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1. Introduction

he purpose of this article is to give a practical and complete,

but not rigorous, exposition of the Fast Multipole Method
(FMM). The aim is to give the computational physicist or engineer
a sufficiently clear understanding of the method that he or she will
be able to implement it with a minimum of difficulty. For
mathematical background and rigor, we refer the reader to
Rokhlin’s papers [1, 2].

The FMM provides an efficient mechanism for the numerical
convolution of the Green’s function for the Helmholtz equation
with a source distribution. It can be used to radically accelerate the
iterative solution of boundary-integral equations. In the simple
single-stage form presented here, it reduces the computational
complexity of the convolution from O(Nz) to O(Nm), where N is
the dimensionality of the problem’s discretization. By implementing
a multistage FMM [1,2], the complexity can be further reduced to
O(Nlog N). However, even for problems that have an order of
magnitude more variables than those currently tractable using
dense-matrix techniques (N =~ 10° ), we estimate that the perform-
ance of the single-stage algorithm should be near optimal.

Our development is given in terms of the method of moments
[3,4] (MoM), rather than the Nystrom method [5]. We do this
because

* Electrical engineers are more familiar with the MoM,
and may therefore be more comfortable with the
development.

* The prescription we present is sufficiently simple that
it can be easily retrofitted to existing MoM codes.

» When used in the MoM, detailed comparisons to verify
that results are identical to dense-matrix techniques
are immediately available.

» We avoid all questions of singularity subtraction, as it
is required only for matrix elements representing
nearby interactions, and the computation of these is
unchanged when the FMM is employed.

* The presentation demonstrates the independence of the
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FMM from the choice of discretization method,
boundary-surface model, basis functions, etc.

The reader is cautioned not to interpret our choice of presentation
as representing a preference toward the MoM. On the contrary, we
think that the Nystrom method is the appropriate tool for efficient
and accurate boundary-integral-equation solvers.

For the purposes of demonstration, we first consider the
MoM for the scalar wave equation, with Dirichlet boundary condi-
tions on the surface of a scatterer. This is done for notational con-
venience only, the (naive) equivalent application to the electric-field
integral equation (EFIE) being straightforward. (One can simply
apply the scalar prescription to each Cartesian component of the
vector expansion functions, and to their divergences; a more effi-
cient method is described in Section 5.)

If the structure of this article seems somewhat confusing at an
initial reading, it is because some considerations are intentionally
delayed. We hope that the reasons for this become clear upon
subsequent readings. In Section 2, we define notation, introduce the
discretization of the scattering problem, relate the FMM to a more
familiar fast algorithm, and introduce the fundamental analytic
apparatus of the FMM. A detailed prescription for FMM
implementation, except for the choice of some important
parameters of the algorithm, is given in Section 3. After the
structure of the method is exhibited, these parameters (the number
of terms used in the multipole expansion, and the directions at
which far-field quantities are tabulated) are analyzed in Section 4.
The algorithm for the scalar problem then having been being com-
pletely defined, we exhibit the minor modifications necessary for
application to vector (electromagnetic) scattering in Section S.
Before concluding, a physical interpretation of the analysis behind
the FMM is given in Section 6.

2. Basics
2.1 Notation

Vectors in three-dimensional space are represented by bold-
face type (x). The magnitude of a vector x is written as x = |x|, unit
vectors are written as X = x/ x, and integrals over the unit sphere
are written as Idz;?. The imaginary unit is denoted by /.
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2.2 Time-independent scattering and the Method of Moments

A scattering problem [6, 7] can be defined by the scalar wave equa-
tion

(Vhwﬂwzq 1)
a Dirichlet boundary condition
w(x)=0, xonS, )

on the surface, S, of a bounded scatterer, and a radiation boundary
condition. The method of moments [8] provides a discretization of
the first-kind integral equation associated with this problem, giving
a set of linear equations with a dense coefficient (impedance)
matrnx:

ik|x—x'|

Znn’ = _ijdzx"‘dzx’fn(x)eif '(x,)' (3)
S S

47r|x - x’| "

We assume that the basis functions, f,, are real, and supported on
local subdomains. The FMM provides a prescription for the rapid
computation of the matrix-vector product

N
B, = Z Z:m’ln’ , (4)

n'=l1

for an arbitrary vector /. This rapid computation can then be used in
an iterative (e.g., conjugate-gradient) solution of the discretized
integral equation Z+/ =V, where, for an incident wave with wave
vector k,

Vak) = [ (x)e™ . §)

Note that we have chosen to use the same functions for expansion
and testing (the Galerkin method). Not only does this simplify the
development somewhat, but it also results in superconvergence of
the scattering amplitude [9, 10].

2.3 Comparison with the Fast Fourier Transform

A discrete Fourier transform consists of multiplication by a
dense N x N matrix F, with matrix elements

27kl
Fiq =exp N (6)

The fast Fourier transform (FFT) works by using algebraic
properties of F to construct a sparse factorization,

F= F(I)F(z)_”F(IOg: -V)’ @)

and applying the sparse factors, / (a). one by one to the vector to
be transformed, in lieu of a single multiplication by the matrix F.
Because each of the factors has only O(N) non-zero elements, this
results in an algorithm that requires O(Nlog N) operations. The
single-stage FMM works by a similar decomposition of the matrix
Z:

where Z', V, and T are all sparse. As described in detail in this arti-
cle, this allows computation of the product of Z with an arbitrary
vector (corresponding physically to the determination of the fields

radiated by a known source distribution), with O(N ¥ 2) operations.

The complexity can be further reduced to N3 N by recur-
sive decomposition of Z’ and V-

7 =7"+v Ty ©)

V=V, (10)

This is entirely analogous to the FFT: if one factors / into only two
factors (independent of N), the result would be an O(N 3/2) algo-

rithm. We do not exhibit the details of the multi-stage FMM in this
article

In contrast to the FFT, the FMM decomposition is made
possible by analytic rather than algebraic properties of the linear
operator. Thus, while the FFT factorization is exact, the FMM
decomposition is approximate. However, this does #0t constitute a
practical limitation, as it is easy to control the FMM to achieve any
desired level of precision (all the way to machine precision).

2.4 Identities

The FMM, as presented here, rests on two elementary
identities. They, or formulas from which they may be easily derived,
are found in many texts and handbooks on mathematical methods,
such as Arfken [11] and Abramowitz and Stegun [12]. The first, an
expansion of the kernel in the integral, Equation (3), for the imped-
ance-matrix elements, is a form of Gegenbauer’s addition theorem,

eik|X+d| @

X+d :ikz_o(_l)’(zm) Jilkd)D(kX)B(d - X). (D

where j, is a spherical Bessel function of the first kind, h,“) is a
spherical Hankel function of the first kind, /, is a Legendre poly-
nomial, and d < X. When using this expansion to compute the field
at x from a source at x’, X will be chosen to be close to x —x’, so
that d will be small. This relationship of the various vectors is
sketched in Figure 1. The special functions are as defined in [12].
The second is an expansion of the product j,F; in propagating plane
waves:

4mmMﬂBQuﬂ:jM&*HﬂﬂX) (12)

Substituting Equation (12) into Equation (11), we get

iﬁﬂ:f{fwwzﬂyﬂwm@mdkk)un
X+d|  4r = ! ! ’
X
/s
® - o
x’ X

Figure 1. The basic geometry, illustrating the relationship

Z=7+v1v', (8) between the locations x,x’ and the displacements X,x.
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where we have performed the illegitimate but expedient interchange
of summation and integration. The key point is that we intend to
precompute the function

L
T;(x,cos8) = 3 i (20 + )N (x) B(cosb), 4)
1=0

for various values of x. This is not a function in the I —> =, but
that need not concern us, as we obviously intend to truncate the
sum in numerical practice. The number of kept terms, L +1, will
depend on the maximum allowed value of kd, as well as the desired
accuracy. The choice of L is discussed in Section 4. It suffices, for
the present, to note that, in order to obtain accuracy from Equa-
tion (11), it must be slightly greater than ), where D is the maxi-
mum value of d for which the expansion will be used. Ignoring this
question for now (except for noting that the required number of
terms becomes small as 1) — 0), we have

eik|X+d| ik ¢ nrona .
~— [ dPke™ er(kX,k.X) , (15)
X+d 47

Using this, the impedance-matrix element, Equation (3), is
given by

Zyy = (::—)2—.[5 &xf, (x) [ @ f, (x) [ dke* O (e ko )
(16)

In infinite-precision arithmetic, and in the limit of large Z, this result
would be independent of the choice of X (for X >|x —x’ - X|). In
practice, one chooses X to make x — x’ - X relatively small, so that
excellent accuracy can be obtained with a modest value of L. (That
this can be done by the grouping scheme described below is a con-
sequence of the local support of the basis functions.) Notice that
Equation (16) gives the impedance-matrix element (for well-
separated interactions) in terms of the Fourier transforms with wave
number k of the basis functions, i.e. the basis functions’ far fields.
The acceleration provided by the FMM comes from the fact that
these far fields can be grouped together before the integral over k
is performed.

3. Algorithmic prescription
3.1 Setup

1. Divide the N basis functions into M localized groups,
labeled by an index m, each supporting about N/M basis
functions. (For now, M is a free parameter. Later it will
be seen that the best choice will be M ~ W,) Thus,
establish a correspondence between the basis-function
index, n, and a pair of indices (m,a), where « labels the
particular basis function within the mth group. Denote
the center of the smallest sphere enclosing each group as
X,,- The grouping and index correspondence is shown,
for a simple case, in Figure 2.

2. For group pairs (m,m’) that contain “nearby” basis
functions [defined for now as those whose regions of
support are separated by a distance comparable to or
smaller than a wavelength, 27/ k, so that Equation (16)
is valid], construct the sparse matrix Z’, with matrix
elements
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Zilnam’a' = Zn(m,a)n’(m’,a’)' 17)

by direct numerical computation of the matrix elements,
Equation (3). For all other pairs, Z;, ¢, = 0.

This part of the matrix computation is identical to
what is conventionally done. All matrix elements, the
computation of which requires subtraction of singulari-
ties, belong to Z’. If the large-N limit is taken with a
fixed discretization interval and nearness criterion, this
step would require O(N) computations. In Section 4,
we define nearby regions precisely, and it turns out that
their volume increases as +/N , so that this step requires

O(N 3 /2) computations.

3. For K directions k, compute the “excitation vectors”
(Fourier transforms of the basis functions)

Vma(/;) = _[Sdzx elk.(x_xm)fn(m,a)(x)’ (18)

where £ is considered to be a parameter of the problem,
not a variable. Because K needs to be chosen to give
accurate numerical quadrature for all harmonics to some

order o« L ~kD, K < [? ~ (kD)z, and because (from
geometrical considerations) kD x+/N /M, this step
requires O(N2 / M) computations.

4. For each pair (m,m’) for which Z;, .o =0 (regions
that are not nearby), compute the matrix elements

Figure 2. The grouping for a simple surface. It is assumed, for
purposes of illustration only, that each patch supports only one
basis function. The correspondence n(m,q) is abbreviated in
Table 1.

Table 1. The abbreviated correspondence » <> (m,a)for the
grouping shown in Figure 2.

m a n(m,a)
1 1 1
1 2 2
1 3 3
1 4 4
2 1 5
2 2 6
2 3 7
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- k . P
T (K) = = E)z’ (2 + ) OK )R- R
(19)

for the same K directions & as the previous step, where
LK. If done in a naive manner, this computation
requires O(KLM 2.M"N 3/2) operations. However, it
can be accomplished more rapidly in a number of ways,

the most elegant being the fast Legendre expansion
[13].

3.2 Fast Matrix-Vector Multiplication

Rapid computation of the vector elements

Bma = szam’a’[m’a’ (20)
ma'

is accomplished by the following steps:

1. Compute the KM quantities
su(k) = 2V ma(F) - @1
a

which represent the far fields of each group m. This step
requires O(KN ~N?%/ M) operations.

2. Compute the KM quantities
gm(i{\) = Z 7;11711‘(":)“”:’(1:)' (22)

These represent the Fourier components of the field in
the neighborhood of group m, generated by the sources
in the groups that are not nearby. This step requires

O(KM2 ~ MN ) operations.

3. Finally, compute

Bma = er,nwr'a’[m'a’ +Id21‘:Vma(l‘:)gm(kA)' (23)

ma'

The first term is the standard MoM computation of near
interactions, and the second term gives the far interac-
tions, in terms of the far fields generated by each group.

This step requires O(KN ~N%/ M) operations.

Straightforward substitution of Equations (18), (19), (21),
and (22) into Equation (23), and of Equations (14)-(16) into
Equation (20), shows that the two expressions for the vector B,
Equations (23) and (20), give equal results. Thus, computation of
the vector B requires aNM + bN 2IM operations, where a and b
are machine and implementation dependent. The total operation

4. Required number of multipoles and directions
In this section:

* We show how to choose the summation limit in the
transfer function T,,,,,,r(k), Equation (19), to achieve the

desired accuracy (in the process, giving a precise defini-
tion of nearby regions).

* We discuss how to choose the K directions 1; for the
tabulation of angular functions.

One must choose L large enough that the multipole expansion
of the Green’s function, Equation (11), converges to the desired
accuracy. As a function of /, the Bessel functions jj(z) and #("(z)

are of roughly constant magnitude for / < z. For /> z, jj(z) decays
rapidly and #"(z) grows rapidly. While one must choose
L>kd = kx—x'=X,,| (so that the partial-wave expansion has
converged), L cannot be taken to be much larger than kX,
because the transfer function, Equation (14), will oscillate wildly,
causing inaccuracies in the numerical angular integrations of Equa-
tions (15) and (23). This condition is a consequence of the inter-
change of summation and integration in Equation (13). An excellent
semi-empirical fit to the number of multipoles required for single
precision (32-bit reals) is

Ly(kD)= kD +5In(kD + ), 24

where D>1/k is the maximum 4 which will be required (the
“diameter” of the basis-function groups). For double precision (64-
bit reals), our estimate is

Ly(kD) = kD+10In(kD + 7). @25)

If the L dictated by the appropriate formula exceeds kX, , then
the groups are too close to use the FMM, and their interaction must
be represented in the sparse matrix Z*.

The K directions £, at which the angular functions are tabu-
lated, must be sufficient to give a quadrature rule that is exact for
all spherical harmonics of order / <2L. A simple method [2] for
accomplishing this is to pick polar angles & such that they are zeros
of Py (cosd), and azimuthal angles ¢ to be 2L equally spaced

points. Thus, for this choice of L::(sin #cos @, sin Gsin @, cosb),

K =217 If more-efficient quadrature rules for the sphere (of the
type described by McLaren [14]) are used, then K ~ (4/3)L2, Since

kD <N/ M, this justifies the assertion made in Section 3.1 that
KxN/IM.

5. Application to electromagnetic fields

In the solution of the electric-field integral equation, the
impedance-matrix elements take the form [15]

3
Znu’ =—i Z JdZXJ-dEX' n/(x)Gj/’(x - x,)-f;l'j'(x')’ (26)

Ji'=ls s

where

A A Sikx=x|
count is minimized by choosing M =+bN/a; the result is an G (x-x’)[(iyl _%TC_L,)‘*” 27)
O(N3/2) algorithm. k? Ox; Exj Jamix —x
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and the indices j, ;' label Cartesian components. As implied in
Section 1, one can integrate by parts, and simply use the scalar pre-
scription, given above, on the three components of f and the scalar
Vef. This is not, however, the most economical procedure. By
differentiating with respect to d under the integral in Equation (15),
we get

Gyp(X+d)~ %jdzlé(aﬂ., —kjh O T (kX ke X)28)

Now it can be easily seen that the scalar prescription presented in
Section 3 can be modified to an electromagnetic one, by promoting

the quantities V,,,, s,,,(l?), and g,,,(l;) to three-dimensional vectors,
with

V,,,a(I;) = J’a’ZX e’k-x[f"(m’a)(x) —kk- f"(mva)(x)], (29)
Equation (23).

This method can be implemented using about half the storage of the
four-fold use of the scalar formula, because the vector V,,, has

and using a dot product in the jdzlz' term of B,

na

only two independent components: [); . V(f() = 0}.

6. Physical interpretation

The physics of the FMM rests on the following fact: given a
field, y(x), which satisfies the wave equation

(V2 +k2)y/(x) =0, (30)

for all x outside a given sphere, the field can be reconstructed
everywhere outside that sphere from its far field [16, 17]. This
means that if the field is radiated by a source density, p(x), sup-

ported only within a sphere of radius R centered at the origin,

eik[x-x’|

p(x’), Gn

——p(x
4rx - x|

#(x) = j dx’

x'<R

then the contribution of the “off-shell” (q2 ES kz) components in the
Fourier expansion of the Green’s function [111],

eik|x—x’] d3q o1axx)

arx-x| (27) (2n)’¢ - K —ie’

(32)

(where ¢ 1is a infinitesimal positive number, prescribing the correct
treatment of the singularity at q2 = k?) are determined for x > R
(after integration over d@°x’) by the radiation condition and the “on-
shell” components. The on-shell components, coming from the
residue of the pole at q2 = k2, give the imaginary part of the
Green’s function, and the off-shell components give the real part. It
is important that the off-shell part is #of determined by the on-shell
part for x’ < R. This is related to the divergence of the series in
Equation (11) for d > X . This interpretation explains why the far
interactions can be computed [Equation (23)]from the radiation
pattern sm(k) of the mth group. It also clarifies why one only need
keep two components in V, g, and s for the electromagnetic case:

the electromagnetic far field is transverse, and has only two inde-
pendent components.

7. Conclusion

Present methods for computing radar and other scattering
cross sections are limited by computer-processing and memory
requirements. The significance of the increase in problem size made
possible by the FMM can be illustrated by considering the calcula-
tion of RCS for X-band radar. With current methods, the size of the
largest body that can be accurately modeled is a few feet. With the
same computing resources, the techniques that we have described
will increase this by at least an order of magnitude. Such computa-
tional capabilities would significantly reduce the technological risk
of expensive projects employing stealth technology. They may
likewise revolutionize other applications of scattering computa-
tions, such as high-frequency circuit modeling, sonar, and geo-
physical applications.

Because the FMM accelerates computation of the matrix-
vector product Z«/, and thus only indirectly solution of Z+/ =V,
we are frequently asked about the relative merits of direct and
iterative solutions, and techniques to reduce the iterations required
in a conjugate-gradient type of solution. These are important ques-
tions, and are under study by us as well as many others. We con-
sider them to be mostly beyond the scope of this article, but note
that the FMM is compatible with “complexification,” and with
preconditioning by a sparse matrix.

Although we have only demonstrated the use of the FMM for
surface-scattering problems, its application to volume-integral
equations (necessary for the analysis of penetrable inhomogeneous
scatterers) is obvious. When comparison to other techniques for
computing the fields of volume source distributions is made, it
should be noted that in this case the matrix 7 in Equation (8) is a
strict convolution, and as such can be applied by FFT, resulting
immediately in an O(NlogN) algorithm, without further decom-
position.
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Abstract—Various methods for efficiently solving electromag- feasible. These numerical techniques involve either solving
netic problems are presented. Electromagnetic scattering prob- partial-differential equations with the finite-difference method

lems can be roughly classified into surface and volume problems, _ T _
while fast methods are either differential or integral equation (FDM) [6]{9)] or the finite-element method (FEM) [10}-[12]

based. The resultant systems of linear equations are either solvedWhICh result 'n_Sparse matrlces’ or mtggral equatlons which
directly or iteratively. A review of various differential equation ~ are converted into dense matrix equations using the method
solvers, their complexities, and memory requirements is given. of moments (MoM) [1]-[5].

