.

In this section, we provide the details of the hierarchical par-
allelization of MLFMA for the efficient solution of large-scale
problems. The hierarchical parallelization is based on the simul-
taneous partitioning of clusters and their fields at all levels. We
adjust the partitioning in both directions (clusters and samples
of fields) appropriately by considering the number of clusters
and the number of samples at each level. As an example, Fig. 1
depicts a four-level tree structure , where levels are rep-
resented by two-dimensional rectangles. Horizontal and vertical
dimensions of rectangles correspond to clusters and samples
of fields, respectively. The tree structure is partitioned among
eight processors labeled 1 to 8. At the lowest level, clusters are
distributed among eight processors, and each cluster is assigned
to a single processor, without any partitioning of field samples.
Then, at the next level , field samples are partitioned
among two groups of processors, i.e., (1,3,5,7) and (2,4,6,8),
while the number of cluster partitions is reduced to four. At this
level, samples of each cluster are shared by two processors. As
we proceed to the higher levels, the number of partitions for
clusters and samples of fields are systematically decreased and
increased, respectively.

In the following subsections, we present the hierarchical par-
allelization of MLFMA in detail by considering the main stages
of the algorithm.

A. Partitioning of the Tree Structure

We consider the parallelization of MLFMA on a cluster of
processors, where for some integer . Using the hierar-

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 4, 2009 at 17:29 from IEEE Xplore.  Restrictions apply.



ERGÜL AND GÜREL: A HIERARCHICAL PARTITIONING STRATEGY 1743

Fig. 2. Aggregation operations from level 3 to level 4 for the partitioned tree
structure in Fig. 1.

chical partitioning strategy, the number of partitions for clusters
at level is chosen as

(7)

We note that clusters are not partitioned for levels ,
if such a level exists. The number of clusters assigned to each
processor can be approximated as

(8)

In addition, samples of the fields are divided into

(9)

partitions along the direction for level . Field samples are par-
titioned only along the direction for an easy implementation
of interpolation/anterpolation operations [7]. The number of
samples assigned to each processor is

(10)

Also considering the sampling in the direction, the total
number of samples per processor can be written as

(11)

Finally, the size of the local data at each processor is

(12)

for .

B. Aggregation Stage

For the partitioned tree structure in Fig. 1, aggregation oper-
ations from level 3 to level 4 are depicted in Fig. 2 and can be
listed as follows.

1) One-to-One Communications for Data Inflation: During
aggregations from a level to the next higher level, interpolations
are required to increase the sampling rate for radiated fields.
Using local Lagrange interpolation, each target point in the fine
grid has contributions from a set of neighboring points in the
coarse grid. Therefore, when samples of fields are partitioned

among processors, interpolations in each processor need sam-
ples located in other processors. Consequently, before interpo-
lations, one-to-one communications are required between pairs
of processors to inflate the local data, in accordance with the in-
terpolation requirements.

For the partitioned tree structure in Fig. 1, aggregation from
level 3 to level 4 requires one-to-one communications within
two separate groups of processors that are located in the same
columns, i.e., (1,2,3,4) and (5,6,7,8), as depicted in Fig. 2. As
an important advantage of the hierarchical partitioning strategy,
distribution of the samples into large numbers of partitions
is avoided. Therefore, communications are required mostly be-
tween pairs of processors located “next to each other.” For ex-
ample, processor 3 communicates mainly with processors 1 and
2, but not with processor 4. Processors 3 and 4 would need
to communicate with each other if the number of the sam-
ples required for the interpolation is larger than the number of
the samples per processor. However, using the hierarchical
strategy, the number of partitions along the direction, hence
the number of the samples per processor, can be adjusted such
that those secondary communications between “distant” proces-
sors are avoided.

2) Interpolation and Shifting: When the required data is pre-
pared by one-to-one communications for a cluster, its radiated
field is interpolated and shifted to the center of its parent cluster.
Temporary levels involving parent clusters and field samples
after the interpolation and shifting operations are denoted as in-
termediate levels. As an example, for the partitioned tree struc-
ture in Fig. 1, level 3.5 is depicted in Fig. 2. Following the inter-
polation, the number of samples along the direction assigned
to each processor is doubled, i.e.,

(13)

At the same time, the number of clusters in each processor can
be written as

(14)

Intermediate levels are defined temporarily and used to arrange
the data in each processor, before communications are per-
formed to modify the partitioning according to the hierarchical
strategy.