The issues of grid dispersion and hybridization with integral In a previous paper [14], we underscored the importance

equation solvers are discussed. Several fast integral equation reducing the computational complexity of computational
solvers for surface and volume scatterers are presented. These

solvers have reduced computational complexities and memory eIeCtromagnetics tEChniquesj especially for Igrge-scale eleC.trO'
requirements. magnetic problems. We reviewed several direct solvers with
reduced computational complexity whereby the solution is

sought for all right-hand sides. These direct solvers are the
recursive aggregate T-matrix algorithm (RATMA) [15], [16],

|. INTRODUCTION and the nested equivalence principle algorithm (NEPAL) [16],

OMPUTATIONAL electromagnetics is a fascinating disI17]- In this paper, we will first review differential equation
Ccipline that has drawn the attention of mathematician%?lvers' and discuss t_he_lr computat|onal complexities. We next
engineers, physicists, and computer scientists alike. It isf@FuS On recent work in integral equation solvers, and contrast
discipline that creates a symbiotic marriage between matheir complexmes.Wlth thosg of _d|ffer<.ant|allequat|on solvgrs.
ematics, physics, computer science, and various applicati-BWOUQhOUt’_We. will focus pnmanly on |t§rat|ve .solvers,. which
fields. Computational techniques for solving electromagnefi€ Used ubiquitously for solving both differential and integral
wave scattering problems involving large complex bodies afguations. Iterative solvers, in general, require less memory
for analyzing wave propagation through inhomogeneous medigrage, and e>_<h|b|t reduced computational complexn.les when
have been intensely studied by many researchers in the pared to direct solvers. Hence, they portend an important
[1]-[12]. This is due to the importance of this research in marﬂ)emOd for large scale computing.
practical applications, such as the prediction of the radar cross
section (RCS) of complex objects like aircraft, the interaction Il. DIFFERENTIAL EQUATION SOLVERS
of antenna elements with aircraft and ships, the environmentalA popular way to solve electromagnetic problems is to

effects of vegetation, clouds, and aerosols on electromagnelife the associated partial differential equation directly.
wave propagation, the interaction of electromagnetic Wavegaqse methods can be considered as the first fast solution
with biological media, and the propagation of signals in highy,othods in electromagnetics because one can solve an
speed and milimeter wave circuits. , ) N unknown problem with computational complexity less
Due to the large electrical dimensions of typical aircraff, O(N3) and memory requirement less tha®(N?2)

past efforts to ascertain their scattering cross section afferential equation solvers usually involve either the FEM
thelr interaction Wlth_ antennas have epr0|t_ed approxmaltfo]_[lZ] or the FDM [6]-[9]. The pertinent matrix equation
high-frequency techniques such as the shooting and bounci'g'gsparse withO(N) nonzero elements. Consequently, a

ray method [13]. However, the recent phenomenal growth {9,y \ector multiply can be performed @(V) operations.
computer technology, coupled with the development of fagg, properly ordering the elements, the bandwidth of the

algorithms with reduced computational complexity and me ertinent matrix equation can be compressed and inverted

ory requirements, have made a rigorous numerical solutigpy eficiently [18]. Differential equation solvers are usually
of the problem of scattering from electrically large ObJeCtﬁppIied to volumetric problems and, hence, the following

Index Terms—Numerical methods.

. . . . _discussion is pertinent to volumetric cases.
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shave the advantage of positive definiteness [18]; hence, when
iterative methods are used to solve the associated matrix
equation, a definitive statement can be made about their 100t
convergence rates. For instance, when the conjugate gradient
(CG) method [19], [20] is used to solve the Poisson equation,
it converges inO(N°3)steps in two dimensions, and in
O(N°33) in three dimensions. When the multigrid method
is used to solve the same equation, the number of iterations is
independent of the size of the problem [18]. As a consequence,
the total computational labor associated with the conjugate
gradient method to solve such problems scale&’&s in two
dimesnions andV!-3? in three dimensions, while it scales as
Nfor multigrid methods. 600¢
For hyperbolic (wavelike) problems which are indefinite, .
these computational complexities can only be regarded as L R
lower bounds, because with the change of geometry, resonance 0 200 400 600
can occur, and the number of iterations needed for convergence Column Index
in an iterative solver can diverge. Multigrid solvers exploit th&ig. 1. Proper ordering of the elements of an FEM matrix that is cou-
scale-invariant nature of an eliptic (Laplacian-ke) equatiofl’, 15,2 Sirisce e edation cayses e dense matic o resice
to reduce the computational complexity. But when appliedatrix-partitioning method.
to the Helmholtz wave equation (hyperbolic), the computa-

tional complexity is not reduced, because the Helmholtz wave heroidal in th di . Th ltant thod i
equation is not scale invariant. or spheroidal in three dimensions. The resultant method is

When the finite-difference time-domain (FDTD) method igften referred to as the_unimoment method [36]-[39]. Through
used to solve the wave equation directly in the time domaiw,e use of cpupled b§15|s functions for the separable boundary,
the computational complexity is the same as QG-{ in two the dlﬁerenFlaI equation can be effgctwely dgcoupled frpm the
dimensions andV!3? in three dimensions) where they ar‘;f,iense matrix generated from the eigen function expansion. The

lower bounds [21] except that FDTD generates the solutiginension of this dense matrix is, however, rather small. In
for all time and, hence, all frequencies at once. It is aldy© dimensions, it is aboutd whered is the largest linear
an optimal algorithm in the sense that it generatggve) dimension of the scatterer. _ _
numbers inO(N®) operations. AItgrnaUver, surface .|ntegral equations (which can be
Of interest also is the spectral Lanczos decompositi&ensidered to be numerically exact ABC's) can be used to
method (SLDM) [22], [23]. While it does not reduce thdruncate the mesh of the differential equatlon solve_rs [40],
computational complexity compared to CG, it offers an adé1]. By so doing, the boundary of the simulation region can
vantage when there are large regions of homogeneity. AlsoPft brought much closer to the surface of the scatterer, thereby
can generate the solution for all frequencies without additionf@ducing the size of the simulation region and the number of
computational cost [23]. For numerical simulation of waveg@Ssociated unknowns. However, such a method of “absorbing”
uides where a large section of uniformity exists, the method Bfe outgoing wave results in a partially dense matrix in the final
lines [24] and the numerical mode-matching method [25], [26atrix system for the problem.
offer an advantage over other differential equation methods inBy & proper ordering of the nodes in FEM [41], [42],
terms of speed. the dense matrix will reside only at the bottom right-hand
When applied to a scattering problem, a PDE solver requiré@ner of the matrix system as shown in Fig. 1. In this
absorbing boundary conditions (ABC's) [21] to truncate th&yanner, the inverse of the matrix system can be found by the
simulation region. Many ABC'’s have been proposed so thaatrix-partitioning method. When nested-dissection ordering
the sparsity of the matrix can be maintained. However, thel] is applied to the sparse part, and LU decomposition is
ABC's are approximate and have to be imposed at a substan@igplied to the dense part, the overall computational complexity
distance from the scatterer to reduce the errors incurred iByof O(N'-%) in two dimensions, and of)(N?) in three
them. Recently, an absorbing material boundary conditigimensions. The memory requirements &éN log N) in
(AMBC), called perfectly matched layer (PML), has beetwo dimensions an@(N*/?) in three dimensions [18].
suggested by Berenger [27] and worked on intensely by aWhen iterative methods are used to solve the matrix system
number of workers [28]-[35]. This AMBC is particularly as shown in Fig. 1, the matrix—vector multiply from the dense
well-suited for the parallel implementation of FDTD solversubmatrix could become a bottleneck in three dimensions or
because it permits parallel computers to operate in a singler thinly coated metallic scatterers. However, with the use of
instruction-multiple-data (SIMD) mode [28]. fast integral equation solvers [44], [45] this bottleneck could be
Another approach to truncate the simulation region is t@emoved. The example of hybridizing a fast integral equation
employ the eigen function expansion of the scattered fieddlver and FEM has been illustrated [46]. Fig. 2 shows the
outside a separable boundary. This separable boundary camparison of such a calculation with experiments [47] when
either be circular or elliptical in two dimensions and sphericalpplied to an elliptically contoured crack in a ground plane.
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T of unknowns required to accurately represent the solution,
E except for inhomogeneous scatterers. However, integral equa-
Fal tion solvers result in dense matrices. If the matrix equation
& is then solved by LU decomposition (Gaussian elimination)
or alternatively by an iterative technique such as the CG
_[L or related methods [19], [20], the computational labor may
| be excessive. LU decomposition requir@éN?) operations
and O(N?) memory storage and provides a solution for all
— excitations of the scatterer. CG requir€é¥N?) operations
] per iteration for dense matrices, because the most costly step
f,;’é;‘;}f}tecgégf;hs ] in a CG iteration is in the matrix—vector multiply. In general,
the number of iterations grows with the electrical size of the
scatterer. A straightforward implementation of CG requires
O(N?) memory storage, providing a solution that is valid for
only one excitation. However, it is possible to iteratively solve
the pertinent equation concurrently for multiple right-hand
sides, thereby exploiting as much as possible the redundancies
in the right-hand sides [53].
The high-computational complexity of the aforementioned
solution schemes precludes their application to the analysis

51.75 cm
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-40 e of scattering from large structures. Many researchers have
2 3 4 5 6 7 8 attempted to reduce the complexity of the traditional MoM
Frequency (GHz) algorithm by reducing the computational labor of the pertinent

Fig. 2. Backscatter RCS of an elliptic contoured crack in a ground plane B#atrix—vector multiplies. For surface scatterers, Rokhlin [44]

a function of frequency at the incidence angle= 70° (20° from grazing proposed the fast-multipole method (FMM) to reduce the

g]ﬁédﬁﬁgg)ﬁﬂﬁ/’ ‘,;.850 (5°from the minor axis). The crack is 0.635 cm deep, 5 tational complexity of matrix—vector multiplies in an
iterative method. Canning [54] has developed the impedance-

) ] i . matrix localization (IML) method, which uses basis functions
One of the drawbacks of differential equation solvers is thg produce directed beams. This results in a sparse MoM

grid dispersion error incurred [48]-[50]. The grid dispersiop,ayix which in turn, expedites a matrix-vector multiply. The
error causes a wave to have a different phase velocity on a gfifl \yorks well for smooth surfaces, but not for nonsmooth
compared to the exact solution. This error can be SuPpreS%%dfaces. In a similar spirit, the complex multipole beam

by using a higher grid density, but at the expense of increasggproach has been introduced [55], but it again works only
computational labor. Because the error is cumulative, it {5, smooth surfaces.

(d)>> whered is the “diameter of the simulation reg q sparsify matrices resulting from an integral equation of
: 910N anbgyatic, they sparsify the matrices @(N log N) elements,

k is the wave number of tlhgz_wave [49]. Therefore, the_numb?éducing the operation count of a matrix—vector multiply
of unknowns grows a§:d)"* in one dimension. Hence, in two O(N log N). For wavelike problems, even though these

. . 3
dlmensllons, t_he nu_mber of unkn4oyvns scaleshal Wh"? N methods expedite matrix—vector multiplies, they do not reduce
three dimensions, it scales @sd)*°. A remedy for this is to %T

hiah d diff i , | e computational complexity [61] when the scatterer size
use a nigher order ac_curate_ ! erent_la equation so ver [5 ows with respect to wavelength. Many methods have been
[52] or to couple the differential equation solver to an integr

. I hen | h . . roposed in the past which, even though will reduce solution
equation solver when large homogeneous regions exist. time, do not reduce the computational complexity [62]-[65].

For volumetric scatterers, several recursive and nesting

Il INTEGRAL EQUATION SOLVERS algorithms have been developed to directly obtain the solutions
Alternatively, a scattering problem can be cast into aof integral equations for all right-hand sides [14]-[17]. Also,

integral equation. Integral equation solvers usually involveia an iterative method, the FFT can be used to expedite the ma-
smaller number of unknowns than differential equation solvetix—vector multiply and reduce the computational complexity

because only the induced sources are unknowns, whereas éand memory requirement for solving such scattering problems

differential equation, the field is the unknown. For exampl¢66]-[77].

for a metallic scatterer, the induced current resides onlyHere, we will first discuss fast methods to solve volume
on the surface of the scatterer. Hence, for a scatterer inngegral equations rapidly using FFT [66]-[72]. Then, for
three-dimensional (3-D) space, the induced current existssarface integral equations, we will first discuss the use of
a space of smaller dimensions, greatly reducing the numhesvelet transforms to expedite matrix—vector multiplies in an



536 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 3, MARCH 1997

iteration solution method. Finally, we will discuss the use of 3o T g T . . T T T
the FMM related methods, and various multilevel algorithms
to accelerate matrix—vector multiplies in an iterative solver. 25

20
IV. |ITERATIVE METHODS FORVOLUME SCATTERING

Scattering from a volumetric object can be analyzed effi- z 45
ciently using iterative methods where the bottleneck is the®
matrix—vector multiply involving a dense matrix. The ma- %10
trix—vector multiply represents the action of the Green’s op-
erator on induced currents in the scatterer. Since the Green’s ;
operator is translationally invariant, this action can be written

as a convolutional integral 0

’ Nl ; ; ; ; L i \ I
/V dr g(r -r )J(I‘ ) (1) ‘50 20 40 60 80 100 120 140 160 180

where g(r) is the Green’s function ang(r) is the induced
current. Such action can be expedited using an FFT, with
a complexity of O(N log N) [66]-[70]. However, in three
dimensions, the Green'’s function for electromagnetic scatter-
ing is highly singular (as in the dyadic Green’'s function).
Therefore, a high sampling rate is needed to perform the
above convolution accurately. To mitigate the singularity of
the dyadic Green’s function, a difference operator is used to
approximate the differential operator in the dyadic Green's
function in [67]. In a similar vein, [68] proposed the use oFig. 3. The bistatic RCS of a three-layered spherical scatterer. The solid line
a weak formulation of the integral equation plus a sphericu'ﬁslif;%mBitg‘éi"F'eF?iTei 309'1”550,”;,2‘? ffqe'gy'g‘f':'é‘?g;gemrjir:ir'ia!z_SOO"Ut'O”
mean approximation. In [69], the induced current is expandgglia; = 0.508 m, ¢,.5 = 2.4; with 31 x 31 x 31 grids. This problem has

in terms of a continuous function, even though the inducedout 90000 unknowns and the frequency is 590 Mhz £ 0.508 m).
current, which is proportional tqe — ¢)E, should be a
discontinuous function.

) ) ) ) Comparison of the efficiency of the CG—FFT method and
_ Alternatively, we can discretize the above integral by prog.sive aggregate T-matrix algorithm (RATMA) has been
jecting it on to a smaller subspace using the MOM [l esented in [73], [74]. When a scatterer is lossless, RATMA

cpnverti!’lg the integral operator int.o a r.‘natrix. pperator. Tf]g superior to CG—FFT. But when the scatterer is lossy, the
singularity of the Green's operator is being mitigated by thﬁumber of iterations required is small, and CG—FFT is more
projection. When the subspace is spanned by subdomain b%ﬁii%ient than RATMA.

functions, and the mesh used is rectilinear, the pertinent ma~po cG_EFT method can also be used to expedite the

trix is (block) Toeplitz [70]. Consequently, the matrix—vectog sion of the scattering from a cluster of randomly distributed
multiply can be performed exactly by using an FFT requiringpeeq and randomly distributed cylinders. When the subscat-
O(Nlog N) operations. Fig. 3 shows the bistatic RCS of g 015 4o not reside on a regular array, a precorrected method
layered sphere computed using such a method. The spherg,is 1o \sed to derive a Toeplitz matrix structure, and FFT can
modeled by 90000 unknowns, and a matrix-vector multiplin pe ysed to accelerate the matrix-vector multiply [71],
can be performed in several minutes on a 10 MFLORSg) The precorrected FFT method has also been used in the

machine. _ adaptive integral method (AIM) [77], which will be discussed
Alternatively, we can decompose the inhomogeneous Scfﬁt'greater detail in Section XI.

terer intoN subscatterers, whose scattering is characterized by
a T matrix. Then a set of linear algebraic equations accounting
for the multiple scattering between the subscatterers is derived.
When the scatterers reside on a regular array, the pertinenthere have been many attempts at using wavelets to solve
matrix equation has a Toeplitz structure, and the FFT can &eattering problems [56]—-[61]. Such approaches have met with
used to compute the matrix—vector multiply in(Nlog N) some success at lower frequencies due to the elliptic nature of
operations [71], [72]. the electrostatic problem. For instance, wavelets can be used to
Both this method and the MoM method avoid the singularityparsify the boundary integral equation of electrostatics. The
of the Green’s function, and only a low sampling rate is needediginally dense matrix resulting from discretizing this integral
to perform the FFT accurately. Fig. 4 shows the bistatic RGSjuation reaches a sparsity Of(N log V) after applying
of a dielectric sphere computed using such a method. Thiswavelet transform [80]. This sparsity occurs because the
method does not have low-frequency instability problems astegral operator belongs to the class of Calderon—Zygmund
opposed to some FEM formulations as discussed in [78], [7®perators [80], [81], where the kernel is infinitely smooth.

V. WAVELETS
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range interaction in electrodynamics falls offlgs;; this decay
cannot be ignored even over large distances.

Local cosine transforms have been suggested as a remedy
to this problem [83]. Local cosine current functions radiate a
field that has a sharply directed beam pattern as in IML [54].
As a result, the matrix becomes sparse when the scatterer has
a smooth surface. However, when the surface is rough, the
local cosine current function loses its sharply directed beam
pattern, and the matrix loses its sparsity.

Given a matrix equation resulting from discretizing an

Fig. 4. The bistatic RCS of a dielectric sphere computed using ”iﬂtegral equation using the method of moments with a pulse
BiCG-FFT T-matrix method. The solid line is from the Mie series solutionb ;

the dashed line is the numerical solution. Here, the radius equal3X,0 asis

ande, = 4.0. A 16 x 16 x 16 grid is used. The number of iterations —

needed to solve this problem is independent of the number of unknowns at A-x=b (2)

such a low frequency.

the corresponding wavelet basis representation can be related

) o ) to the pulse basis representation by a matrix transform
A physical explanation is that at low frequencies, wavelet O 3)
X = W

function currents generate only localized fields. In other words,
in electrostatics the interaction between wavelet sourceswibere U is unitary when the wavelet basis is orthonormal
mainly short range. This is particularly so for interactions dughough nonorthogonal wavelets are also used). By using (3)
to the “fine features” of the sources. In addition, electrostatic (2), we have
problems are scale invariant, as are the wavelet bases. T AT w=T"'b 4)

For PDE’s, the associated matrix is already sparse. Hence,
there is no apparent advantage to applying a wavelet traR§-
form to such a matrix. However, for elliptic PDE’s (static),
the wavelet transform generates a matrix that can be easily
preconditioned so that the resultant condition number of théhere
matrix is of order one, irrespective of the size of the scatterer A-U.A.U (6a)
[82]. As a result, when an iterative solver is used, the number ~ ot b
of iterations is independent of the problem size and it can be N b=U-b. (6b)
solved in O(N) operations. Therefore, wavelets for ellipticThe matrix A is the moment-method matrix represented in
PDE’s offer advantages similar to those of multigrid. the wavelet basis. Fig. 5 [61] shows two matrices from a two-

Unfortunately, for wavelike problems the associated integrdimensional (2-D) electrodynamic boundary integral equation
equation has an oscillatory kernel. In other words, waveliker a circular scatterer and an L-shaped scatterer after wavelet
problems are not scale invariant. Hence, there is no claeansform using Daubechies wavelets [84]. It is seen that the
advantage to using a wavelet transform on such a kernedttom right-hand corner of the matrix remains dense.
as one can show that the sparsity of the matrix cannot beFig. 6 [61] shows the matrix sparsity as a function of
reduced to less tha®(N?), the lower bound being relatedthe number of unknowns for the circular scatterer and the
to the Nyquist sampling rate in Fourier analysis [61]. The-shaped scatterer. It is clear that the fraction of nonzero
physical explanation is that when the length scale of a wavetldéements remains a constant after the scatterer has increased
equals or exceeds the wavelength, it becomes an efficiemta certain size. Here, a discretization density of ten points
radiator. Hence, strong long-range interactions exist betweger wavelength is used throughout the study. Hence, as the
these basis functions irrespective of the problem size. The losige of the scatterer increases, its dimension increases with

a
€

Il
[=n

(5)
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% Nonzero Elements

A
750N

Fig. 6. The percentage of nonzero elements as a function of the number O O
of unknowns. It is seen that the percentage does not go down after awhile

because of the long-range interaction of wavelets in electrodynamics. ~ Fig. 7. A one-level matrix—vector multiply where all current elements talk
directly to each other. The number of “links” is proportionalX¢ where N

is the number of current elements.
respect to the wavelength. However, if we keep the size of the
scatterer constant with respect to the wavelength and increlséhe above, we assume that theelements in the vector are
the discretization density to increase the number of unknowkyided in groups with}/ elements each. Therefore, there are
then the sparsity of the matrix will increase as expected. Thdotal of N/A groupsg,. Moreover, it implies that a matrix
wavelet transform removes oversampling of the unknowrk, derived from the integral equation of scattering can be
beyond the Nyquist rate. factored as

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
N

Ay = Vi aw - V. (8)

VI FAST MULTIPOLE METHOD The above factorization is achievable by using the addition

For surface structures, there exists no direct solver witReorem, wherd’ corresponds to the center of tiéh group,
reduced computational complexity for efficiently solving theuhich contains thejth element. This is possible farand j
integral equation of scattering. Therefore, one resorts to BBlonging to different nonoverlapping groups. Unfortunately,
iterative solver whereby the computational complexity of @ the above, a scalar number;is converted into a product
matrix—vector multiply can be reduced. Many methods fa§f a vector, a matrix and a vector. Therefore, even though
expediting matrix-vector multiplies have been proposed, bife number of “routes” diminishes as shown in Fig. 8, the
the FMM and its variants [44], [45], [85]-[92] hold mosthumber of operations is not reduced; it is still G N2). It
promise in providing a fast method that applies to scatterefgn be shown that the dimensions Wf and @ in (7) are
of arbitrary geometry. The detailed mathematical descriptigftoportional to M, the number of elements in the group it
of the FMM for electromagnetic problems can be found in thepresents. Fortunately, a change of basis to the plane-wave
aforementioned references. Therefore, we will describe thjgsis diagonalizes the matrix;,. This diagonalization was
method from a heuristic viewpoint. first achieved by Rokhlin [44]. Hence, one can write

A matrix—vector multiply involving a dense matrix and S~
a dense vector requird® operations. This is illustrated by Aij = Vi aw -V, 9)
Fig. 7. In essence, every element of a vector communicat@iered;; is now a diagonal matrix. By so doing, the number
with every other element directly. Clearly¥? operations are of operations for a matrix—vector multiply as expressed by (7)
needed. The above is like connectifNgeities with direct flight can be reduced for the nonnearest neighbor (nonoverlapping)
routes. The number of flight routes increasesvds However, groups. Choosing the group si2é¢ ~ v/N, the matrix—vector
if “hubs” are introduced in the flight routes, then their numbenultiply can be effected inO(N'-) operations [44], [45],
can be reduced, as shown in Fig. 8, where the number of fligBs], [86]. Fig. 9 shows the use of the FMM to calculate the
routes becomes less tha®. Since Fig. 8 represents a two-electromagnetic scattering of a NASA almond [86].
level structure, a matrix—vector multiply would have to be
effected in three stages. Therefore, a matrix element has to VII. RAY-PROPAGATION FAST MULTIPLE
be factored as a product of three terms. In other words, a ALGORITHM (RPFMA)

matrix-vector multiply can be expressed as In the FMM, a matrix—vector multiply is expressed as

N N/ N N/M

2 : t — - - .
Aijay=Vi - E: U § : Vija; E Aijjz; =V - E oy E Vijz;

j=1 =1 jeGy j=1 =1 jeGyr

1€ G 1€ QG
{l:l,...7N' (7) {1217...7 . (10)

=l
S
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r=1m sphere, f=2.4GHz, N=110,592, 6 levels
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Fig. 8. A two-level matrix-vector multiply where “hubs” are established to 0 (Degrees)
reduce the number of direct “links” between the current elements. This could
potentially reduce the complexity of a matrix—vector multiply. Fig. 10. Validations of CFIE [94] with MLFMA against the Mie series of the

bistatic RCS of a metallic sphere of radius 1 m at 2.4 GMz £ 12.5 cm)
for VV polarization. 110592 unknowns with a six-level FMM are used. The

1m NASA Almond, f=2.5GHz, 110 Patches, 3297 Unkws RCS is normalized byra?. The computation takes 24 h on a 10-MFLOPS
0 T T T T T T T T machine.
or i ray physics dictates that only a small fraction of the plane
/ waves accounts for the interaction between the two groups.
= 20 pe . . 5
£ [ Therefore, the dimension of the matis, can be reduced to
g 30 c;_jj\BK M"ﬁ manifest this ray physics. Then the cost of the operation in
% ¢o &7%0«3\ o (10) can be further reduced. Because of this, more intragroup
PR R SC “Im% LUD, HH Pold, —— - calculation is desired. In this case, we chodge~ N1/3,
Y LUD, VV Pola. ——- and the complexity of a matrix—vector multiply can be further
Measurement, VV Pola. ¢ 4/3
-50 - FMM, VV Pola. + - reduced toO(N*7).
FMM, HH Pola. & A simplification of ray-propagation fast multiple algorithm
-60 . : : ‘ : . ' : (RPFMA) is the fast far-field approximation (FAFFA) [89].
0 20 40 80 m%%eglggs)mo 140160 180 This method greatly simplifies the matrix elements for the

far interactions between the elements; hence, they can be

Fig. 9. Monostatic RCS of a 1-m long NASA almond at 2.5 GHz in tye :
plane withé = 90°. Five unknowns are used per wavelength. The results a eompUted as needed. Therefore, an algorithm V@:(]N)

computed with LU decomposition, and partially with FMM. The experimentdM€mory requirement is possible in this case.
measurement by Ohio State University [3] is also given for comparison.

VIIl. M ULTILEVEL ALGORITHMS

The first step A logical extension of the two-level FMM is a multilevel
by — Z N (11) algorithm [90]-[93]. In this case, the number of levels is
"=, - ity proportional talog N. If only N operations are needed at each
Jeyy

level, this becomes aW log N algorithm for matrix—vector
calculates the plane waves wifhvectors on a sphere (or amultiplies. OrderlV operations can be maintained at each level
circle in two dimensions) radiated by the souragsin group by interpolation and anterpolation [89], [90]. Fig. 10 shows
Gr. Then the second step the use of the multilevel fast multipole algorithm (MLFMA)
~ to solve a 110592 unknown problem on a workstation us-
= Z aw - by (12) ing the combined field integral equation [94]. The memory
v requirement of this algorithm i®(V log V), allowing large
calculates the plane waves with differeht vectors on a problems to be solved on a small computer.
sphere received by grouf after the plane waves have been The matrix decomposition algorithm (MDA) and its multi-
translated through the space separating the centers of groiR®| cousin (MLMDA) [95], [96] accelerate the iterative so-
G and Gy . Then, the last multiply lution of electromagnetic scattering problems involving large
d; = Vt‘z s (13) scatterers. Unlike the FMM, which relies on an analytical diag-
! onalization of the translation operator, the MDA and MLMDA
redistributes the plane waves received by grggpo theith decompose MoM matrices using commonly available linear
element of the group. algebraic techniques. The MDA and MLMDA directly exploit
If the groupsG; and G, are far apart, it is clear that notthe limited number of degrees of freedom (DoF) [97] that
all plane waves on a sphere will participate in the interactiamharacterize a field observed over a domain that is “well
between the elements of the two groups [87], [88]. In facteparated” from a source domain.
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Fig. 11. (a) The MoM matrix. (b) Decomposed MoM matrix. Blocks repre- o I }‘{ !!
senting near-field interactions are stored classically, while blocks representing 0r T
far-field interactions are stored as products of low-rank matrices (MDA) or 10
are aggregated and stored using an FFT-like scheme. )
-20
. . . 0 40 80 120 160
The MLMDA differs from the MDA in that off-diagonal ¢

blocks of the MoM mamx are iaggregated'lnto larger entlth—s@. 12. Bistatic RCS of corrugated semicircular structpre= 1.57A,
and decomposed using a multilevel algorithm that resemblg&r depth is¢ = 0.5, and the structure is illuminated by a TMplane
an FFT as shown in Fig. 11. The memory requirements aweve traveling along the direction = 9 (N = 400) andr = 639A
the computational complexity of the MDA a@(N3/2) while (= 23600).
those for the MLMDA asymptotically approach log? N.
The MLMDA can easily be incorporated into existing MoMiike structures, truncated and quasiperiodic structures, as well
programs. The MLMDA has been applied to the solution efs the analysis of radiation from large phased-array antennas.
scattering problems involving large 2-D scatterers with 50 08kveral methods have been proposed to seek an efficient
unknowns. solution to such problems [100], [101].

The equivalent source algorithm for elongated structures
IX. FAST STEEPESTDESCENTPATH ALGORITHM (FASDPA) (ESAES) [102] is a fast direct solver for analyzing scat-

The fast steepest descent path algorithm (FASDPA) [gé?,ring from such structures. ESAES is conceptually similar

[99] constitutes a novel two-level algorithm that hybridizes th{ RATMA for planar structures [100]—both are based on

EMM and the MDA. Not unlike the EMM and the MDA the & fecursive characterization of increasingly larger subscat-
FASDPA starts from a spatial decomposition of the scatter§®rs using scattering matrices of reduced dimensions and
into a large number of subscatterers, and interactions betwd@H! algorithms havey log™ V computational complexity and
nearby subscatterers are accounted for directly. Interactidds’" 10§ V) memory requirements. The ESAE S abandons
between distant subscatterers are expressed in terms plane wave representation of the 2-D Green's function
small set of equivalent sources that exhaust the degreesSBiPloyed in [100]in favor of a reduced spatial representation
freedom of the interaction field, as in the MDA. To permiPf the fields that are scattered by an elongated object. This
the algorithm to “recycle” information in a manner similaf€duced spatial representation permits the computation of the
to the FMM, the field radiated by each group is representd§!dS radiated byV quasi-aligned sources and observed over
in terms of a set of homogeneous plane waves. Equival@ft €longated domain in terms of that radiated ¥V log V)
source amplitudes are obtained from the plane wave spectr§AUivalent sources. The concept of a reduced field representa-
More specifically, the FASDPA expresses the interaction figfp" IS directly related to that of the limited number of degrees
between distant groups as (8). However, in contrast to tpEfreedom that characterize fields radiated by electromagnetic
FMM, where thea,, matrix represents a diagonal translatioffoUrces [97]. This reduced field representation can be obtained
matrix for homogeneous plane waves emanating from tR¥ dugmenting an existing MoM code with purely algebraic
source, thew,, matrix for the FASDPA is empty except for {€6hniques, e.g., a singular value or a rank revealing QR
a small translation block, appearing on the diagonal. THlecomposition. We have applied the ESAES to 2-D structures
computational complexity of the FASDPA i©(N+/3) per that measure several thousand wavelengths in length. Fig. 13
iteration without proceeding to a multilevel scheme. Fig. 12'0Ws the bistatic RCS of a finite periodic structure computed
compares the RCS of a corrugated semicircular structdfeind the ESAES and compares the results to those obtained
computed using the FASDPA with results obtained using tt§ing the MLMDA.

MLMDA.

X. FAST ALGORITHM FOR ELONGATED STRUCTURES Xl. ADAPTIVE INTEGRAL METHOD

Numerical algorithms for analyzing electromagnetic scatter- Even though precorrected FFT methods have been used in
ing from elongated objects, i.e., structures whose dimensiahg past to solve electrodynamic [71], [76] and electrostatic
extend primarily along one spatial axis and which are uniforproblems [103], a note is in order on a related technique
or of limited extent along the other two axes, are of gredeveloped by Bleszynsket al. [77], termed the adaptive
practical interest. A nonexclusive list of potential applicationimtegral method (AIM), which has been successfully applied
includes the analysis of scattering from rough surfaces, winigp-the analysis of scattering from very complex structures.



CHEW et al: FAST SOLUTION METHODS IN ELECTROMAGNETICS

541

e iterations needed remains unpredictable. Therefore, precon-
MLMDA ditioning techniques for reducing the required number of
80 Forward scattering ; , achscatter grating iterations in iterative methods are urgently needed in solv-
o ?7/ 7 /\\\\\ ing electromagnetic wave scattering problems. Finally, even
. . ] though direct solvers with reduced computational complexities
£ 40 Qf\ a / ‘ | ﬂ{ are available for volumetric scattering problems, no such
¢ 20 b ], 0 | ‘ 'J‘n?h | 4 . solvers exist for surface scatterers, exgept for.colinear (or
2 EV\N A | Mryv;“/ [ almost coplanar) structures. Hence, this remains an open
SRR — i T problem.
-20 - il -
ap b 1. ‘ ' L ACKNOWLEDGMENT
120 160, 200 240 The authors would like to thank the National Center for

Supercomputing Applications (NCSA) at the University of

Fig. 13. Bistatic RCS of a finite triangular grating of length= 594X, I
P =6, andH = 1.1 for normal TM plane wave incidence. Backscatter
grating lobes can be observed.

As in the FMM, the AIM separately considers near- and farqy;
field interactions when evaluating a matrix—vector multiply.
To compute far-field interactions, sources supported by th
scatterer are projected onto a regular grid by matching their
multipole moments (up to a certain order) to guarantee th8l
approximate equality of their far fields. Next, the fields at
other grid locations produced by these grid-projected currents]
are evaluated by a 3-D convolution. Knowledge of these fields
permits the computation of fields on the scatterer througl
interpolation. The projection and interpolation operators are
represented by sparse matrices, while the convolution cdf
be effected using an FFT. Unfortunately, the near fields
radiated by these grid currents do not match those radiatéd
by the original sources. Therefore, near-field interactions are
evaluated directly, and corrected for errors introduced by thg)
far-field operator.

For volumetric scatterers, the computational and memorgﬂ
costs associated with the AIM scale 85N log N) and [10]
O(N), respectively. For surface scatterers, its computatiorﬁ\h
complexity scales a®(N'® log N) and its memory require-
ments asN!>. The computational complexity and memory
requirements of the MLFMA aré(N log N) and, hence, 12]
asymptotically scale more favorably than those of the AII\/{.
Nonetheless, the AIM competes with the MLFMA because tH&3l
FFT butterfly tree is devoid of the complex interpolation and
anterpolation operators inherent in MLFMA. Also, the AIM[14]
concept is applicable to all problems exhibiting convolutional
structure and is easier to implement than MLFMA. As a resulfs;
the AIM has been successfully applied to the analysis of

scattering from very large three dimensional structures. [16]

XIl. CONCLUSION [17]
We have reviewed fast solution methods for efficiently
solving electromagnetic scattering problems. Fast solutigs)
methods for electromagnetic scattering problems will have a
definite impact in the area of computer-aided design of map;

technologies that rely on Maxwell’'s equations.

Even though a matrix—vector multiply for scattering prob-
lems only requires)(N log N) operations both for volume [20]
scattering and surface scattering problems, the number of

llinois, Urbana-Champaign, for the computer time provided.
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CHAPTER 2
FAST MULTIPOLE METHOD

2.1 Introduction

This chapter is designed to give the reader a better understanding of some
of the intricate details involved in the fast multipole method (FMM). FMM has
been compared to a telephone switching network [5] in which hubs are used to
transmit information rather than direct lines connecting each individual telephone.
This greatly reduces the number of wires that must connect each telephone. The
method can also be compared to a postal service process in which letters are passed
between individual mailboxes. By creating a complex process including stations
and special transportation carriers, multidestinational letters can be sent from
one box to multiple boxes very efficiently compared to a brute force method of
hand delivering to individual boxes. The process involves collection, sorting, bulk
transportation, resorting, and distribution. The structure of the process allows for
the efficiency. In FMM the structural process includes aggregation, translation,
and disaggregation. When FMM is applied to a scattering problem the purpose is
to reduce the computational cost of a matrix vector product. A scattering problem
is formed with basis functions whose coefficients are unknowns. Each of these basis
functions interacts with the others based on a known incident wave. If there are
N basis functions, or unknowns (as we call their coefficients), an NxN matrix
will describe the interactions between each basis function. The computational
load of a matrix vector product is O(N?) and FMM allows this to be reduced
to O(N'5). The critical step in FMM is the diagonalization of the translation
matrix which Rokhlin [6] first realized. This translation step is similar to the mass
transportation of grouped postal letters between post offices. This chapter will
describe the terminology of FMM.



2.2 Basic Process

In the method of moments (MoM), an integral equation is discretized and can
be written as a matrix-vector product. The matrix must be filled with the proper
elements and then inverted to yield the solution vector. Direct inversion is an
N3 process, but by using a method like the conjugate gradient method it can be
reduced to O(N?). Of course, for large-scale problems, this order is too high and
must be reduced. The iterative approach of the conjugate gradient method in
solving for the unknowns also requires many matrix-vector products. FMM is an
enabling technology to reduce the computational workload of the matrix-vector
product associated with these electromagnetic problems. As will be discussed in
Chapter 3, MLFMA is the miracle algorithm that extends FMM and creates a
truly enabling technology for large-scale EM problems.

Since the idea of MoM is to compute the interaction of each source with itself
and every other source, FMM promises to streamline this process by allowing faster
mathematical interactions. To understand how the basic building block of FMM
differs from MoM, it is useful to visualize two collections of particles, each enclosed
by a circle (in 2-D) as shown in Figure 2.1. In the spirit of MoM, each particle
must interact with every other particle and itself. This is the well-known two-
step process of filling and solving the impedance matrix. In the illustration, MoM
would fill the matrix by interacting each point with itself and all the other points.
This is done by starting with a point (like 4;) and computing the interaction with
1,.-+5]1,J2,73,--., where the first three interactions with j-points in the right
side box are illustrated with dotted arrows pointing to j1, j2, and j3. The self-
interaction terms fall along the diagonal of the matrix. In FMM, great savings are
realized by eliminating the need to calculate all of these interactions directly.

The process to achieve massive computational savings requires. three steps:
aggregation, translation, and disaggregation. Let us call the left box of Figure 2.1,
containing nine points, the source group and the right one containing ten points
the field group. Aggregation involves the collection of all the source particles to the
center of the source group, and this collection can be used to represent outgoing
waves that appear to emanate from the center of the group. These waves are valid
outside a circle enclosing all the aggregated sources. The smallest circle guaranteed

to enclose all particles in a box is the one that intersects each of the box corners.



Figure 2.1 Two-dimensional source points and field points in aggregation, transla-
tions, and disaggregation. The square on the left contains the source points while
the square on the right contains the field points. The three-step process includes
the aggregation of nine sources from the left, translation of their multipole rep-
resentation, and disaggregation to ten field points on the right. A single buffer
square separates these two squares. The translation goes between the centers of
the source groups and field groups and is shown with the vector D.

The outgoing waves are then translated to a field group center and distributed
to each field point. Translation takes the radiation pattern of the sources and
converts it to incoming waves valid inside a field group. This incoming pattern is
used to represent the effect of each source on each field point. The distribution of
the information to field points is the last step of disaggregation.

The addition theorem is fundamental in the upcoming mathematics. In order
not to violate the addition theorem, the circle enclosing the source points cannot
intersect the one around the field points. If it did, any particles found in the
intersection region could not be considered due to this violation. For this reason,
all boxes touching a source box including the source box itself must be calculated
in the traditional way, using MoM. These neighboring boxes are sometimes called
buffer boxes. In Figure 2.1, the buffer square of side length a is not shown but
separates the same-size left and right boxes.

Near interactions done in the traditional MoM way can be reduced by decreas-
ing the box sizes down to a minimum box size determined by accuracy constraints.
The points, 1, ..., Jj1, ..., discussed above, actually represent the common edge

centers of the basis functions. RWG (Rao, Wilton, and Glisson) rooftop triangular



basis functions are used to represent the geometry of the surface scatterers being
solved. The center of the common edge between two adjoining triangles forming
an RWG basis function determines into which box it belongs. The smallest box
generally has a side length larger than A\/4 where ) is the wavelength, but de-
pending on target discretization, it may be better to limit the size to 1.5 times
the average edge length of the triangle basis functions. Average edge lengths are
generally around 0.1\, but edge lengths in general can vary between typical values
of 0.02) and 0.2). If the geometry discretization is too coarse, the surface currents
cannot be accurately represented. If they are too fine, we run into low frequency
breakdown problems along with excessive unknowns to solve [5].

In summary, a target is discretized with an appropriate basis function. These
basis functions are sorted into groups. The basis functions in and around a group
are calculated using MoM. All the other interactions are calculated using aggrega-
tion, translation, and disaggregation. Using this three-step process, the computa-
tional complexity is reduced to O(N'?3) [5].

2.3 Aggregation

The grouping of sources in the first step of FMM is called aggregation. Aggre-
gation is simply the summation of all sources into a radiation pattern emanating
from the center of each group. This far field radiation pattern represents the sum
effect of the sources contained in each box. This far field pattern is valid outside of
the circle (2-D) or sphere (3-D) containing the source square (2-D) or cube (3-D).
Of course, the number of samples required to effectively represent these far field
patterns depends on the diameter of the circle or sphere enclosing the sources.
More samples are required for larger boxes to capture a richer pattern. As will be
discussed next, each unique radiation pattern is used to translate information to
the appropriate field boxes.