3) Data Exchanges: From an intermediate level
to the next level , data is exchanged among processors,
if . As depicted in Fig. 2, processors are paired
according to their positions in the partitioning scheme. Each
processor performs the following communications.

• Send half of the field samples of each cluster at the inter-
mediate level;

• Receive the complementary data, which involves field sam-
ples of some clusters, from the associated processor.

With data exchanges, the number of clusters in each processor
is doubled with respect to the number of clusters at the interme-
diate level, while the number of samples along the direction is
halved. Then, we have

(15)

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 4, 2009 at 17:29 from IEEE Xplore.  Restrictions apply.



1744 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 57, NO. 6, JUNE 2009

Fig. 3. One-to-one communications during the translation stage at levels 2 and
3 of the partitioned tree structure in Fig. 1.

and

(16)

which agree with the expressions in (8) and (10), respectively.

C. Translation Stage

Using the hierarchical partitioning strategy, one-to-one com-
munications are also required during the translation stage, since
clusters are partitioned, and some translations are needed among
clusters located in different processors. These communications
are achieved by pairing the processors and transferring the radi-
ated fields of clusters between the pairs. As depicted in Fig. 3,
communications are required only among the processors that
are located in the same row of the partitioning. For example,
communications at level 2 are performed within two separate
groups of processors, i.e., (1,3,5,7) and (2,4,6,8). In general, for
“inter-processor” translations at level , each processor is paired
one by one with the other processors. Once a pairing is
established, radiated fields of clusters are transferred, and trans-
lations are performed by the receiver processor.

In addition to inter-processor translations, there are also
“intra-processor” translations that are related to clusters located
in the same processor. These translations can be performed
independently in each processor, without any communication.

D. Disaggregation Stage

The parallelization of the disaggregation stage is very sim-
ilar to the parallelization of the aggregation stage. In general,
operations in the aggregation stage are performed in a reverse
manner.

1) Data Exchanges: When incoming fields are calculated at
cluster centers at level , partitioning is modified via data ex-
changes among the processors. This way, the partitioning at
level is generated as required for anterpolation and
shifting operations.

2) Anterpolation and Shifting: Incoming fields at the centers
of clusters are anterpolated and shifted to the centers of their
subclusters at level .

3) One-to-One Communications for Data Deflation: Since
the anterpolation is the transpose of the interpolation, some of
the samples obtained from an anterpolation operation should be
sent to other processors. This is because interpolations during

the aggregation stage are performed using the inflated data
prepared by one-to-one communications among processors.
As the reverse of this process, anterpolations produce inflated
data, which must be deflated via one-to-one communications.
Following an anterpolation operation, some of the resulting
data are used locally, while the rest are sent to other processors.
Similar to the communications during interpolations, data are
transferred mostly among neighboring processors in the same
column of the partitioning scheme.

IV. COMMUNICATIONS IN THE HIERARCHICAL

PARALLELIZATION OF MLFMA

Using the hierarchical partitioning strategy, computations on
the tree structure are distributed among processors with im-
proved load-balancing, compared to previous strategies based
on partitioning with respect to only clusters or only samples
of fields. However, there are still unavoidable communications
among processors, which may reduce the efficiency of the paral-
lelization. In this section, we investigate these communications
in detail.

A. Communications in the Aggregation/Disaggregation Stages

During an interpolation operation in a processor at level
, the amount of data required from other pro-

cessors for each cluster is proportional to the number of samples
in the direction. Considering also the number of clusters per
processor, the communication time for interpolations at level
can be written as

(17)

We note that the communication time tends to decrease
with the increasing number of processors .

To switch the partitioning scheme from level to level, each
processor exchanges half of its data produced during the aggre-
gation stage. The processing time for these communications can
be expressed as

(18)

where the upper bound is again inversely proportional to the
number of processors . The processing time required for com-
munications during the disaggregation stage is the same as the
time required for communications during the aggregation stage.