2.4 Translation

In FMM for 3-D, there are at most 3% — 1 cubes touching any given box. For
a given source box, including itself, there are a maximum of 27 boxes (one buffer
box case) requiring near interaction calculations. The rest of the boxes beyond

the buffer boxes use the process of translation to account for the interactions.
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Translation is the bridge over which outgoing waves are converted into incoming
waves. Since this takes a far-field radiation pattern and changes it into incoming
waves, it is often given the name ‘outgoing to incoming’ (O2I). It is actually a
far-field to near-field transform function. This stage is based on the addition the-
orem and can be regarded as a dense or full matrix operation. However, through
careful manipulation, this dense matrix can be diagonalized. The diagonalization
of the translation operation is what gives the method the desired computational
acceleration [5].

Fundamental to FMM is the addition theorem. Since real world large scale
problems in EM generally require a 3-D approach, the addition theorem for the
Green’s function [5] in 3-D is given by

|D|Zdll = zkz "2+ 1) (k)" (kD) P(d - D). )

In this equation j;(kd) and h§ )(kD) are spherical functions of the first kind
(Bessel and Hankel, respectively) and P,(d - D) is the I-th order Legendre polyno-
mial. Their arguments will be defined shortly but are based on the positions of the

source and field points. Using the identity,

ji(kd)P(d - D) = 4—;7/0 ’ /Oﬂ e™ 4P (cos()) sin(a)dadp (2.2)

where cos(e) = k- D and k = cos(8) sin(a)k + sin(8) sin(a)§ + cos(a)z, we can
substitute Equation (2.2) into Equation (2.1) to get

ik|D+d| 2
S / / 4 sin(a ( S (= 1)1 + DA (kD) Py(cos(a))dadf (2.3)
D + d] l -

where the integration has been swapped with the summation, which has been

truncated to L. With these equations in place, we can apply them to a source
group and a field group. In applying Equation (2.3), it is appropriate to illustrate
how a single source point is translated to a field point. In Figure 2.2, the vectors
relating the source and field points to the previous equations are given as rj =
Tm/i + Tt + Tjmy D = Ty, and d = 1y + 1. Therefore, D +d = rj; from
Equation (2.3). This figure also shows the aggregation of a point 7 to the center
m’ and the translation from m' to m and then disaggregation from m to the field

point j.
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Figure 2.2 Source point and field point vectors in two boxes. The box on the left
contains a source point ¢ while the box on the right contains a field point j. Two
paths from the source point to the field point are shown. The trivector path from
i to 7 is used in FMM.

We can now give the scalar Green’s function in terms of the translator, Tpu.m,

as
e’ikrji 2 pm . Koyt )
= sin(q)e™TimTTm T dadf (2.4)
Tji o Jo
where
Zk L .l (1) AN
T = ZT— ? (2l + l)hl (krmm’)Pl(k ’ rmm’)- (25)
=0

The integration is performed over the unit sphere and a corresponds to 6 while g is
the integration around ¢. The integration over the unit sphere is performed using
at least 2L? Gaussian quadrature points. In implementing the integration, two
processes are used to simplify the integral. First, the translation vector D = ry,,»
is aligned with the z-axis such that k - #mm = cos(d). Secondly, the sin(a) is
removed by transforming the integration over da = df by letting u = cos(e) and
du = —sin(a)da. Equation (2.4) then becomes

z.’cr:,.l
/ / ke(vim+rm) T, dudf (2.6)

T
and Equation (2.5) becomes

L
ik
Ty = Z_Z (21 + 1AM (k7 ) Py (1) (2.7)
=0
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The integration over the new variable u involves the multiplication of an L-th order
Legendre polynomial with an exponential function. The order of this part of the
integrand can be considered to be approximately 2L because it is bandlimited, and
Gaussian quadrature allows for exact integration of a signal of order 2L using L-+1
Gaussian points. The integration over 5 = ¢ is over a complete period and requires
2L points. Thus, in total, 2L% + 2L points are required for the integration. It is
important to note that the translator T,,, is independent of the source and field
point vectors. This independence allows for a diagonalized translation operator.
The translated radiation patterns are then used to interact with the individual

field points.

2.5 Disaggregation

The disaggregation process is usually done at the same time as the translation
operation. In this way, the effect of the radiation patterns of grouped sources
is applied to individual field points. Every box, in turn, becomes a field box
receiving the information from distant source boxes through translation. For a
more comprehensive treatment of FMM technology see [5]. In the end, each point
corresponding to a basis function can be found and the resulting coefficients used to
calculate important target characteristics such as RCS. In FMM, the computational
complexity is O(N'®) [5]. To improve the computational complexity, it is necessary
to take the algorithm to a new level.
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CHAPTER 3
MULTILEVEL FAST MULTIPOLE ALGORITHM

3.1 Introduction

This chapter extends FMM described in the previous chapter to a multilevel
algorithm named the multilevel fast multipole algorithm (MLFMA). An integral
part of the extension to a multilevel scheme requires both interpolation and an-
terpolation of the radiation patterns between differently sized boxes. The size of
the box determines the levels. Tree structure, levels, upward pass, downward pass,
and filtering (including interpolation and anterpolation) will be discussed. The
advantage of extending FMM for the Helmholtz equation to multiple levels is the
reduction in computational complexity from O(N'®) to O(N log N) [5], where N
represents the number of unknowns describing the target.

3.2 Tree Structure

To reduce the computational cost, the number of translations used in FMM
must be reduced. This requires a tree structure connecting boxes of different sizes.
In the case of FMM, the translations are between equally sized boxes. Therefore,
the finer the boxes, the more translations must be made. With MLFMA the num-
ber of translations can be reduced by aggregating radiation patterns from smaller
boxes to form larger box radiation patterns that are translated to larger-size boxes
with appropriate separation. This is easiest to see using a 2-D grid as shown in Fig-
ure 3.1 where two example source squares, shown as shaded, are translated using
MLFMA. In Figure 3.1, the grids have been produced by successive subdivisions.
Level 1 includes the four squares produced by the first subdivision. Translations
cannot be done on level 1 because all boxes touch each other. Level 2 contains
16 squares and it is the highest level where translations can be performed. In
MLFMA, we want to perform translations at the highest level possible. Transla-
tion is only possible to squares that are not touching. Level 3 has 64 squares and
in this example it will be the lowest level.
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In Figure 3.1, we assume that every square contains information that must be
related to every other square in the most efficient manner. On the left column, a
source square in the lower left part of the grid is shown with 7 translations between
level 3 squares. Rather than performing 48 more translations on this level, the
pattern from this source box is combined with the neighboring three patterns as
shown in the middle diagrams to form a larger square box pattern which only needs
to be translated 12 times to the centers of larger level 2. On the right column of
Figure 3.1, a source square is translated to 27 level 3 squares. None of these 27
squares qualifies for higher level 2 translations. Using a single buffer square, 27 is
the maximum number of translations for a given level from a single square and is
62 — 32. However, there are 72 — 32 possible translation vectors on a single level
from arbitrary source squares. The remaining 28 translations can be performed
on level 2 using just 7 translations. Furthermore, these 7 translations include the
information aggregated from three other level 3 source squares. Computational
savings, through a more efficient translation process, are an important feature of
the multilevel algorithm. The reason that more levels are desirable is because lower
level translations are more efficient than near interactions computed using MoM.

The center of a box is important and the algorithm revolves around these
centers. In a way, the centers can be considered command centers. This analogy
fits particularly well with the multilevel aspect of the algorithm. A command
center has a commander who is responsible for subordinates. Commanders are also
required to communicate directly with colleagues on an equal level and superiors
on a higher level. After describing how the command structure is created, the
details in a command context will be addressed.

When MLFMA is implemented, the program must first create a tree structure
that resembles an organization chart. In 2-D, a quad-tree is created by successive
binary cuts in both directions. In 3-D, an oct-tree is created in which a cube
around the target is subdivided into eight equal cubes. The number of cubes at
any level is given by 2Ndim*Liev where N g;r, is the dimension (2 or 3) of the problem
and Lje, is the level number. In Figure 2.1 there are 22 = 64 boxes on level 3
of the 2-D space. Since the target must be contained inside the square at level 0,
the maximum dimension A of the geometry in Cartesian space is used as the level
0 length. Thus, the length of the lowest level is given by A/(2%ew), where Ly, is

the number of the lowest level. As described in Section 2.2, this has a minimum
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Figure 3.1 Two examples of multilevel translations. The top shows translations
on level 3. The middle figures illustrate aggregation of radiation patterns to larger
level 2 boxes. The bottom shows level 2 translations.
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which should carefully be considered with regards to the average size of the basis
functions. Therefore, a maximum level exists. Pushing the tree structure to the
maximum level maximizes the computational efficiency of the algorithm.

Since the target bounding box is known, the number of levels can be chosen
and the size of the smallest boxes can be found. The basis functions, indexed
by spatial points and loosely referred to as particles, are then sorted into these
smallest boxes. Naturally, many of the boxes are empty. The tree is pruned of
these empty boxes. Each box will have an average number of particles based on
the total number of particles divided by the number of filled boxes. The number
of particles in any given box will vary. With the assumption that a target’s surface
is flat as it cuts through a box and that the angle of the cut is a uniform random
variable, it is possible to calculate that 1.9 out of 4 squares in the 2-D case will
be crossed on the average. In 3-D when a cube is subdivided into 8 cubes at a
lower level, empirically we observe that about 4 out of the 8 cubes are filled with
particles. Obviously, this can be very geometry dependent and if the number of
particles in a cube gets close to 4 or less, pushing additional levels will not continue
this trend. In the limit, if every box contains only a single particle, subdividing
the box will produce only one single filled box.

With multiple levels and a pruned tree of filled boxes, the command structure
and organization is in place. In the context of a command structure, it is possible
for a commander to have 2Nd¢im filled boxes, but generally only half of these boxes

are filled. The next sections will discuss the steps taken on each box.

3.3 Traversing the Tree

Each filled box must be considered in order to capture the total interaction
of each particle with every other particle. Recall that the purpose of MLFMA is
to accelerate the matrix vector product without requiring the full matrix storage.
Rather than causing individual particles to interact with each other, we now have
a tree structure in place to handle the interactions. Traversing the tree begins at
the lowest level.

Each lowest level command section or box has some particles. The first step
is to compute the direct interaction of these particles with themselves and each

other. Then each of the neighboring boxes and their particles must be considered.
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After accounting for all of these near interactions, the particles in each box are
aggregated to the center of the box, which we will refer to as the commander
(CC). The commander is then responsible to create an outgoing radiation pattern
from the aggregated sources. The CC then must determine which commanders
should receive this information through translation. These are the boxes outside
of the buffer boxes, which cannot receive higher-level translations.

The upward pass begins by shifting the radiation pattern up one level in the
chain of command. This communication requires special upsampling so that the
commander’s supervisor can integrate the radiation patterns from the subordinate
boxes and then create an appropriate radiation pattern for their level. Since the
higher level command box has twice the edge length of the subordinate commander
boxes, higher-level CCs need more samples to describe a richer radiation pattern.
On levels that are above the lowest level, or smallest boxes, near interactions are
not issues. The key is to collect the information from the subordinate command
boxes and then to translate to appropriate same-level commanders separated in
the usual sense. For efficiency, each CC will shift their patterns to their supervisor
who will continue the same process. This process of translating and shifting goes
until level 2 is reached and the effect of the original sources at the lowest level of
command has been provided to the entire space.

In this process, it is easy to see that upper level commanders have more details
to work with as they collect the information of subordinates and pass it across the
tree or up the tree in the most efficient way. Although the upward pass ends at
level 2, the process is not complete. We must now consider the downward pass and
its objective to provide the needed information to every lowest level commander
for distribution to each of the field particles. In the downward pass, translated
information is received and the outgoing radiation patterns are converted to in-
coming wave patterns and combined with other incoming wave patterns. These
incoming wave patterns are then filtered or anterpolated down to the subordinate
commanders who combine information from the top levels with translated informa-
tion from same level or colleague commanders. The resulting patterns are formed
and the process of passing the information down the tree continues until the lowest
level commanders have the required data to interact with each of their field points.
This completes the process of traversing the tree.

In summary, each lowest level CC has facilitated the interaction of each of their

18



source particles with the field particles of every other lowest level commander. This
was accomplished through direct interactions for self and near neighbors, aggre-
gation, translation, upshifting, downshifting, and disaggregation. The algorithm
is not difficult to understand, although the mathematics and finer details tend to
cloud the big picture. As in command, however, the finer details always remain

important.

3.4 Signal Processing

Probably the most important finer detail of MLFMA is signal processing. This
is also essential in the principle of command. In the context of MLFMA, signal
processing includes the upsampling (interpolation) and downsampling (anterpola-
tion) of radiation patterns. Filtering is necessary because the radiation patterns of
finer lower-level boxes do not require as much detail or samples as coarser higher-
level boxes. Therefore, when a CC provides a radiation pattern up the chain of
command, it must first be interpolated and then shifted to the next level CC. The
interpolation allows the higher level CC to receive the pattern with the correct
sampling points.

On the downward pass the process of anterpolation allows the lower level CC
to receive a downshifted pattern with fewer but an adequate number of sample
points. These are easily combined with translated outgoing to incoming patterns
from colleague commanders with the same number of samples. This continues
down to the lowest level commanders that distribute or disaggregate the incoming
wave pattern to each field point.

3.5 Final Details

This chapter has described MLFMA. The detailed mathematics including the
incorporation of MoM have been intentionally left out. A good treatment of the
subject can be found in the first three chapters of [5] where the derivations for
both the electric and magnetic field integral equations are given in detail. Also,
the mathematical details of shifting, interpolation, and anterpolation are pro-
vided. With this background, it is now possible to understand the error sources of
MLFMA. As expected, such a fast method will come with some tradeoffs between
speed and accuracy.

19



CHAPTER 4

ERROR CONTROL

4.1 Introduction

When using MLEMA to produce RCS data, there are several key error sources.
Depending on the type of targets and the accuracy required, these errors can
be controlled to some degree. Understanding and controlling these errors is the
purpose of this chapter. Considering a perfect electric conductor (PEC) target,
these errors fall into the following classes: geometry modeling, integral equation
discretization, matrix equation solving, and translation operation. The transla-
tion operator and its factorization are at the core of the multilevel algorithm and
together form an important part to understand. This chapter will be primarily
focused on the effect of this translation error and a new approach to error control.
The recently developed new approach for 2-D problems [2] has been extended in
this research to 3-D problems [7] and will be the main focus of this chapter.

4.2 Geometry Modeling

There are differences between a computer model and the physical model that
it represents. Targets with flat surfaces are the easiest to model and usually have
the most faithful representation. For example, a cube can be modeled perfectly
with just eight points. However, all physical cubes will have rounded edges and
corners due to the tolerances of the physical manufacturing process. Depending on
the frequency of interest, these differences may be quite insignificant. For curved
surface models, a linear representation is an approximation and will therefore be
an error source. Since most large-scale problems involve complex structures, there
will be a difference between the geometrical representation and the actual target.

These complex targets may be formed by the combination of flat surfaces joined
with curved and doubly curved surfaces. When basis functions are chosen based
on flat triangular patches, the surface can be meshed carefully to capture the

key scattering structures. Of course, narrow tips result in triangles that are too
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small or narrow for good computational stability. This means that the geometry
modeler must have a clear understanding of the effect of the small details and how
to represent them.

Many companies interested in EM modeling hire Ph.D.’s to work on CAD
modeling. They apply EM theory in the construction of models that are most
suitable to a particular EM code simulation. Constructing the geometry in an
optimal way that captures the physics of the problem requires a solid understanding
of computational electromagnetics. For curved surface models, higher order basis
functions that describe the curvature can be used to more faithfully represent the
shape, but the tradeoff is increased complexity. The point is that geometry fidelity
and choice of basis functions lead to an important error source. This error source

is one of the hardest to quantify.

4.3 Integral Equation Discretization

Another source of error arises from MoM. Since MLFMA is tied to MoM, this
particular error source should be mentioned. Integral equation discretization is
the process of converting an integral equation into a matrix equation. The way
this is generally done is by using a basis function as defined over the geometry
surface. Then a testing function is used and integration over the basis functions
and testing functions is performed to find the matrix elements in MoM. The error
associated with integral equation discretization or converting a continuous integral

to a discrete matrix is not studied in more detail in this document.

4.4 Matrix Equation Solving

A discretized integral equation can be represented as a linear system of equa-

tions

A-x=b (4.1)
in which the matrix A is the impedance matrix, x represents the unknown coeffi-
cients of the chosen basis functions, and b is a known vector based on the incident
wave. For small MoM problems, the matrix can be inverted and then multiplied
by b on the right hand side of the equation to find x. However, for large problems,
the cost of matrix inversion is too high. These systems are solved with iterative
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methods such as the conjugate gradient method. In such an iterative method, a
solution vector is guessed and the matrix-vector product is compared to the known
vector. Using the comparison, a new solution vector is chosen and the process is
iterated until the comparison, as measured by what is called the residual error,
becomes small enough. Often this residual error is chosen to be 1073.

This residual error means that the unknown coefficients are only approximate
values. The unknown coefficients of the basis functions represent the surface cur-
rents. These surface currents are used to calculate the scattered field. The relation-
ship between the error in the scattered field as a function of residual error is very
dependent on geometry and aspect angles of both the transmitter and receiver.
Fortunately, approximate currents often lead to reasonably accurate RCS values
as the integration of the currents for the far field is a smoothing process. Another
advantage of MLFMA is that it is matrix free.

4.5 Translation

The hardest error to control finds its root in the heart of FMM. The key to
FMM is the diagonalized translation operation. As described in Chapter 2, the
translation operator is repeated below in Equation (4.2). The derivation of the
translation operator used in 3-D MLFMA is given in many sources [5, 8, 9, 10,
11, 12, 13| and is based on the addition theorem. The series representation of the
translation operator must be carefully truncated to avoid excessive error. With
insufficient terms, the series is a poor approximation, but with too many terms
the divergent nature of the series emerges. Since computational methods require
truncation for evaluation and due to the finite precision of floating point numbers,
this truncation number must be carefully chosen. The series representation of the
translation operator is given as [5]

Tmm' = i ;
' T
1=0 )
where hl(l)(krmmz) is a spherical Hankel function of the first kind, P,(fym - k)

is a Legendre polynomial of order [, r,,,  is the translation vector, and kisa

(20 4+ 1B (k) Py (E e - K) (4.2)

unit vector used for integration over the unit sphere. This is the key series used
to approximate the Green’s function by integrating over the unit sphere using

approximately 2L2 + 2L Gaussian quadrature points and the relationship
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Figure 4.1 is useful for J\;isuadizing the translation of a source point to a field
point. This is an orthogonal view of two cubes and an outline of the sphere
(diameter=+/3a) enclosing them. The upper cube with labeled points has been
rotated to capture the 3-D perspective. Note that this third cube could fit between
the lower two cubes and could be a buffer cube. The r-vectors represent the vectors
between group (or box) centers, field, and source points. The trailing subscript is
the starting point of the vector. Thus, swapping subscripts is the same as negating
the vector. Rather than calculating the direct path from the source to the field
point rj;, shown as a dashed line, the source point is aggregated to the box center
on the left, then translated to the box center on the right, and finally disaggregated
to the field point. Mathematically, this path is r;m, + Tmm + i and is represented
with the solid vectors. The translation does not depend on the positions of the
source and field points; however, the truncation of this series in Equation (4.2)
is highly dependent on these positions. In this illustration, the source and field
points are at opposite corners of their box groups. This produces the highest error
in the evaluation of the scalar Green’s function given in Equation (4.3). We refer
to this worst case as position 81 where the digits represent the corner of the cube
where the field and source points are located. Similar worst-case positions include
{18, 27, 36, 45, 54, 63, 72}.
It is important to note that a sphere enclosing a source point cannot intersect
a sphere enclosing a field point. This would violate the requirements of the addi-
tion theorem [14]. Thus, the adjacent boxes, including diagonal boxes, containing
field points require a direct evaluation of the interaction. Therefore, the nearest
translation is between boxes separated orthogonally by one buffer box and is twice
the distance of the box edge length a, as seen in Figure 4.1. The error associated
with the Green’s function and its approximate representation is due to the position
vectors of the source and field points relative to their box centers. Obviously, when
their relative positions are the same, the approximation is the best, but when the
vectors are maximum and in opposite directions, this leads to the largest error.
As illustrated in Figure 4.1, |ry; + rj| is at a maximum. In 3-D, this maximum
length is v/3a and there are eight positions of source and field points where this
occurs. This maximum distance can be used to predict the truncation number L,
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Figure 4.1  An orthogonal view of two cubes and the outlines of the spheres
containing them. The top cube with corners labeled from 1-8 gives a perspective
view. Source point 7 is at point 1 and field point j is at point 8. This is referred
to as position 81.

in the series of the translator formula in Equation (4.2).

4.5.1 Series truncation
Previous work [5, 13, 15] applied the refined excess bandwidth formula,

L ~ kd + 1.8(do)? (kd)3, (4.4)
in order to truncate the series for good results. In this formula, d = |rp; + rjm,
the wavenumber is k, and dj is the desired digits of accuracy. For the worst case,
d = v/3a. It says that, for a given box size, a reasonable truncation L, can be

calculated and used to terminate the series.
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Figure 4.2 shows the actual error compared to that predicted by the excess
bandwidth formula for increasing L. This example, for a fixed ka = 20, shows
increasing disagreement for dy > 2 (relative error less than 1072). We also note
that the minimum error occurs when the machine precision accuracy of dy & 15 is
used in Equation (4.4). This is a key observation in developing the new approach.
The excess bandwidth formula applies when L < k7, or, in other words, when
the group centers are sufficiently separated relative to the truncation. By increasing
the buffer boxes separating two groups, larger truncation values can be chosen. In
this plot, one can easily see how initially after a certain number of terms (L >
V/3ka > 34 in this case), the error begins to decrease and after reaching an actual
minimum (at L = 67), the divergent nature is seen. This also shows that the
excess bandwidth formula can predict and achieve certain error levels; however,
the desired number of digits of accuracy used in Equation (4.4) is not always
achievable and is different from reality when the box separation and box size are
small and high accuracy is desired.

Using the excess bandwidth formula in Equation (4.4) and the worst case po-
sition vectors in 3-D pointing to field and source points in opposite corners of the
box (see Figure 4.1), we can solve for the digits of accuracy as

do = [L—‘—@} N (4.5)

2.2(ka)s
This equation relates to the convergence of the Bessel function when it is O(10~%).
In the same way that dy represents the digits of accuracy with respect to the
convergence rate of the Bessel function, using the asymptotic approximation of the
spherical Hankel function [16] when k7, ~ O(l), it can be shown [5] that the
divergence of the Hankel function series when it is O(10%%) leads to

Lok 15
dy = .___—_Lm'l , (4.6)
1.8(]{57‘mml)§

where d; represents the number of digits lost by numerical evaluation. This can

be written in terms of the number of buffer boxes n and box size a as

dlz[L~(n+1)kal] | )
1.8((n+ 1)ka)3
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Relative Error vs. Truncation Number for ka=20
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Figure 4.2 Error comparison for fixed ka = 20 and changing L. The optimal
truncation is L = 67 for this one buffer box worst case. When L > 67, the
series is clearly diverging. We note that theoretically L > 40, in this example,
is outside of the valid range for applying the excess bandwidth formula although
numerically it achieves a better error up to L = 45. Assuming that L is chosen
using Equation (4.4) with 15 digits accuracy, the actual error does not even achieve
5 digits of accuracy. This is expected since we are also outside of the applicable
range of this formula.
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By subtracting dy — dy, the actual expected digits of accuracy can be found. Since
machine precision limits the digits of accuracy to about 15, for small box sizes, the
digits lost will be larger when L is increased in Equation (4.7). Also, if the number
of buffer boxes n is increased, then d; will shrink. Equation (4.4) produces L,
based on dy = 15 as

Limaz = V/3ka + 13.2(ka)3. (4.8)

Lymez 18 the truncation number that should produce the minimum possible
error. Since dy = 15 implies a relative error of 107'°, the example in Figure 4.2
shows a large gap between the true minimum error and that predicted by the
excess bandwidth formula. If L > L,,,,, the error grows due to the finite machine
precision and the divergent series embedded in Equation (4.3). Using L = Lyqy
(n)

in Equation (4.7), we can find d,,;, = dy — di, which is the true digits of accuracy

associated with the minimum error for n buffer boxes,

1.5

d(n) . Loz — (TL + 1)k(1
min - 1
1.8((n+ 1)ka)s

To capture the effect of lost digits using one buffer box, n = 1, leads to a d

(4.9)

(1)

min

that will represent the theoretical error bound,

1.5

Lmaz — 2k

dV =15 |Zmee 250 (4.10)
2.3(ka)s

Obviously, it is best to choose L < L4, since this represents the error floor.
When (n + 1)ka < L < Ly,,, the new approach is required for precise error
control. It is desirable to calculate a better truncation number in this part of the
controllable region, and this is what the new approach does. When L < (n+1)ka,
the new approach uses Equation (4.4) to choose the truncation.

In order to choose the truncation properly in the extended controllable region
where the excess bandwidth formula does not achieve the desired error level, the
new approach is necessary. In the new approach, we find the truncation number
based on a desired error level e, and the intersection of this error level with the

minimum error level and the border where the excess bandwidth formula applies
(see [2, 17, 18] and Figure 4.3).
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Error Floor Using New Approach for Truncation — One Buffer Box — Position 81
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Figure 4.3 Error floor using new approach for truncation and one buffer box.
The boundary between the uncontrollable and controllable regions is shown as the
new approach theoretical minimum line. The upper dash-dot line is the bound-
ary between the upper region where the error can be controlled using the excess
bandwidth formula and the middle region where the new approach must be used
for precise error control. For a fixed ka, for example ka = 20, the error level can
be controlled to levels between point A and point B using the new approach. For
an error level above point A, the excess bandwidth formula can control the error.
Finally, for this ka = 20, we cannot theoretically control the error to levels below
point B.
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From these two intersection points, (ka, L) pairs are found. For both points,
the same desired error level is used to find (kay, L,) and (kag, L) as illustrated in
Figure 4.3 for e, = 1073. The first ordered pair, on the left, borders the uncontrol-
lable region and is given by

215
132~ 18(n + 1)¥ (15~ log )’
kay = ' 4.11
1 n+1-+/3 (4.11)
and
Ly = V3ka; + 13.2(kay)3. (4.12)

These equations are derived by solving Equation (4.9) for ka; where the subscript
refers to the first ordered pair. Of course, L., from Equation (4.8) must be
substituted into Equation (4.9). Above, L, is simply L., from Equation (4.8)
with ka;. The second ordered pair is given by

3.2log ei
kay = 15 (4.13)
(n +1— \/3)
and
Ly = (n+ 1)kas (4.14)

and meets the boundary where the excess bandwidth formula can be used. Equa-
tion (4.13) comes from setting (n + 1)kas equal to the right hand side of Equa-
tion (4.4) with d = v/3ay. Then the equation is solved for ka,. Here, Ly forms the
upper boundary of the new approach controllable region. Interpolating between
these two points provides an adjusted L necessary to maintain the required relative
error level for a given ka between ka; and kay. Using this new approach, the error
can be controlled for 3-D translation operations in FMM and MLFMA.

4.5.2 Results

The new approach allows us to establish the minimum possible error for a
given box size. If the desired error is higher than this minimum, the error can
be controlled using the new approach. If the desired error is found in the region
where L < (n+1)ka, the refined excess bandwidth formula given in Equation (4.4)
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is used to determine the proper truncation number. When L > (n + 1)ka, the

new approach must be used to control or minimize the error. All of the numerical
results discussed here involve the worst case errors in which the source and field
points are at opposite corners of their boxes and with only one buffer-box group
separation.

In Figure 4.3, we show that the minimum error for position 81 (worst case) can
be found by setting dy = 15 in Equation (4.4). This gives the L., of Equation (4.8)
that can be substituted into Equation (4.10) to find the theoretical minimum error.
This is labeled in this figure as the ‘new approach theoretical.” Numerical results
are given where the numerical minimum error is found compared to the theoretical
predicted minimum error. Figure 4.3 shows that the numerical minimum results
tend to be slightly lower than the theoretical minimum for smaller ka; this is due
to the approximate form of the refined excess bandwidth formula. The variation
of the true minimum is due to rounding. Since the true minimum was desired, the
lowest error was found through numerical experimentation. It matches the new
approach theoretical line fairly well. Previously, it has been shown [2] that the
excess bandwidth formula applies when L < (n + 1)ka where n is the number of
buffer-box separation between the groups. This upper-bound line is the boundary
between the two controllable regions.

As a function of the distances between box centers, the minimum error for
the worst case can be predicted for boxes just outside the buffer box layer. Note
that the maximum distance (v/12a) for the first layer beyond the one buffer box
is greater than the two buffer box minimum distance (3a). The translations on a
level will have lower errors when the ratio of the translation distance to the box
size increases. This is shown in Figure 4.4 where the legend represents the number
of boxes in each orthogonal direction (x, y, z) to get to the field box from the
source box. There are 5% — 33 = 98 different translation directions one buffer box
away. However, Figure 4.4 shows the relative error associated with these six unique
distances.

Using interpolated values of L we can establish the predicted error level inside
the extended controllable region where the excess bandwidth formula breaks down.
Figure 4.5 shows constant error levels where the excess bandwidth formula is used,
and in the region where interpolated values of L are used, the theoretical error

level dips downward. This is because the interpolation picks L to be slightly more
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Theoretical Minimum for 1 and 2 Buffer Boxes
10 T T T ! T T

I

I I
:{ —— 200 -1 Buffer Box
1--210
e 211
|---220
‘| = 221 -2 Buffer Box Equivalent

Relative Error

Figure 4.4 Predicted minimum error for different translation distances. There are
98 different translation directions one buffer-box layer away. However, as this plot
shows, there are only six unique distances. For example, (2 2 1) corresponds to (x,
¥, z) and is a distance of three times the side length of the box.

than necessary to achieve the fixed error level.

To illustrate the new approach, Figure 4.6 compares the new approach to the
excess bandwidth formula with an arbitrary three digits of desired accuracy. It is
easy to see the two boundaries between the three regions of chosen L values for
varying ka. When ka > 67, we use the excess bandwidth formula. When ka < 10,
we cannot make the error smaller than the desired error level, so we use Ly, to
achieve the best possible error. In the middle region we use interpolated values
of L as described in the formulation. This plot highlights the utility of the new
approach in achieving a better error control than the excess bandwidth formula.
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Theoretical Error Control
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Figure 4.5 Theoretical error levels using carefully chosen truncation values. The
downward curvature indicates too many terms used in series. Digits of accuracy
range from integer values of 2 to 14.

The truncation numbers corresponding to the theoretical minimum error in
Figure 4.3 are shown in Figure 4.7 as the upper solid L = L, line. The boundary
line between the upper two controllable regions represents the L = 2ka line. This
corresponds to the lower solid line in Figure 4.7. From Figure 4.7, it is clear that
the lower error achieved by the new approach requires more terms in the series.
This figure also has both the values of L chosen by the new approach and the excess
bandwidth formula for dy = 3 (the example illustrated in Figure 4.6). Naturally,
the values of L chosen when L < 2ka are the same for the new approach and the
excess bandwidth formula. This is seen at ka > 67 where the lines intersect and

become one. Interpolation is used when 2ka < L < L45, and L, is used in the
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Error Control Comparison in 3-D - Position 81 - 3 digits
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Figure 4.6 Comparison between the new approach and the excess bandwidth
formula for a desired three digits of accuracy. The new approach uses the excess
bandwidth formula for ka > 67 and the minimum error for ka < 10. The difference
highlights the need for the new approach in the region (n + 1)ka < L < Lyqq-

uncontrollable region to minimize the error.

Figure 4.8 compares the truncation number when 3 < ka < 10 for the actual
minimum error which is around 10~% and the L selected using numerical results.
The deviation is +1 to —2 between the predicted L that would achieve the minimum
error and the actual L values that are used for the minimum error. In other words,
the minimum was often found using slightly fewer terms than predicted. This figure
also shows the number L found by the excess bandwidth formula with dy = 3 to
show how many more terms are required to achieve the minimum error as compared
to what the excess bandwidth formula predicts.
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Truncation Number Selected by New Approach and Excess Bandwidth — Position 81
DB - e ERREREETE EEREEEEEEE R R EEEREEEE
—— New Approach Mlmmum : : : : : : :

- New Approach - 3 digits
— — Excess Bandwidth - 3 digits
— L=2ka

200

Number of terms
o
o

-
o
o

50

0 10 20 30 40 50 60 70 80 90 100
ka

Figure 4.7 Truncation number for varying ka. The theoretical number of terms
needed by the new approach to achieve the minimum error for varying ka is com-
pared to the number of terms selected using the excess bandwidth formula with
dy = 3. The line for one buffer box where L = 2ka is shown, and it intersects the
line where the new approach is used to control the error (dy = 3).

Finally, the new approach and excess bandwidth formula are used together to
achieve a fixed error for increasing ka. In the extended error controllable region,
the interpolated values of L are used to simulate the relative error using the new ap-
proach. Figure 4.9 shows the numerical data for fixed error levels as ka is changed.
In each case, the required accuracy is achieved. Using higher order interpolation in
the region where the new approach is used would lead to a better prediction of L
and, hence, to a flatter response. To use higher order interpolation would require

root finding of the midpoint truncation L,,;4; and curve fitting between (kay, L),
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Truncation Number Selected for New Approach and Excess Bandwidth — Position 81
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Figure 4.8 Actual versus the predicted number of terms to achieve the minimum
error. Only small differences are seen. The number of terms selected using the
excess bandwidth formula with dy = 3 is also shown for comparison.

(kamidy Lmia), and (kag, Lo).

The point of these results is to show that the error can be better controlled
to achieve the desired accuracy using the new approach as a companion to the
excess bandwidth formula. Of course, accuracy in the region where the error is
uncontrollable can only be improved by increasing the buffer boxes which is a

tradeoff to efficient calculations.

4.5.3 Better error control
When the truncation number is chosen using horizontal interpolation, where

the interpolation is done using (ka;, L) and (kag, Ls), we see that the theoretical
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Error Control Using New Approach in 3-D
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Figure 4.9 Numerical results using the new approach to control error level. Fixed
error levels are achieved by employing the new approach. The legend gives the
number of digits accuracy desired. The slight dip in the extended error controllable
region where the new approach is used can be eliminated through higher order
interpolation [2].

error is lower than predicted using linear interpolation. Of course, the error will
even be lower when the source and/or field points are closer to their box centers or
near each other’s relative position. The bending down of the error is due to larger
truncation, L. Using a root solver, a precise truncation can be found to place the
error at a fixed point. However, since the horizontal span of the minimum error
line and the error line for L = 2ka at a fixed error level is larger than the vertical
span, vertical interpolation should be better. Figure 4.10 shows the theoretical

error for fixed error levels using vertical and the previously discussed horizontal
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Theoretical Error Control
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Figure 4.10 Vertical interpolation versus horizontal interpolation. The vertical
interpolation produces a flatter response but still has the typical dip.

interpolation. Referring to Figure 4.3 the vertical interpolation simply uses points
A and B at a fixed ka but different error levels to interpolate the desired truncation
number.

Looking at one last case as purely an academic exercise, we examine the
collinear case where the source points and field points are actually outside the
box but inside the sphere enclosing the box. We see that the collinear case is
actually the worst case. Figure 4.11 shows the collinear case where the vector to
the source point and to the field point are along the translation direction. Fortu-
nately, we find that for practical problems, the error will always be lower than this

collinear case.
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Collinear Case — Theory vs. Numerical
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Figure 4.11 Vertical interpolation for the collinear case. The collinear case does
not occur because the source and field points would fall outside of the boxes even
though they are inside the group spheres.

This chapter has described some of the error sources of MLFMA and deeply
explored the errors associated with the translation operator. The new approach

can be used to predict and control the error.

38



1488 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 10, OCTOBER 1997

Multilevel Fast Multipole Algorithm
for Electromagnetic Scattering
by Large Complex Objects

Jiming Song Member, IEEE Cai-Cheng LuMember, IEEE and Weng Cho Chewgellow, IEEE

Abstract—The fast multipole method (FMM) and multilevel [10] and Hernquist [11] performed-body simulation using
fast multipole algorithm (MLFMA) are reviewed. The number of  hjerarchical method which is simpler than the FMM. But its
modes. required, block-.dlago.ne}ll preconditioner, near singularity computational complexity of(V log V) is more than that of
extraction, and the choice of initial guesses are discussed to apply S . .
the MLFMA to calculating electromagnetic scattering by large the FMM, which isO(V) where N is .the number of part_'CIes'
complex objects. Using these techniques, we can solve the problem’Ne FMM was extended by Rokhlin to solve acoustic wave
of electromagnetic scattering by large complex three-dimensional scattering problems [12] and then to solve electromagnetic
(3-D) objects such as an aircraft (VFY218) on a small computer. scattering problems by many researchers in both two dimen-

Index Terms—Electromagnetic scattering, numerical analysis. Sions [13]-[17] and three dimensions [18]-{20]. A two-level
FMM reduces both the complexity of a matrix-vector multiply
and memory requirement fro?(N?) to O(N!->) where N
is the number of unknowns. A three-level FMM reduces it

ECENTLY, many researchers in the electromagnetits O(N%/3) [12], [21]. With a nonnested method, using the
community have investigated iterative solvers for integrafy-propagation fast multipole algorithm (RPFMA) [16], [17],
equations of electromagnetic scattering problems. The integaatwo-level FMM reduces the complexity 10(N*/3) also.
equation is discretized into a matrix equation by the methdde multilevel fast multipole algorithm (MLFMA) [22]-[25]
of moments (MoM). The resultant matrix equation is thefurther reduces the complexity and memory requirement. Dem-
solved by, for example, the conjugate gradient (CG) methdaart and Yip [23], [24] have implemented the MLFMA using
requiring O(N?) operations for the matrix-vector multipliessignature function, interpolation, and filtering, with a complex-
in each iteration, whereV is the number of unknowns.ity of O(N log2 N). Song and Chew [25], implemented the
A number of techniques have been proposed to speed MpFMA with O(N log N) complexity and memory require-
the evaluation of the matrix-vector multiply. The impedancment using translation, interpolation, anterpolation (adjoint
matrix localization (IML) technique [1] allows the MoM interpolation), and a grid-tree data structure.
matrix to be replaced by a matrix with localized clumps of The numerical results for the radar cross section (RCS) of
large elements. The use of wavelet basis functions [2] redusesne simple objects like the sphere, cube, and the NASA
the solution time by a constant factor but not the computatiorelmond are reported in [19], [20], and [25]. Since they are
complexity. The complex multipole beam approach (CMBAglosed smooth objects that are not very thin, the combined
[3] represents the scattered field in a series of beams produfiettl integral equation (CFIE) with uniform grids has a small
by multipole sources located in the complex space, butdbndition number and converges very fast. In this paper, we
is efficient only for smooth surfaces. The multilevel matrixvill apply the MLFMA to large complex three-dimensional (3-
decomposition algorithm (MLMDA) [4] permits a fast matrix-D) objects such as an aircraft (VFY218). The number of modes
vector multiply by decomposing the MoM matrix into a largeequired, preconditioner, near singularity extraction, and the
number of blocks, each describing the interaction betweehoice of the initial guess will be discussed.
distant scatterers. The multiplication of each block with a
vector is executed using a multilevel scheme that resembles a
fast Fourier transform (FFT). Il. MULTILEVEL FAST MULTIPOLE ALGORITHM (MLFMA)

The fast multipole method (FMM) [5]-[9] was originally To implement a multilevel fast multipole algorithm
proposed by Rokhlin to evaluate particle simulations ar@®ILFMA), we enclose the entire object in a large cube
to solve static integral equation rapidly. Barnes and Hiitst, which is then partitioned into eight smaller cubes. Each

subcube is then recursively subdivided into smaller cubes until

Manuscript received March 19, 1996; revised June 4, 1997. This work Wage edge Iength of the finest cube is about half a Wavelength.
supported in part by the Office of Naval Research under Grant NO0014-95

0872, by the National Science Foundation under Grant NSF ECS 93—021@:1bes at_a” Ie_vels are mde_xed. At_ the flr_]eSt level we flljld
and by AFOSR under an MURI Grant. the cube in which each basis function resides by comparing
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Fig. 1. Relative error in the dynamic scalar potential truncated for the fir6ig. 2. Relative error in the dynamic scalar potential truncated for the first
L + 1 terms (3) as functions of the distancgA for d/X = 0.4 where cost L + 1 terms (3) as functions of the distancg for d/A = 0.8 where cost

=d- =d-
at all levels [10], [11]. Thus, the computational cost depends ~ *° i K
only on the nonempty cubes. ’ 0.7
25 ¢ a 1
A. Number of Modes o? i
20 t
The addition theorem for 3-D dynamic scalar Green’s -
function has the form [18], [26] o o5l
ctkir+d| g o kd + 5log(kd+pi) ——
=ik > (=12 + 1) (k)b (kr)P(d - 7) (1 I kd + 3log(kdspi)
ra > (=D + 1) gkd)h (kr)P(d - 7) (1) o A d + Sloglhdp)
wherek is the wavenumberj; is a spherical Bessel function 5 ;?*ff*’ 5 "Eror= 04 -
of the first kind,h{") is a spherical Hankel function of the first 7
kind, F, is a Legendre polynomiat; andd are two vectorsy 0 0 5 1‘0 1‘5 2‘0 o5
andd are their amplitudes with < r, and# andd are their unit kd

vectors, respectively. In this paper;** time Convenlt'on IS Fig. 3. Number of modes needed in (3) as functionskdffor different
used. Using small argument approximationgipéndh; ) we accuraciesd - # = 1, r/A = o). Some semi-empirical formulas are plotted
obtain the addition theorem for the 3-D static Green’s functidff comparison.

oo {
_ = 1 Z (_1)I<C_l> pl(cz.f)_ (2) dincreases, the number of modesrequired to maintain the
r+d| 7 =0 r same accuracy increases.