B. Communications in the Translation Stage

During the translation stage, each processor is paired one by
one with processors to per-
form inter-processor translations. For each pair, the number of
cluster-cluster interactions required to be performed is propor-
tional to the number of clusters per processor. In addition, the
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size of the data transferred in each interaction is proportional to
the number of local samples per cluster, i.e., . Therefore, the
communication time for translations can be written as

(19)

The communication time for translations can be significant, es-
pecially at the lower levels of MLFMA.

V. COMPARISONS WITH PREVIOUS PARALLELIZATION

TECHNIQUES

In this paper, we compare the hierarchical parallelization
technique with two previous approaches, namely, the simple
and the hybrid parallelization techniques. As mentioned in Sec-
tion III, the simple parallelization of MLFMA is based on the
distribution of clusters among processors at all levels. A major
disadvantage of this technique is the difficulty in distributing a
small numbers of clusters at the higher levels of the tree struc-
ture [8]. When the number of processors is large, those clusters
must be duplicated over multiple processors. Otherwise, a large
amount of data is required to be communicated during the
aggregation and disaggregation stages. In addition, when using
the simple parallelization technique, translations involve dense
communications among processors [7], [8].

The hybrid parallelization technique was successfully de-
veloped to improve the parallelization of MLFMA [7]. In this
technique, the lower (distributed) levels of MLFMA are parti-
tioned as in the simple technique, i.e., clusters are distributed
among processors. In the higher (shared) levels, however,
samples of fields are distributed, instead of clusters. Unlike
the hierarchical parallelization, samples in a shared level are
distributed among all processors, without any partitioning of
clusters. Distributing samples provides improved load-bal-
ancing and communication-free translations for the higher
levels of the tree structure. On the other hand, problems arise
for some levels at the middle of the tree, where it is not efficient
to distribute either fields or clusters among processors [10].

The hierarchical parallelization technique provides two im-
portant advantages, compared to simple and hybrid techniques.

• Improved load-balancing: Partitioning both clusters and
samples of fields leads to an improved load-balancing
of the workload among processors at each level. Conse-
quently, duplication of computations, which may occur in
the simple parallelization, and waits for the synchroniza-
tion of processors are minimized.

• Reduced communications: Although the hierarchical par-
titioning increases the types of communications, compared
to simple and hybrid approaches, the amount of data trans-
ferred is decreased. In addition, due to the improved load-
balancing, the average package size is enlarged, and the
number of communication events is reduced. As a result,
the communication time is significantly shortened.

Finally, another important advantage of the hierarchical
parallelization algorithm appears when MLFMA is employed
on a cluster with multiprocessor nodes. Most of the main-
boards built recently have multiple processors connected via

high-speed buses. Then, parallel computers are constructed by
clustering a number of multiprocessor computing units (nodes),
instead of processors. Resulting parallel computers are highly
nonuniform, since communications among processors in the
same node are significantly faster than those among processors
located in different nodes. Using multicore processors further
complicates the situation, since communications within nodes
also have diverse rates, depending on whether the inter-core
communications are taking place in the same processor or
between two processors in the same node. The hierarchical par-
allelization technique is suitable for such parallel platforms. As
an example, let the tree structure in Fig. 1 be partitioned among
two nodes, each having four processors, i.e., processors 1–4
and processors 5–8 are located in two different nodes. Then,
all communications during the aggregation and disaggregation
stages from level 1 to level 3 are performed “inside” nodes.
Inter-node communications are required only for translations
and data exchanges during the aggregation/disaggregation
stages between level 3 and level 4. In general, the hierarchical
partitioning strategy facilitates the processor arrangements in
nonuniform platforms to minimize inter-node communica-
tions. However, in this paper, we do not use this advantage
directly; hence, the improved efficiency obtained with the
hierarchical parallelization is general and valid for all types of
distributed-memory architectures.