In Fig. 3, we plot the number of moddsneeded in (3) as
nctions ofkd for different accuracies. Some semi-empirical
formulas are plotted on the same figure for comparison. To

In numerical simulations, the infinite series in (1) and (2) ane
truncated as

cikle+d| . L . O B d . obtain less than 0.1 relative error
A -1)}(20 4+ 1); : P
c+d " ;( V@ Dalkd)h (kr)B(d-7) () L = kd +1n (r + kd) 5)
L l H
1 1 d . should be used in (3), and
T (—1)l<f> P(d-#). (4)
r+d| 7= L=kd+5In(r+ kd) (6)

For the static case, the number of modé&$ feeded in (4) should be used for less than 10 relative error. Equation
depends on the ratio @fto » for a given desired accuracy. This(6) is the same as the one given in [18] for single precision.
means that we can use the same number of modes for differfehe FMM is applied to off-diagonal matrix elements only,
cube sizes. Due to oscillatory nature of dynamic fields, thvehich are two to three orders less than diagonal matrix
dynamic case is more complicated than the static case.édlements for electromagnetic scattering problems. Hence, from
Figs. 1 and 2 we plot the relative error in (3) as functionsur numerical experiencd, calculated from (5) suffices for

of /X for different L andd - 7. Fig. 1 is ford = 0.4\ and decent current solutions and RCS.

Fig. 2 is ford = 0.8\. From these two figures, the accuracy The MLFMA is used to speed up the matrix-vector multiply
does not increase even whenincreases beyondd2 When in the iterative methods. It decomposes the matrix-vector
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Fig. 4. Comparison of the convergence of solutions of CFIE using the d? (degrees)
biconjugate gradient (BiCG) method for a 1-m NASA almond at 2.5 GHz_ . . . o .
with or without different preconditionings. Fig. 5. Number of iterations as functions of incident angles for different

initial guesses: using zero initial guess for all angles and using the solution of
the previous angle as the initial guess for the next angle with/without phase

multiply into two sweeps [27]: the first sweep consists coforrections.

constructing multipole expansions for each nonempty cube

at all levels. Since the multipole expansions are used fKrgl as a preconditioner, we have

calculating the fields outside the cube, they are called outer -1 = —1 ~ -

multipole %xpansions. As one progresses fr())lm the finest level Agt A x=x+AgT (A x+Arx). (8)
to the coarsest level, the cube becomes larger and the numigce A, can be replaced by its LU decomposition (LUD)
of modes required in the multipole expansions increases. fiam for A;!, the block-diagonal preconditioner needs no
construct outer multipole expansions for each nonempty cu@gira memory and no extra CPU time in each matrix-vector
at all levels, the outer multipole expansions are computeslltiply. A, is a block-diagonal matrix with a block size of
at the finest level and then the expansions for larger cubgs which is the number of unknowns in one cube. When
are obtained using interpolation and shifting. The secord is a constant, the LUD ofA, takes O(M3N/M) =
sweep consists of constructing local multipole expansiod® N) operations. In Fig. 4, we plot the normalized residual
contributed from well-separated cubes at all levels. At théorm as functions of iteration numbers for cases without
coarsest level, the local multipole expansions contributggleconditioning, diagonal preconditioning, and block-diagonal
from well-separated cubes are calculated using translatigneconditioning. We find the current solution for a 1-m NASA
At the other levels, the local expansions for smaller cuba$mond at 2.5 GHz for the wave incidence on the tip. The
include the contributions from parent cubes using shiftingcident electric field is parallel to its broad side. It is observed
and anterpolation (adjoint interpolation) [28] and from wellthat block-diagonal preconditioning converges much faster
separated cubes at this level but not well-separated ones atttias the other two.

parent level. The anterpolation matrix is the transpose of the

interpolation matrix. C. Near-Singularity Extraction and Choice of Initial Guess

For very thin objects (like a wing), CFIE (combined field
integral equation) [29] has a smaller condition number than
The CPU time for iterative methods is proportional to theéhose of an electric field integral equation (EFIE) and a mag-
number of iterations needed to get the desired accuracy. THegic field integral equation (MFIE). The null-space solutions
convergence rate depends on spectral properties of the MoMthe EFIE will not radiate and null-space solutions of the
matrix. Hence, one may want to transform the original matriMFIE will radiate. Therefore, both the EFIE and the MFIE
equationA - x = b into M~*. A.x = M~! . b that has cannot give correct current solutions, while the EFIE gives
the same solution, but with a more favorable spectral prope#ycorrect RCS but the MFIE does not. However, the CFIE
where M1 is called a preconditioner. always gives a correct current solution as well as a correct
If basis functions in one of the finest cubes are consider&tS.
as one group, the matriA has block structure and can be For finite-thickness objects only the self terms have a singu-
further divided as larity and only self-singularity extraction [30] is needed. For
< ~ % ~ very thin objects, both self- and near-singularity extractions
Ax=(Ao+ A x+Arx O [31{are reqLJJired to obtain correct matrix gleme?]/ts.
where matricesA, and A; account for nearby interactions For iterative solutions of monostatic RCS, different incident
and can be derived directly from the MoM matrix add, angles require different iterative solutions. Since a small
is the block-diagonal part. The matriA, accounts for far change in the incident angle corresponds to a small change in
interactions and\;-x is performed by the MLFMA. Choosing the current, we use the current solution from the previous angle

B. Block-Diagonal Preconditioner
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Fig. 6. Monostatic RCS of the wing (2080 flat triangular patches divided
from Northrop curvilinear quad patch model) at 300 MHz as functiong of
in the horizontal plane.

25 : ; ; ; ;
; : P 20 ¢ o Rl %
with phase correction as the initial guess for the next angle. ¢ 7

This technique reduces the number of iterations significantly.
As an illustration, we calculate the monostatic RCS from
the VFY218 at 100 MHz for vertical (VV) polarization. The ¢

VFY218 is shown in the inset of Fig. 7(a). The wings of theg Oy
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VFY218 are on thec-y plane (horizontal plane). Zero degree% S | MM | j |
(¢ = 0) corresponds to the incidence angle on the nose. THg -0 r VV’ ‘J ]G |
VFY218 is609 in (15.5 m) from nose to tail, 350.4 in (8.9 m) A5 T

from one wing to another, and 161.4 in (4.1 m) from top to 20 [ Nose Measurement —— Tail -
bottom. In Fig. 5, we plot the number of iterations for different 25 | )
incident angles using three kinds of initial guesses. The first 30 |

case, which uses zero as the initial guess for all angles, needs -35 ‘ ' ‘ ‘ : : ' :

20 40 60 80 100 120 140 160 180

about 85 iterations on the average for each angle. The second
case, which uses the solution of the previous angtesf2p ¢ (degrees)

size) as the initial guess for the next angle, needs about 65 (b)

iterations per angle. The third case, which uses the phasi: 7. Monostatic RCS of the aircraft VFY218 (Northrop curvilinear quad
corrected solution of the previous angle as the initial guess fsich model) at 100 MHz as functions of in the horizontal plane. The

. . measurement data are from the Naval Air Warfare Center. (a) VV polarization.
the next angle, needs only about 30 iterations per angle. (b) HH polarization.

IIl. NUMERICAL RESULTS 0.001 normalized residual error, and 1 h for calculating 901
The MLFMA has been implemented based on flat triangul@oints of bistatic RCS).

patches and curvilinear quad patches using both Galerkin'sFig. 6 shows the monostatic RCS of a wing at 300 MHz
method and line matching where the testing functions awsing the LUD for the EFIE and the MLFMA for the CFIE.
constant along the line joining the centers of two adjaceihe wing size is 60 inx 100 in x 2.4 in and is originally
patches. For curvilinear quad patches, generalized rooftowdeled by Northrop using curvilinear quad patches. Dividing
functions are used as basis functions [30]-[32]. The Raeach quad patch as two flat triangular patches leads to a 3120
Wilton, and Glisson (RWG) [33] basis functions are used famknown problem. The wing is on the-y plane, and zero
flat triangular patches. The number of modesalculated from degree ¢ = 0) corresponds to normal incidence to the 60 in
(5) is used for numerical simulations. The code is verified tshort edge. The thickness in thedirection is only about 2%
comparing the results with those in the published literatute 4% of the lengths in the: and y directions. If the near-
for conducting objects with different shapes like sphere, platingularity extraction is not used, we cannot obtain a correct
cube, NASA almond, etc. Our numerical results agree veRCS from the CFIE. Using the near-singularity extraction, we
well with the analytical solutions, the measurements, amibtain a good RCS agreement between the EFIE and the CFIE.
the LUD solutions. Both the memory requirements and tHehis 3120 unknown problem can also be solved using the LUD
CPU time per iteration are of)(\V log V) and a 110592 on a workstation. It is found that the RCS calculated using the
unknown problem can be solved within 24 h on a SUNILFMA agrees very well with that using the LUD for both
Sparcl10 [25] (6 h for setup, 17 h for 29 iterations to redhe EFIE and the CFIE. In Fig. 6, we plot the RCS calculated
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that only for 1600 incident angles, the MLFMA would need
the same CPU time as the LUD solution. But it needs memory
(167 MB) much less than the LUD solution (5.2 GB). The
comparison is more in favor of MLFMA wheV becomes
larger.

The longest edge in the Northrop VFY218 curvilinear quad
patch model is 0.106 at 100 MHz. We use the same model
to predict the RCS at 300 MHz using the MLFMA. The
monostatic RCS for HH and VV polarizations is shown in
Fig. 8(a) and (b), respectively. The numerical results are in
good agreement with the measurements.

IV. CONCLUSIONS

The MLFMA has been implemented for both flat triangular
patch and curvilinear quad patch geometry descriptions to
speed up the matrix-vector multiplies. Both the memory re-
quirements and the CPU time per iteration ar&¢N log N).
Using a block-diagonal preconditioner, near-singularity ex-
traction, and phase corrected previous solution for the initial
guess, we can solve for the electromagnetic scattering by large
complex 3-D objects such as an aircraft (VFY218) on a small
computer.
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Fig. 8. Monostatic RCS of the aircraft VFY218 (Northrop curvilinear quad

patch model) at 300 MHz as functions &f in the horizontal plane. The

measurement data are from the Naval Air Warfare Center. (a) VV polarization[.1 ]

(b) HH polarization.
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Optimal Interpolation of Translation Operator In
Multilevel Fast Multipole Algorithm

Ozgiir Ergiil, Sudent Member, IEEE, and Levent Giirel, Senior Member, |EEE

Abstract—L agrange interpolation of the translation operator
in the three-dimensional multilevel fast multipole algorithm
(MLFMA) is revisited. Parameters of the interpolation, namely,
the number of interpolation points and the oversampling factor,
are optimized for controllable error. Via optimization, it becomes
possible to obtain the desired level of accuracy with the minimum
processing time.

Index Terms—L agrange inter polation, multilevel fast multipole
algorithm, trandation operator.

. INTRODUCTION

HE multilevel fast multipole algorithm (MLFMA) [1], [2]
T requires translations to convert the radiated fields of the
basis clusters into incoming waves for the testing clusters. In
a matrix—vector multiplication, translations are performed be-
tween the clusters that are at the same level but far from each
other. Through the factorization of the Green’s function, transla-
tion operators are independent from the radiation and receiving
patterns of the basis and testing clusters, respectively [3]. To be
employed repeatedly, these operators are calculated and stored
in the memory before the iterations.

Since direct calculation of the translation operators requires
O(N?>/2) operations, where NV is the number of unknowns, pro-
cessing time for their setup increases rapidly and becomes sub-
stantial as problem size grows. As a remedy, a two-step com-
putation is suggested based on the interpolation of the transla-
tion operator [4]: First, the translation operator is expressed as a
band-limited function of a variable ¢ and it is sampled at O(N)
points with respect to this variable. Second, the operator is eval-
uated at the required points by interpolation from the previous
samples. With an efficient interpolation algorithm, processing
time for the calculation of the translation operators is reduced
to O(N).

In [4], Lagrange interpolation was proposed to efficiently fill
the translation matrices for large problems. However, the pa-
rameters of the interpolation, namely, the number of interpola-
tion points and the oversampling factor, were fixed. With the
parameters fixed, the interpolation error is not controllable and
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the processing time is not minimized. In this paper, we revisit
the Lagrange interpolation of the translation operators and op-
timize the parameters of the interpolation to obtain the desired
level of accuracy with minimum processing time. The optimal
parameters are compared to the fixed parameters to demonstrate
the improvement obtained with the optimization.

Il. LAGRANGE INTERPOLATION OF THE
TRANSLATION OPERATORS

A three-dimensional (3-D) translation operator between a
pair of basis and testing clusters at the same level can be written
as

. L
T(k, k, D) = % > e+ DA (kD) Ei(k - D) (1)
=0

where hl(l) is the spherical Hankel function of the first kind, P is
the Legendre polynomial, % is the wavenumber, and k is a unit
vector representing the angular directions. The centers of the
basis and testing clusters are separated by the vector D, where

D=DD. )

The summation in (1) is truncated at L, where L is the number
of multipoles required to accurately represent the spectral con-
tents of both the translation operator and the related radiation
and receiving patterns. Considering cubic clusters with edges a
and using the excess bandwidth formula [5] for the worst case
scenario [6]

L =~ 1.73ka + 2.16(d)*3(ka)' /3 3)

where dy is the desired number of digits of accuracy.

In Fig. 1(a), the truncation number . is plotted with respect
to dy and for different values of the cluster size a increasing
by a factor of two from 0.25X to 64X, where X is the wave-
length. For any problem, 0.25X corresponds to the size of the
clusters at the lowest level of the multilevel tree structure. On
the other hand, the size of the largest clusters depends on the
size of the problem. Fig. 1(a) demonstrates that 7. grows rapidly
as the cluster size increases. For a fixed a, however, I increases
gradually with respect to d, and the variation is small for large a.

Processing time required to calculate the translation operator
in (1) is measured on a 1.8-GHz 64-bit Opteron-244 processor.
In Fig. 1(b), the processing time is plotted with respect to the
same parameters as in Fig. 1(a). The values are given for a
single interaction between a pair of basis and testing clusters
while a typical problem requires the calculation of numerous
cluster—cluster interactions. Since 7. = O(ka), the processing

0018-926X/$20.00 © 2006 IEEE
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Fig. 1. (a) Truncation number as a function of dq and the cluster size a. (b) Pro-
cessing time to compute the translation function for a single cluster—cluster in-
teraction. In both figures, there are nine curves for different values of the cluster
size increasing by a factor of two from 0.25\ to 64A. The lowest and highest
curves correspond to 0.25\ and 64\, respectively.

time to evaluate (1) for a fixed kis O(ka). In addition, the
number of angular directions k is O(L?) and the processing
time to evaluate (1) becomes O(k3a?) for a cluster—cluster in-
teraction. For low levels of MLFMA, O(k3a®) = O(1), which
is acceptable although the number of clusters in these levels is
O(N). However, for the largest clusters of a problem, O(ka) =
O(N'/2) and O(k%a®) = O(N®/2). Therefore, as N becomes
large, the processing time required to calculate the translation
operators for a problem is dominated by the evaluations for
the high-level clusters, although the number of these clusters is
O(1). In addition, the setup time for the translation matrix be-
comes dominant compared to the time required for other parts
of MLFMA, even the matrix—vector multiplications that can be
performed in O(N log N) time. o

Defining the variable ¢ = cos~'(k - D), the translation op-
erator can be expressed as a band-limited function of ¢ [4] as

L

T(k,D,p) = 4—k2

=0

2141 h(l)(kD)Pl(cos ©). (4

Choosing an oversampling factor s and sampling the op-
erator along ¢ from 0 to 27 at |sL| = O(N) equally
spaced points (|-] represents the floor operation), i.e., at
v, =2m(t —1)/(|sL] —1)and ¢ = 1,...,|sL], the transla-
tion operator can be obtained by Lagrange interpolation at any
point as

f+p

S Tk, D, giwi(e) ®)

i=f+1-p

T(k, D, ¢) =

where T represents the translation function perturbed by the
interpolation error

po[dld=n ©

27
and
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Fig. 2. (a) Magnitude and (b) phase of the translation function with respect to
o for the case of a = 4\, dq = 3,and D = #2a.

f+p

I

j=f+1-p bi =¥
FEL

wi(p) = R )

In (5) and (7), p is the number of interpolation points employed
at each side of the target location .

Il. OPTIMAL INTERPOLATION

Fig. 2(a) and (b) depicts the magnitude and phase of the trans-
lation operator, respectively, for two clusters separated by D =
#2a, where a = 4. The number of accurate digits dg is 3 and
L = 57. We perform the direct calculation of the translation
operator, where the function is evaluated at the required points
by using (4). In the ¢ direction, there are 2(7. + 1) = 116 sam-
ples that are equally spaced from 0 to 2x. In the § direction,
there are (1. + 1) = 58 samples (zeros of the Legendre polyno-
mial) and they are not equally spaced. Then, there are a total of
2(1, + 1)% = 6728 distinct k directions to evaluate the transla-
tion operator. It should be noted that the transform from (1) to
(4) not only depends on L, but also on the relative positions of
the clusters, i.e., it also depends on D.
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Fig. 3. (a) Interpolation error and (b) processing time with respect to interpo-
lation parameters p and s for the translation function in Fig. 2.

Before the translation matrix is filled via Lagrange interpo-
lation, the parameters s and p must be determined. For fixed
values of dy and o, we perform a scan over the s and p param-
eters to find their optimal values. Fig. 3(a) demonstrates the in-
terpolation error with respect to s and p for the case in Fig. 2.
The interpolation error is defined as

- _ [T(en) = (o)l
FE =max{F,}, B max,{|T(¢)|}

where n = 1,...,2(L + 1)? and ¢,, represents the sampling
points. The interpolation error decreases when p or s is in-
creased. In this case dy = 3, which means that MLFMA com-
putes the interactions with three digits of accuracy. Thus, (p, s)
pairs leading to larger than 10~2 error are not allowable. In other
words, the error introduced by the interpolation of the transla-
tion operator should be adjusted according to the desired level
of accuracy.

This strategy yields a set of (p, s) pairs satisfying the error
criterion. Optimization is completed by choosing the (p, s) pair
with the minimum processing time. As shown in Fig. 3(b), pro-
cessing time (measured on a 1.8-GHz 64-bit Opteron-244 pro-
cessor) to evaluate the translation operator increases as p or s is

®)
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TABLE |
SPEEDUP OBTAINED BY USING THE OPTIMAL (p, s) PAIR FOR a > 4\

| do | s) [a=4r a=8x a=16A a=32" a=64\

2 | 235 14.0 27.5 54.3 108.3 216.0
3 | (2,65 10.8 20.2 40.0 77.0 151.9
4 | (3,6.0) 79 15.0 28.9 56.9 113.7
5 | (3.8.5) 7.1 13.0 247 48.4 96.6

increased. Then, there exists an optimal (p, s) pair satisfying the
desired level of accuracy with the minimum processing time. We
scan the parameters p and s for various values of ¢ and dg. All
possible values of D according to the one-box-buffer scheme [6]
are also checked. In the end, we obtain the optimal values listed
in Table I with the corresponding speedup compared to the di-
rect calculation. We note that the values presented in Table | do
not depend on the computer platform. The optimal (p, s) pairs
are valid for ¢« > 4 and they are found to be independent of
D. For smaller clusters, such as a = X or 2, the interpolation
does not lead to a significant speedup, and therefore, we prefer to
calculate these translations directly. In the case of much smaller
clusters, such as a = 0.25X or 0.5, direct calculation is faster
than the interpolation for any (p, s) pair satisfying the desired
accuracy.

Fig. 4(a) and (b) compares the optimal (p, s) pairs to the fixed
p = 3,5 = 5.0 values suggested in [4]. In Fig. 4(a), the interpo-
lation error is plotted with respect to the box size a from 4 to
64X and for different levels of accuracy, i.e., for dy = 2, 3, 4, and
5 corresponding to 1072,10~3,10~%, and 10~ relative errors,
respectively. In the optimized case, the error is always below
the desired level of accuracy. However, with fixed parameters,
the error is not controllable and is localized around 10=*. The
corresponding speedup is plotted in Fig. 4(b), where it increases
with increasing box size and decreases with increasing number
of accurate digits in the optimized case. This relationship is also
evident in Table I. Comparing Fig. 4(a) and Fig. 4(b), the fol-
lowing observations can be made.

1) Fordy = 2 and 3, fixed p = 3, s = 5.0 satisfies the desired
level of accuracy but the optimal (p, s) pairs provide higher
speedup.

2) For dy = 4 and 5, the fixed p = 3, s = 5.0 seems to give
higher speedup compared to the optimal (p, s) pairs, how-
ever, the accuracy is not satisfied with the fixed parameters.

Based on these observations, we conclude that optimization is
essential to improve the interpolation of the translation operator.

IV. RESULTS

To demonstrate the overall improvement obtained with in-
terpolation, we present the results of a scattering problem in-
volving a conducting sphere of radius 20. This is a 1,462,854-
unknown problem solved by a parallel MLFMA implementa-
tion with seven levels. The problem is solved on a cluster of 32
2.6-GHz Pentium-4 Celeron processors. The box size is 0.25A
for the lowest level and 16 A for the highest level. As an example,
if the number of accurate digits dy is set to 3, then L takes values
from 8 to 195. We use the one-box-buffer scheme and reduce the
number of translations by exploiting the symmetry [7]. During
the setup phase of the program, each processor checks all of its
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cluster—cluster interactions to eliminate the unneeded transla-
tions.

In Fig. 5(a), processing time for the calculation of the trans-
lation operators is plotted with respect to dqy. For both types of
calculations (direct and interpolated), the maximum is chosen
among the processing times spent by 32 processors. In Fig. 5(b),
the speedup obtained by the interpolation method over direct
calculation is plotted as a function of dy. The speedup is over
14 uptody = 5.

V. CONCLUSION

In this paper, we revisited the Lagrange interpolation of the
translation operator in 3-D MLFMA. We optimized the number
of interpolation points p and the oversampling factor s. In this
way, the error becomes controllable and the processing time re-
quired to satisfy the desired level of accuracy is minimized.
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Fast and accurate solutions of extremely
large integral-equation problems
discretised with tens of millions of
unknowns

L. Giirel and O. Ergiil

The solution of extremely large scattering problems that are
formulated by integral equations and discretised with tens of millions
of unknowns is reported. Accurate and efficient solutions are
performed by employing a parallel implementation of the multilevel
fast multipole algorithm. The effectiveness of the implementation is
demonstrated on a sphere problem containing more than 33 million
unknowns, which is the largest integral-equation problem ever solved
to our knowledge.

Introduction: For numerical solutions of scattering problems in
electromagnetics, integral-equation formulations provide accurate
results when they are discretised appropriately by using small
elements with respect to wavelength [1]. Simultaneous discretisations
of the scatterer and the integral equations lead to dense matrix
equations, which can be solved iteratively using efficient acceleration
methods, such as the multilevel fast multipole algorithm (MLFMA)
[2]. However, accurate solutions of many real-life problems require
discretisations with millions of elements, which result in matrix
equations with millions of unknowns. For the solutions of these
large-scale problems, MLFMA must be parallelised, but this is not
trivial owing to the complicated structure of the algorithm [3-5]. In
this Letter, we report an implementation of the parallel MLFMA that
is able to solve problems discretised with tens of millions of
unknowns. Specifically, we present the results of a scattering problem
involving a sphere of radius 96/, where an accurate solution requires a
discretisation with more than 33 million unknowns. To the best of our
knowledge, this is the solution of the largest integral-equation
problem reported up to now.

Parallel implementation of MLFMA: MLFMA performs the matrix-
vector multiplications related to an N x N dense matrix equation in
O(NL) time using (O(NL) memory, where L = O(logN) is the number of
levels of the tree structure, which is constructed by recursively
dividing the computational domain into sub-domains (clusters).
MLFMA calculates the far-field interactions between the radiating
(basis) and receiving (testing) elements in a group-by-group manner
consisting of three stages: aggregation, translation and disaggrega-
tion. For each matrix-vector multiplication required by the iterative
solver, these stages are performed on the tree structure in a multilevel
manner. There are also O(N) near-field interactions that are calculated
directly and stored in the memory to be used multiple times.

In the aggregation step, radiation patterns of the clusters are
computed from the bottom of the tree structure to the top. Before the
iterations, radiation patterns of the basis functions are calculated and
stored in the memory. Owing to the nature of the Helmholtz equation,
sampling rates of the radiation patterns depend on the sizes of the
clusters. Using the excess-bandwidth formula and considering the
worst-case scenario [6], we determine the number of samples for
each level according to the desired accuracy. The samples are chosen
uniformly in the ¢ direction while they are selected as the Gauss-
Legendre points in the 6 direction. During the aggregation process,
sampling rates of the consecutive levels are matched by employing a
local Lagrange interpolation algorithm with enhanced accuracy [7].

For the parallelisation of the aggregation process, we choose a level
of distribution (LoD) to divide the clusters among the processors. Using
a load-balancing algorithm, the levels below the LoD are distributed
among the processors by assigning each cluster and its parent cluster to
the same processor. In this way, aggregation operations can be
performed independently in each processor from the bottom of the
tree structure up to the LoD without any communication [8]. In the
higher levels above the LoD, however, radiation patterns are distributed
among the processors, instead of the clusters [5]. This is required in
order to improve the load balancing since the higher levels include
fewer clusters with densely-sampled fields. Then, an all-to-all
communication is required at the LoD to switch between the two
strategies applied in the lower and higher levels of the tree structure.
We also note that one-to-one communications are required in the higher
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levels, where the fields are distributed among the processors and the
interpolations in a processor require samples that are stored in other
processors [5].

In the translation stage of MLFMA, radiated fields of the clusters are
converted into incoming fields for other clusters. Translations are
performed between pairs of clusters when the clusters are far from each
other while their parent clusters are electromagnetically close to each
other. Using a one-box-buffer scheme, there are O(1) translation opera-
tions for each cluster in any level. Translation functions to perform these
operations are calculated and stored in memory before the iterations.
Using regularly-spaced cubic clusters, we significantly reduce the
number of different translation functions required for each level [9]. In
addition, calculation of the translation operators is accelerated by using
local interpolation techniques that are optimised according to the desired
level of accuracy [10]. Each translation operator is an infinite summation
that must be truncated [2], where the truncation number is also
determined by the excess-bandwidth formula [6].

In the lower levels below the LoD, some of the translations can be
performed in each processor without any communication, while the rest
are related to the clusters that are assigned to different processors so that
communications to complete these translations are inevitable. We
carefully organise the required data transfers by matching the
processors appropriately using a communication map. For the upper
levels above the LoD, all translations can be performed without any
communication; this is another advantage of distributing fields instead
of clusters [5]. After the translations, the disaggregation stage is
performed as the inverse of the aggregation process. Incoming fields
are calculated for each cluster from the top of the tree structure to
the lowest level. The incoming field to a cluster is a combination of the
incoming field to its parent cluster and the incoming fields due to
the translations. We use transpose interpolation to accurately match the
different sampling rates of the successive levels [7]. At the end of
the disaggregation, a numerical integration is performed for each testing
function in the lowest level to complete the matrix-vector
multiplications related to the far-field interactions. Finally, matrix-
vector multiplications related to near-field interactions are performed
directly. For high efficiency, it is crucial to distribute the near-field
interactions among the processors according to a load-balancing
strategy, which usually leads to different partitioning schemes for the
near-field and far-field interactions [8].

Table 1: MLFMA solution of a sphere problem with 33 791 232

unknowns
Geometry size (diameter) 1924
Number of processors 16
Number of levels 9
Smallest cluster size 0.194
Total number of clusters 5904 951
Number of clusters in lowest level 4 344 205
Number of near-field interactions 3732101 432
Truncation numbers (2 digits of accuracy) 6 to 546
Number of iterations (BiCGStab and 10~ residual error) 21
Setup time (minutes) 177
Solution time (minutes) 265
Time for matrix-vector multiplication (s) 370
Memory for translation functions (GB) 2
Memory for radiation/receiving patterns (GB) 56
Memory for nearfield interactions (GB) 28
Memory for aggregation/disaggregation arrays (GB) 79

Results: To demonstrate the efficiency and accuracy of our imple-
mentation, we present the results of a sphere problem with radius 964.
The discretisation of the problem with a mesh size of /10 leads to
33791 232 unknowns when Rao-Wilton-Glisson [11] functions are
employed as the basis and testing functions on triangular domains.
The scattering problem is formulated with the combined-field integral
equation [1] and iteratively solved by a biconjugate-gradient-
stabilised (BiCGStab) algorithm. The solution is performed on a
cluster of quad-core Intel Xeon 5355 processors connected via an
Infiniband network and the results are summarised in Table 1, where
we list the clustering information, processing times and memory
usage. Using a block-diagonal preconditioner, only 21 iterations are
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required to reduce the residual error below 107>, Parallelising the
solution into 16 processes, the iterative solution is completed in
265 min. Finally, the bistatic radar cross-section (RCS) values are
shown in Fig. 1, where the computed values sampled at 0.1° are in
agreement with the analytical curve obtained by a Mie-series solution.
In the Figure, 180° corresponds to the forward-scattering direction
and the root-mean-square error [3] of the RCS is only 0.915 dB in the
170-180° range.
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bistatic angle

Fig. 1 Bistatic RCS of sphere of radius 96/

Computational values obtained by solution of 33 791 232-unknown problem are
in agreement with analytical curve obtained by Mie-series solution

Conclusions: We have presented the integral-equation solution of a
scattering problem involving a sphere of radius 96/ discretised with
33 791 232 unknowns, which corresponds to the solution of a dense
matrix equation with more than 10'® nonzero elements. This is the
largest integral-equation problem reported to date. By employing an
efficient implementation of the parallel MLFMA, it becomes possible
to solve such large-scale problems on relatively inexpensive computa-
tional platforms.
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Hierarchical parallelisation strategy for
multilevel fast multipole algorithm in
computational electromagnetics

O. Ergiil and L. Giirel

A hierarchical parallelisation of the multilevel fast multipole algorithm
(MLFMA) for the efficient solution of large-scale problems in compu-
tational electromagnetics is presented. The tree structure of MLFMA is
distributed among the processors by partitioning both the clusters and
the samples of the fields appropriately for each level. The parallelisa-
tion efficiency is significantly improved compared to previous
approaches, where only the clusters or only the fields are partitioned
in a level.

Introduction: Surface integral equations are commonly used to formu-
late electromagnetic scattering and radiation problems involving compli-
cated three-dimensional objects with arbitrary shapes [l]. By
discretising the integral-equation formulations, we obtain dense matrix
equations. They can be solved iteratively by accelerating the matrix-
vector multiplications using the multilevel fast multipole algorithm
(MLFMA) [2]. Using MLFMA, matrix-vector multiplications related
to an N x N dense matrix equation can be performed in O(Nlog N)
time using O(Nlog N) memory. However, accurate solutions of many
real-life problems require discretisations with millions of unknowns,
which cannot be solved easily by the sequential implementations of
MLFMA running on a single processor. To solve such large problems,
it is helpful to increase computational resources by assembling parallel
computing platforms and at the same time by parallelising MLFMA.
In this way, it has become possible to solve problems with 20—30
million unknowns on relatively inexpensive computing platforms [3—8].
On the other hand, parallelisation of MLFMA is not trivial owing to
the complicated structure of this algorithm. Simple parallelisation strat-
egies usually fail to provide efficient solutions because of the communi-
cation among the processors and the unavoidable duplication of some of
the computations over multiple processors [9]. In this Letter, we present
a hierarchical strategy for the efficient parallelisation of MLFMA. We
compare our strategy with previous parallelisation schemes to demon-
strate the improved efficiency, especially when the number of processors
is large.

Tree structure of MLFMA: Elements of an N x N matrix obtained by
the discretisation of a surface integral equation correspond to the inter-
actions of the basis and testing functions defined on the surface of the
object. MLFMA performs the matrix-vector multiplications efficiently
by calculating these interactions in a group-by-group manner involving
three main stages, i.e. aggregation, translation and disaggregation [2].
These stages are performed in a multilevel scheme using a tree structure
constructed by including the scatterer in a cubic box and recursively
dividing the computational domain into subboxes. During the aggrega-
tion stage, radiated fields at the centres of the clusters (nonempty boxes)
are calculated proceeding from the bottom of the tree structure to the
highest level. Then, the translation stage is performed by translating
the radiated fields at the centres of the clusters to the incoming fields
at the centres of other clusters in the same level. Finally, the total incom-
ing fields at the centres of the clusters are calculated from the top of the
tree structure to the lowest level during the disaggregation stage.

In the lowest level of the multilevel tree, there are O(NV) clusters. The
number of clusters decreases from each level to the next upper level and
it becomes O(1) in the highest level involving translations. The number
of samples for the radiated and incoming fields depends on cluster size
as measured by the wavelength. Therefore, fields of the clusters in the
lower levels are sampled coarsely, while the fields of the clusters in
the higher levels require finer sampling. Considering the number of clus-
ters and the samples of the fields, all levels of MLFMA have O(N) com-
plexity in terms of processing time and memory. As a consequence, an
efficient parallelisation of MLFMA should attempt to obtain the best
partitioning for each level by minimising the communications and dupli-
cations among the processors.

Partitioning of multilevel tree: For the parallelisation of MLFMA, the
main task is to distribute the tree structure among the processors. A
simple partitioning of a three-level tree is shown in Fig. 1a, where the
levels are represented by two-dimensional rectangular boxes including

various numbers of clusters (horizontal dimension) and samples of the
fields (vertical dimension). Each level is partitioned among eight pro-
cessors. In the simple partitioning scheme, clusters in all levels are dis-
tributed among the processors and each cluster at any level is assigned to
a single processor. This strategy works efficiently for lower levels invol-
ving many clusters. For higher levels, however, it is difficult to distribute
small numbers of clusters among the processors without duplication [9].
In addition, dense communications among the processors during the
translations become significant for higher levels since large amounts
of data are transferred, which reduces the efficiency of the parallelisation
significantly [6, 9].

W
h=}
2
[]
—_—>
clusters
a b
level 3
T level 2
[ ievel 1 ]
c d

Fig. 1 Various strategies for partitioning of tree structure of MLFMA

a Simple partitioning, where clusters are distributed in all levels
b, ¢ Hybrid partitioning with shared and distributed levels
d Hierarchical partitioning

To improve the parallelisation efficiency, a hybrid partitioning
approach is introduced in [6], where different strategies are applied for
lower and higher levels of the tree structure. As shown in Figs. 15 and
lc, the simple partitioning scheme is preserved in lower (distributed)
levels so that the clusters in these levels are still distributed among the
processors. In higher (shared) levels, however, processor assignments
are made on the basis of the fields of the clusters, not on the basis of
the clusters themselves. In other words, each cluster is shared by all pro-
cessors and each processor is assigned to the same portion of the fields
of all clusters. In this way, higher levels are distributed efficiently among
the processors, since the fields in those levels have high sampling rates.
In addition, the translations in the shared levels can be performed effi-
ciently without any communication among the processors.

The hybrid partitioning strategy increases the parallelisation efficiency
significantly compared to the simple partitioning approach. Nevertheless,
there are some levels at the middle of the tree structure (such as level 2 in
Fig. 1) where distributing neither the fields nor the clusters among the pro-
cessors is efficient. For such levels, even though distributing the fields
eliminates the communication during the translations, dense
communication is required elsewhere, i.e. for the interpolation and
anterpolation operations during the aggregation and disaggregation
stages, respectively [6]. Although such one-to-one data transfers are not
problematic for higher levels (such as level 3 in Fig. 1), they become
important for lower levels, where the number of processors is comparable
to the number of samples. Therefore, even if the numbers of the shared
and distributed levels are optimised, sufficient parallelisation efficiency
may not be achieved.

In this Letter, we introduce a hierarchical partitioning scheme to
further improve the parallelisation efficiency compared to the hybrid
approach. This strategy is illustrated in Fig. 1d, where the partitioning
is performed in both directions (clusters and samples of the fields) for
all levels; we adjust the partitioning appropriately by considering the
numbers of clusters and the samples of the fields at each level. In the
lowest level, the clusters are distributed among the processors without
any partitioning for the fields. Then, in the next level (level 2), the
samples of the fields are divided between pairs of processors, while
we reduce the number of partitions for the clusters by a factor of two.
As we proceed to higher levels, the numbers of partitions for the clusters
and the fields are systematically decreased and increased, respectively. In
this way, the computations for all levels are distributed among the pro-
cessors with improved load-balancing compared to partitioning with
respect to only clusters or only samples of the fields.
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With the strategy of partitioning in both dimensions, three different
types of communications are required for each level (except for the
lowest level) in the hierarchical parallelisation scheme. Consider level
2 in Fig. 1d; some of the processors need to communicate during the
translations because of the partitioning of the clusters. Similarly, one-
to-one communications are required during the aggregation and disag-
gregation stages owing to the partitioning of the fields. In addition to
these, we also need data exchanges among the processors to modify
the number of partitions between any two consecutive levels.
Although the hierarchical partitioning increases the types of communi-
cation compared to the simple and the hybrid approaches, the amount
of data transferred is not increased and the number of communication
events is reduced. Hence, larger data packages are transferred at fewer
times. This improves both communications and the load-balancing
significantly.

Results: To demonstrate the improved efficiency of the hierarchical par-
allelisation, we present the solution of a scattering problem involving a
conducting sphere of radius 20 A discretised with 1 462 854 unknowns.
The sphere is illuminated by a plane wave and seven-level MLFMA is
used to solve the problem on a cluster of quad-core Intel Xeon 5355 pro-
cessors connected via an Infiniband network. Fig. 2 shows the efficiency
when the solution is parallelised into 2, 4, 8, 16, 32, 64 and 128
processors.

efficiency, %

2041=== simple
—+— hybrid
i -~ hierarchical
2 4 8 16 32 64 128

number of processors

Fig. 2 Parallelisation efficiency for solution of scattering problem involving
sphere of radius 20 A discretised with 1 462 854 unknowns

The parallelisation efficiency is defined as

_2n

= 1
pTy M

&p
where T, is the processing time of the solution with p processors. Fig. 2
shows that the hierarchical parallelisation improves the efficiency signifi-
cantly compared to both simple and hybrid parallelisation approaches.
All parallelisation schemes are optimised via load-balancing algorithms.
Although the hybrid parallelisation, which includes three shared levels,
performs better than the simple parallelisation scheme, its efficiency
drops below 30% for 128 processors. In this case, the hierarchical

parallelisation provides 60% efficiency, which corresponds to 38-fold
speed-up compared to the two-processor solution. Using 128 processors
and the hierarchical parallelisation scheme, the total processing time,
including the setup and the iterative solution with 27 BiCGStab iter-
ations, is only 300 s for this 1.5-million-unknown problem.

Conclusions: Using a hierarchical strategy, the parallelisation efficiency
of MLFMA can be improved significantly. Compared to previous
approaches based on partitioning in one direction (only clusters or
only samples of the fields), hierarchical parallelisation provides higher
efficiency, especially when the number of processors is large.
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Efficient Parallelization of the Multilevel Fast
Multipole Algorithm for the Solution of Large-Scale
Scattering Problems

Ozgur Ergil, Student Member, IEEE, and Levent Giirel, Senior Member, IEEE

Abstract—We present fast and accurate solutions of large-scale
scattering problems involving three-dimensional closed conductors
with arbitrary shapes using the multilevel fast multipole algo-
rithm (MLFMA). With an efficient parallelization of MLFMA,
scattering problems that are discretized with tens of millions
of unknowns are easily solved on a cluster of computers. We
extensively investigate the parallelization of MLFMA, identify
the bottlenecks, and provide remedial procedures to improve the
efficiency of the implementations. The accuracy of the solutions
is demonstrated on a scattering problem involving a sphere of
radius 110X discretized with 41 883 638 unknowns, the largest
integral-equation problem solved to date. In addition to canon-
ical problems, we also present the solution of real-life problems
involving complicated targets with large dimensions.