VI. RESULTS

The results of this paper can be categorized into three
parts. First, we demonstrate the improved efficiency provided
by the hierarchical parallelization strategy, compared to the
previous parallelization approaches, on scattering problems
involving spheres of various sizes discretized with millions of
unknowns. Second, parallelization efficiency is demonstrated
on large-scale scattering problems involving a sphere (a canon-
ical object) and an airborne target Flamme [23] (a complicated
object). Finally, we present the solution of very large scattering
problems involving a sphere of radius and the Flamme
with a maximum dimension of , which are discretized
with 204,823,296 and 204,664,320 unknowns, respectively.
These are the solutions of the largest problems of their classes
ever reported in the literature, to the best of our knowledge.

A. Formulation and Solution Parameters

In this paper, scattering problems involve closed conductors,
which can be formulated with CFIE. Matrix equations provided
by CFIE are usually better conditioned than those obtained with
EFIE and MFIE [24], [25]. Using CFIE, iterative convergence
is achieved rapidly, and it can be further accelerated by em-
ploying simple preconditioners, such as a block-diagonal pre-
conditioner (BDP). In all solutions, problems are discretized
with about mesh size, and near-field interactions are cal-
culated with maximum 1% error. For small problems involving
1.5–13.5 million unknowns, tree structures are constructed by
using a bottom-up strategy, and far-field interactions are cal-
culated with three digits of accuracy. For large problems (in-
volving more than 100 million unknowns), we use a top-down
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strategy to construct the tree structures, while the far-field inter-
actions are calculated with two digits of accuracy. During the
aggregation stage, interpolations from a level to the next higher
level are performed using 6 6 samples in the coarse grid for
each sample in the fine grid. Finally, iterative solutions are per-
formed using the biconjugate-gradient-stabilized (BiCGStab)
algorithm [26] accelerated with BDP, and the residual error for
the iterative convergence is set to and for small and
large problems, respectively.

B. Parallel Computing Platforms

Scattering problems are solved on three different parallel
clusters, each involving 16 computing nodes.

• Tigerton Cluster: Each node has 32 gigabytes (GB) of
memory and two quad-core Intel Xeon Tigerton proces-
sors with 2.93 GHz clock rate;

• Harpertown Cluster: Each node has 32 GB of memory
and two quad-core Intel Xeon Harpertown processors with
3.00 GHz clock rate;

• Dunnington Cluster: Each node has 48 GB of memory
and four six-core Intel Xeon Dunnington processors with
2.40 GHz clock rate.

In all three clusters, memory in a node is available to all cores
in the node. The nodes are connected via Infiniband networks,
while the processors in a node are connected through high-speed
mainboard buses. In the context of parallelization, we use the
terms “processor” and “core” synonymously. For a solution on

processors, we use the maximum number of nodes available,
i.e., the number of processes per node is minimized. In other
words, if a code is parallelized into processes, and if ,
then we use nodes, each running only one process. When

, however, the solution is parallelized over 16 nodes,
and processors are employed per node.

C. Parallel Efficiency Results and Comparisons

The solutions presented in this subsection are performed on
the Tigerton cluster. Fig. 4 presents the parallelization efficiency
obtained for the solution of a scattering problem involving a
sphere of radius discretized with 1,462,854 unknowns. Fig.
4(a) depicts the efficiency for the total time (including the setup
and iterations), when the solution is parallelized onto 2, 4, 8,
16, 32, 64, and 128 processors. The parallelization efficiency is
defined as

(20)

where is the processing time of the solution with proces-
sors. Fig. 4(a) shows that the hierarchical scheme improves the
parallelization efficiency significantly, compared to simple and
hybrid approaches, especially when the number of processors is
large. The hybrid parallelization performs better than the simple
parallelization; however, its efficiency drops rapidly for ,
and it becomes inefficient, compared to the hierarchical paral-
lelization. Using 128 processors, the hierarchical parallelization
technique provides 58% efficiency, corresponding to a 74-fold
speedup with respect to the single-processor solution.

Fig. 4. Parallelization efficiency with respect to the number of processors for
the solution of a scattering problem involving a sphere of radius ��� discretized
with 1,462,854 unknowns. (a) Overall efficiency including setup and iterations,
when the solution is parallelized by using simple, hybrid, and hierarchical tech-
niques. (b) Efficiencies for MLFMA stages, i.e., aggregation, translation, and
disaggregation, using the hierarchical technique.

Fig. 4(b) presents the parallelization efficiency for the three
stages of MVMs, i.e., aggregation, translation, and disaggrega-
tion, using the hierarchical strategy. We observe that the trans-
lation stage is a major bottleneck in the hierarchical paralleliza-
tion of MLFMA. For a solution on 128 processors, the paral-
lelization efficiency of translations drops below 30%. This is
because the communication time for translations, given in (19),
does not scale with the number of processors , unlike the com-
munication time for the aggregation and disaggregation stages.
In addition, many communications required for inter-processor
translations occur among processors located in different nodes.
Then, the rate of communications during the translation stage
is mostly limited by the speed of the Infiniband network. Nev-
ertheless, even the parallelization of translations is improved
with the hierarchical parallelization technique, and the overall
efficiency provided by the hierarchical algorithm is consistently
higher than those obtained with simple and hybrid approaches.

Fig. 5 presents the parallelization efficiency for solutions of
scattering problems involving spheres of radii and
discretized with 5,851,416 and 13,278,096 unknowns, respec-
tively, where the efficiency is defined with respect to solutions
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Fig. 5. Parallelization efficiency for the solution of scattering problems in-
volving (a) a sphere of radius ��� discretized with 5,851,416 unknowns and
(b) a sphere of radius ��� discretized with 13,278,096 unknowns. Parallel effi-
ciency is defined with respect to two and four processors, respectively.

with two and four processors. Similar to the previous results,
the parallelization efficiency is increased significantly by using
the hierarchical parallelization technique.

Even though Figs. 4 and 5 compare the relative performances
of different parallelization techniques, we emphasize that they
do not provide the complete information for the efficiency of
solutions. In general, one should also consider the following
factors.

• Clock Rate of the Processors: Although using faster pro-
cessors leads to faster solutions, the parallelization effi-
ciency can be degraded as the computation time is reduced.
This is because the communication time becomes more
significant when the processing time for computations is
small.

• Efficient Implementation of the Algorithm: We care-
fully implement MLFMA by minimizing the processing
time, which may also have an adverse effect on the
parallelization efficiency. For example, as opposed to
common implementations of MLFMA, we calculate and
store radiation and receiving patterns of basis and testing
functions during the setup of the program, and we use
them efficiently during iterations. Calculating the patterns
on the fly in each MVM without storing them is also a
common practice for low-memory implementations. That

TABLE I
SOLUTIONS OF SPHERE PROBLEMS

TABLE II
TOTAL PROCESSING TIME AND PARALLELIZATION EFFICIENCY FOR

THE SOLUTION OF SCATTERING PROBLEMS DISCRETIZED

WITH MORE THAN 100 MILLION UNKNOWNS

would increase the processing time, but the parallelization
efficiency would also increase, since those calculations
can be parallelized very efficiently.

• Accuracy Parameters: The accuracy of solutions also af-
fects the parallelization efficiency. For example, most of
the communications during the aggregation and disaggre-
gation stages could be avoided by reducing the number of
interpolation points. This would increase the paralleliza-
tion efficiency, but the accuracy of the solutions would de-
teriorate.

We note that parallel-efficiency results presented in Figs. 4 and
5 are obtained under strict circumstances, using an efficient and
accurate implementation of MLFMA on a cluster of proces-
sors with a relatively high clock rate. To quantify the efficiency
of the solutions, Table I lists processing times, when the three
problems are solved on 128 processors. Using the hierarchical
parallelization technique, the largest problem with 13,278,096
unknowns is solved in less than one hour.

D. Parallel Efficiency for Large-Scale Problems

Table II presents the solution of scattering problems dis-
cretized with more than 100 million unknowns. A sphere of
radius is discretized with 135,164,928 unknowns and
solved by a 10-level MLFMA. We also consider a stealth
airborne target, namely, the Flamme [23], having a maximum
dimension of 6 meters ( at 36 GHz) and discretized with
134,741,760 unknowns. This problem is solved by an 11-level

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 4, 2009 at 17:29 from IEEE Xplore.  Restrictions apply.



1748 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 57, NO. 6, JUNE 2009

Fig. 6. Bistatic RCS (in dB) of a sphere of radius ���� discretized with
204,823,296 unknowns (a) from 0 to 180 and (b) from 174 to 180 , where
0 and 180 correspond to back-scattering and forward-scattering directions,
respectively.

MLFMA. Both of the objects are illuminated by a plane wave,
and solutions are performed on 16, 32, and 64 processors of
the Harpertown cluster. The number of iterations is 23 and
44 for the sphere and the Flamme, respectively. Table II lists
the total processing times including the setup and iterative
solution parts, and the parallelization efficiency obtained for
32 and 64 processors with respect to 16 processors. Using 64
processors, parallelization efficiency is more than 80% for both
problems. Due to this relatively high efficiency provided by the
hierarchical partitioning strategy, we are able to perform each
solution in five to six hours.

E. Solutions of Very Large Problems

Finally, we present the solutions of very large scattering
problems discretized with more than 200 million unknowns.
A sphere of radius is discretized with 204,823,296 un-
knowns and solved on 64 processors of the Dunnington cluster.
Fig. 6(a) presents the normalized bistatic radar cross section
values ( , where is the radius of the sphere in meters)

Fig. 7. Normalized co-polar bistatic RCS (RCS/� in dB) of the stealth air-
borne target Flamme at 44 GHz. Maximum dimension of the Flamme is 6 me-
ters, corresponding to ����. The target is illuminated by plane waves propa-
gating in the �-� plane at (a) 30 and (b) 60 angles from the � axis, with the
electric field polarized in � direction (horizontal polarization).

in decibels (dB) from 0 to 180 such that 0 corresponds to the
back-scattering direction. Fig. 6(b) presents the same results
from 174 to 180 . We observe that computational values are in
agreement with the analytical values obtained by a Mie-series
solution. The solution of the problem using the hierarchical
parallelization strategy requires 645 minutes. Following the
setup, which takes about 280 minutes, the iterative solution
involving 25 iterations is performed in 360 minutes.

Fig. 7 presents the solution of a scattering problem involving
the complicated target Flamme at 44 GHz. The maximum di-
mension of the Flamme is at this frequency. Discretiza-
tion of the problem with mesh size leads to 204,664,320
unknowns. As depicted in the insets of Fig. 7, the nose of the
Flamme is directed towards the axis, and it is illuminated by
two plane waves (individually) propagating in the - plane at
30 and 60 angles from the axis. The electric field is polar-
ized in the direction (horizontal polarization). After the setup,
which takes 265 minutes, the problem is solved twice for the two
excitations in about 1300 minutes. The number of iterations for
30 and 60 illuminations are 38 and 42, respectively. Fig. 7
presents the normalized co-polar bistatic RCS (RCS/ in dB)
on the - plane as a function of the bistatic angle . For the 30
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illumination in Fig. 7(a), 30 and 210 correspond to back-scat-
tering and forward-scattering directions, respectively. We ob-
serve that the back-scattered RCS of the Flamme is extremely
low; it is 90 dB less than the forward-scattered RCS. This is
also observed for the 60 illumination in Fig. 7(b), where the
back-scattered RCS at 60 is significantly lower than the for-
ward-scattered RCS at 240 , due to the stealth property of the
Flamme.

VII. CONCLUSION

We present the details of a hierarchical partitioning strategy
for the efficient parallelization of MLFMA on relatively inex-
pensive computing platforms with distributed-memory architec-
tures. Our algorithm is based on partitioning both clusters and
field samples among processors at all levels of the multilevel tree
structure. This way, load-balancing is improved significantly,
compared to previous parallelization approaches based on par-
titioning with respect to only clusters or only samples of fields.
We demonstrate the improved efficiency provided by the hier-
archical technique on large scattering problems discretized with
millions of unknowns. We also present the solution of very large
scattering problems discretized with more than 200 million un-
knowns. For accurate investigations of complicated targets, such
as the Flamme, solutions obtained with parallel MLFMA are ex-
tremely important. This is because approximate methods, such
as physical optics (PO), may not provide accurate results for
those problems, even when objects are large.
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