Index Terms—Electromagnetic scattering, fast solvers, integral
equations, multilevel fast multipole algorithm (MLFMA), parallel
algorithms.

I. INTRODUCTION

URFACE integral equations are commonly used to formu-
late scattering problems involving three-dimensional con-
ducting bodies with arbitrary shapes [1]. These formulations pro-
vide accurate results when they are discretized appropriately by
using small elements with respect to wavelength. Simultaneous
discretizations of the scatterer and the integral equations lead to
dense matrix equations, which can be solved iteratively using ef-
ficient acceleration methods, such as the multilevel fast multi-
pole algorithm (MLFMA) [2]. However, accurate solutions of
many real-life problems require discretizations with millions of
elements leading to matrix equations with millions of unknowns.
To solve these large problems, it is helpful to increase computa-
tional resources by assembling parallel computing platforms and
at the same time by parallelizing the solvers.
Of the various parallelization schemes for MLFMA, the most
popular use distributed-memory architectures by constructing
clusters of computers with local memories connected via fast
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networks [3]-[11]. Parallelization tools are available, such as
the message passing interface (MPI). Such tools provide many
communication protocols to organize parallel solutions. How-
ever, parallelization of MLFMA is not trivial because of the
complicated structure of this algorithm [11]. Simple paralleliza-
tion strategies usually fail to provide efficient solutions because
of the communications between the processors and the unavoid-
able duplication of some of the computations over multiple pro-
cessors. Consequently, there have been many efforts to improve
the parallelization of MLFMA by minimizing duplications and
communications [7]-[12]. Thanks to these efforts, it has become
possible to solve 20-30 million unknowns on relatively inexpen-
sive computing platforms [8], [9], [13].

In this paper, we present the details of a parallel MLFMA
implementation for the efficient solution of scattering problems
involving tens of millions of unknowns. We extensively investi-
gate the parallelization procedure by focusing on different parts
of the algorithm and identifying the obstacles to paralleliza-
tion efficiency. Our approach involves load-balancing and parti-
tioning techniques to distribute the tasks equally among the pro-
cessors and to minimize the interprocessor communications. We
demonstrate the accuracy and efficiency of our implementations
on canonical problems involving sphere geometries of various
sizes. Specifically, we are able to solve problems with more than
40 million unknowns on relatively inexpensive platforms. In ad-
dition to canonical problems, we also solve real-life problems
involving complicated geometries discretized with large num-
bers of unknowns.

The scattering problems considered in this paper involve
closed surfaces, which can be formulated with the com-
bined-field integral equation (CFIE) [1]. CFIE provides
better-conditioned matrix equations than the electric-field
integral equation (EFIE) and the magnetic-field integral equa-
tion (MFIE) [14]-[16]. Using CFIE, iterative convergence is
achieved rapidly and it can be further accelerated by employing
simple and efficient preconditioners.

The rest of the paper is organized as follows. In Section II,
we examine the MLFMA solutions, focusing on the computa-
tional requirements. Section I11 explores efficient parallelization
of MLFMA by investigating each part of the algorithm in detail.
Section 1V presents the results, followed by our concluding re-
marks in Section V.

Il. SOLUTION OF INTEGRAL EQUATIONS BY MLFMA

For the solution of scattering problems involving three-di-
mensional conducting bodies with arbitrary shapes, discretiza-
tion of the surface integral equations leads to N x N dense

0018-926X/$25.00 © 2008 IEEE
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matrix equations

ZZEMC’ =EMC =12, N 1)

where a,, represents the unknown coefficients of the basis func-
tions b, (r) for n = 1,2,..., N to model the surface current

density, i.e.,
N
Iy~ S anba(r), @
n=1
Expressions for the matrix elements (ZZ | Zﬁn, and Z< ) and
the elements of the right-hand side vector (vZ, v}, and v%)

for EFIE, MFIE, and CFIE, respectively, are presented in [17].
For the solution of problems involving closed surfaces, CFIE is
preferable since it is free of the internal-resonance problem [18]
and provides better-conditioned matrix equations than EFIE and
MFIE [14]-[16]. This favorable quality of CFIE is crucial for
the rapid convergence of iterative solutions. In this paper, CFIE
is discretized by employing Rao-Wilton-Glisson (RWG) [19]
functions defined on planar triangles for numerical solutions.

A. Solutions With MLFMA

MLFMA splits the matrix-vector multiplications (MVMs) re-
quired by the iterative solvers as

Z-.’K:ZNF-.T—FZFF-.T. (3)

In (3), the near-field interactions denoted by Zyr are calcu-
lated directly and stored in memory, while the far-field interac-
tions (Z rr-) are computed approximately in a group-by-group
manner. For a single-level fast multipole algorithm, we calculate
the far-field interactions as presented in [20]. In MLFMA, those
interactions are calculated in a multilevel scheme using a tree
structure constructed by including the scatterer in a cubic box
and recursively dividing the computational domain into sub-
boxes. The tree structure of MLFMA includes L = O(log N)
levels. At level [ from 1 to L, the number of nonempty boxes
(clusters)! is N;, where Ny = O(N) and N, = O(1). Each
MVM involves four main stages.

* Near-field interactions: In MLFMA, near-field interactions

are used directly to perform the multiplication

y= ZNF ‘. (4)

The number of near-field interactions is proportional to
N?/N; and the near-field matrix Z y has a sparsity of
1/Ny.

» Aggregation: Radiated fields at the centers of the clusters
are calculated from the bottom of the tree structure to the
highest level.

Linthis paper, the term “cluster” is used in two different contexts. Its meanings
in “clusters of computers” and to indicate the nonempty boxes in the MLFMA
tree should be distinguishable from the context.
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Fig. 1. Tree size and the number of near-field interactions for the solutions of
the sphere problems using top-down strategy to construct the multilevel tree.

» Translation: Radiated fields are translated into incoming
fields. For a basis cluster at any level, there are O(1) testing
clusters to translate the radiated field.

« Disaggregation: The incoming fields at the centers of the
clusters are calculated from the top of the tree structure to
the lowest level. At the lowest level, the incoming fields
are multiplied by the receiving patterns of the testing func-
tions and angular integrations are performed to complete
the MVM.

In our MLFMA implementations, radiated and incoming
fields are sampled uniformly in the ¢ direction, while we use
the Gauss-Legendre quadrature in the @ direction [21]. There
are a total of (1; + 1) x (217 + 2) samples required for a
cluster in level {, where T; is the truncation number, i.e., the
number of harmonics used to calculate the translation opera-
tors. To determine the value of 7; for each level, we use the
excess bandwidth formula considering the worst-case scenario
according to a one-box-buffer scheme [22], i.e.,

T ~ 1.73ka; + 2'16(d0)2/3(kal)1/3 (5)

where a; is the box size at level [ and d is the desired digits of
accuracy. Oscillatory nature of the Helmholtz solutions requires
that the truncation number 7; and the sampling rate for the radi-
ated and incoming fields depend on cluster size as measured by
the wavelength (A = 2x/k). During the aggregation and disag-
gregation stages, we employ local Lagrange interpolation and
anterpolation methods to match the different sampling rates of
the consecutive levels [23], [24].

B. Computational Requirements of MLFMA

When MLFMA is used, memory requirement for a MVM
(Mprvar) is proportional to the tree size S, i.e.,

L

Mpyrvar < St = Z IN|(Ty + 1)2 (6)
1=1
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TABLE |
MAJOR PARTS OF MLFMA AND THEIR COMPUTATIONAL REQUIREMENTS
MEMORY
PART PROPORTIONAL TO | COMPLEXITY | SIGNIFICANCE
MVM S N(T 4 1)? O(Nlog N) Significant
Radiation and Receiving Patterns N(Ty +1)? O(N) Significant
Translation Operators > zL:1 (Ty + 1)2 O(N) Insignificant
Near-Field Interactions NZ/N, O(N) Significant
PROCESSING TIME
PART PROPORTIONAL TO | COMPLEXITY | SIGNIFICANCE
MVM S aN (T +1)2 O(Nlog N) Significant
Radiation and Receiving Patterns N(Ty +1)? O(N) Insignificant
Translation Operators Zszl (Ty +1)2 O(N) Insignificant
Near-Field Interactions NZ/Ny O(N) Significant
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The processing time (Tsv-27) is also related to the tree size as

L
Tyva « Y aN(Ti + 1) ()
=1
where ¢; represents relative weights for levels [ = 1,2,..., L.

Asymptotically, as NV increases, N;(7;+1)2 becomes O(N) and
the complexity of the MVM is O(N log ). Although this is
true in general, measurements may present deviations from the
ideal case depending on the construction technique for the tree
structure, even when N is very large. For example, we usually
employ a top-down strategy to build the multilevel tree for large
problems. In this strategy, the smallest possible cubic box is
used to enclose the target completely. Then, the computational
domain is recursively divided into subdomains until the size of
the clusters in the lowest level is in the 0.151-0.30 range. In
Fig. 1, tree size (S) is plotted as a function of the number of un-
knowns for the solution of scattering problems involving sphere
geometries of various sizes, when the top-down strategy is used
to construct the multilevel tree and the number of accurate digits
dg is 2. The radius of the sphere changes from A to 110X cor-
responding to 3723 and 41 883 648 unknowns (edges), respec-
tively, using A/10 triangulation. We observe that the tree size
oscillates around the O(N log N') curve. Due to such local vari-
ations, processing time and memory requirement for the MVMs
with respect to V cannot be strictly proportional to NV log V. As
an example, the tree size grows only by 50% when the number
of unknowns increases from 23 405 664 to 41 883 648. Then,
the memory requirement for the MV Ms increases by about 50%,
which is below the asymptotical estimation of 85%.

The radiation and receiving patterns of the basis and testing
functions are sampled according to the sampling rate of the
lowest level clusters. Using the RWG functions, these patterns
are calculated analytically and stored in memory before the iter-
ative solutions. Applying a Galerkin scheme and using the same
sets of basis and testing functions, CFIE implementations re-
quire only two sets of patterns for each RWG function [25]. We
also reduce the number of samples to (77 /2 + 1) x (2T + 2)
using the symmetry of the patterns. Although the processing

time to calculate the radiation and receiving patterns is negli-
gible, significant amount of memory is required to store them.

Similar to the radiation and receiving patterns, translation op-
erators are also calculated and stored in memory before the iter-
ations. Using cubic (identical) clusters, there is a maximum of
73 — 3% = 316 different translations in each level, independent
of the number of clusters [7]. Although using cubic clusters re-
duces the number of translation operators significantly, we also
need interpolation methods to calculate these operators in O(N)
time [26], [27]. With the optimization of the interpolations, both
calculation time and memory for the translation operators are
insignificant compared to the other parts of the implementation,
especially when the problem size is large.

Processing time for the initial setup of MLFMA (prior to the
iterative solution) is dominated by calculating near-field inter-
actions and it is proportional to N'2/Ny. The amount of memory
to store the near-field interactions is also significant and com-
parable to the memory used for the radiation and receiving pat-
terns. Asymptotically, Ny = O(N) and the near-field interac-
tions has a complexity of O( V). However, similar to the MVMs,
local variations in the processing time and memory requirement
for the near-field interactions may exhibit behavior different
than the asymptotical estimation. This is because, as depicted
in Fig. 1, the number of near-field interactions oscillates around
the O(N') curve when a top-down strategy is used to construct
the tree structure. Consequently, variation in processing time
and memory with respect to V can be higher or lower than the
asymptotically linear estimate.

As a summary, Table I lists the major parts of MLFMA and
their computation requirements for the solution of large prob-
lems.

I1l. EFFICIENT PARALLELIZATION OF MLFMA

Because of its complicated structure, parallelization of
MLFMA is not trivial. Simple parallelization schemes usually
lead to inefficient solutions due to dense communications
between the processors, duplication of computations, and
unbalanced distribution of the workload among processors.
Several issues must be carefully considered to obtain an effi-
cient parallelization of MLFMA [7]-[12].
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Fig. 2. Communications performed in each MVM to match the near-field and
far-field partitioning schemes.

« Partitioning: For high efficiency, it is essential to distribute
the tree structure among the processors with minimal du-
plication. This is achieved by using different partitioning
strategies for the lower and higher levels of the tree struc-
ture [11]. In the lower levels (distributed levels), there are
many clusters with small numbers of samples for the ra-
diated and incoming fields. Therefore, it is appropriate to
distribute the clusters in these levels by assigning each of
them to a single processor. In higher levels (shared levels),
however, it is easier to distribute the fields among the pro-
cessors by assigning each cluster to all processors, since
there are a few clusters in these levels with large numbers
of samples. Calculation of the far-field interactions are or-
ganized according to the partitioning of the tree structure
(far-field partitioning).

« Load-balancing: Parallelization cannot be achieved effi-
ciently without distributing the tasks equally among the
processors. We apply load-balancing for both the dis-
tributed and shared levels to improve the parallelization
of the far-field interactions. For high efficiency, it is also
essential to distribute the near-field interactions using a
load-balancing algorithm [12].

e Communications: In parallel MLFMA, processors need to
communicate with each other to transfer data. Using ap-
propriate partitioning schemes and load-balancing algo-
rithms significantly reduces the data traffic. However, the
remaining communications must be organized carefully.
For high efficiency, it is also essential to use high-speed
networks to connect the processors.

In the following subsections, we provide the details of the effi-
cient parallelization of MLFMA.

A. Setup Part

The setup part consists of preparing the near-field interac-
tions, radiation and receiving patterns, translation operators, and
preconditioners for the iterative solutions.

1) Near-Field Interactions: Near-field interactions should
be distributed among the processors using a load-balancing
algorithm. Considering the sparse near-field matrix, the rows
m = 1,2,..., N are assigned to the processors in such a
way that all processors have approximately equal numbers of
near-field interactions (near-field partitioning). Distributing the
rows equally among the processors usually fails to provide good
load-balancing, even for the solution of problems involving
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Fig. 3. All-to-all communications performed at LoD to change the far-field
partitioning scheme from the distributed levels to the shared levels.

symmetrical geometries, such as a sphere. After distribution,
the near-field interactions are calculated in each processor
without any communication.

2) Radiation and Receiving Patterns: According to the far-
field partitioning of the tree structure, the lowest-level clusters
are distributed among the processors. Then, each processor cal-
culates and stores the radiation and receiving patterns of the
basis and testing functions included in its local tree.

3) Translation Operators: Inthe setup of MLFMA, each pro-
cessor is tasked with calculating a set of translation operators
that will be required during the MVVMs. For a translation at a
distributed level, where each cluster is assigned to a single pro-
cessor, the operator is calculated by the processor working on
the testing cluster. Due to symmetry, a translation operator can
be used for many interactions in a level. Therefore, in the dis-
tributed levels, some of the translation operators are duplicated
and included in more than one processor; this is allowable be-
cause of the negligible cost of the operators at the low levels.
There is no duplication in the shared levels, where the fields
are distributed and the translation operators are also partitioned
among the processors.

4) Preconditioner: With CFIE, iterative solvers can be easily
accelerated by employing simple and efficient preconditioners
[15]. We use the block-diagonal preconditioner (BDP) [2] based
on the self interactions of the lowest level clusters. The con-
struction of BDP requires negligible time and memory, and its
efficient parallelization is relatively easy to achieve.

B. Solution Part

For the iterative solutions, we employ Krylov subspace al-
gorithms that are parallelized efficiently [28]. These algorithms
require MVMs and the solutions of a sparse equation involving
the preconditioner matrix M, i.e.,

Z-z=y (8)
M.-y==x 9)
where  and y are the input and output vectors, respectively;

both are distributed according to the far-field partitioning. Be-
fore an MVVM or a preconditioner solution, the partitions of the
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input vector z are combined together using the “gather” opera-
tion of MPI. Each MVM involves the use of near-field interac-
tions, as well as the calculation of the far-field interactions via
the aggregation, translation, and disaggregation stages.

1) Near-Field Stage: To match the near-field and far-field
partitioning schemes during the MVMs, all-to-one and
one-to-all communications are required, as depicted in Fig. 2.
After the near-field computations are performed in negligible
time, the partitioning of the output vector is modified for the
iterative solver. The processing time for these communications
is also negligible.

2) Aggregation Stage: In the highest distributed level, which
we call the level of distribution (LoD), the clusters are dis-
tributed among the processors using a load-balancing algorithm
that considers the combined load of all descendants (children,
grandchildren, etc.) of each cluster at LoD. The combined load
for a cluster is the size of the subtree attached to the cluster; we
account for all descendants, each weighted by the number of
field samples. The load-balancing algorithm assigns the whole
branch of the tree starting at an LoD cluster to the same pro-
cessor. Then, in the distributed levels, each cluster and all its
subclusters are assigned to the same processor. In this way, the
aggregation stage up to LoD can be performed without any com-
munication. At LoD, the partitioning scheme is changed by em-
ploying an all-to-all communication, as shown in Fig. 3. For
each cluster, the samples of the radiated field stored in a pro-
cessor is distributed among all processors. In the shared levels
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TABLE Il
COMMUNICATIONS REQUIRED IN THE MATRIX-VECTOR MULTIPLICATIONS BY
PARALLEL MLFMA

PART COMMUNICATION
Near-Field Stage All-to-One and One-to-All
Distributed Aggregation/Disaggregation None
Aggregation/Disaggregation in LoD All-to-All
Shared Aggregation/Disaggregation One-to-One
Distributed Translation One-to-One
Shared Translation None

above LoD, (T; 4 1) x 2(T; + 1) samples on the 4 - ¢ space are
partitioned along the # direction.

From LoD to the highest level I, the aggregation stage in-
volves one-to-one communications that are required for the in-
terpolation of the fields. This is illustrated in Fig. 4, where an
interpolation is performed on the samples of cluster C. As an
example, only the interpolation in processor 2 is depicted al-
though similar operations are also performed in the other pro-
cessors. To compute the data at each sample in the fine grid, a set
of samples are used in the coarse grid. Even though a local in-
terpolation method is used, some of those coarse samples may
be located in other processors. Therefore, one-to-one commu-
nications are performed to provide the required data (inflation).
After the data is prepared, interpolation and shifting operations
are performed to include the contribution of the cluster C in the
radiated field of its parent cluster P.

We note that the communications in the shared levels are
mainly required between the processors located “close to each
other.” In other words, the processor with index n,, requires data
from its “neighbors,” i.e., n, — 1 and n,, 4 1. On the other hand,
depending on the partitioning and the number of interpolation
points, more data might be required from other processors next
to the neighbors. We apply a load-balancing algorithm to dis-
tribute the fields appropriately so that the amount of the data
transferred among all processors is minimized. However, as the
number of processes increases and the fields are distributed over
many processors, dense one-to-one communications cannot be
avoided; this may reduce the efficiency of the parallelization.

Finally, for each problem, we carefully choose the number of
distributed and shared levels by an optimization. For this pur-
pose, we assign LoD to a series of possible levels and monitor
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Fig. 7. Parallelization efficiency for the solution of a scattering problem in-
volving a sphere of radius 24X discretized with 2 111 952 unknowns.

the distribution of the clusters and the fields. For some of the
levels (higher levels), distribution of the fields is better than the
distribution of the clusters, i.e., samples of the fields can be par-
titioned evenly among the processors, but not the clusters. For
the others (lower levels), however, clusters can be partitioned
easily, while it is difficult to partition the fields among the pro-
cessors. Then, we choose LoD such that distributing the fields
(clusters) is more preferable for all levels above (below) LoD.
The choice of LoD depends on the tree structure (hence the ge-
ometry of the target) as well as the number of processors. How-
ever, our measurements show that, for a given problem, LoD is
insensitive to the latter parameter if only a small number (e.g.,
2 to 16) of processors are employed.

3) Translation Stage: The translation stage is one of the
most critical parts for the efficiency of the parallelization. This
is because dense one-to-one communications are required be-
tween the processors for the translations in the distributed levels.
In general, each processor sends some data (radiated fields) to
all other processors. We organize these communications using
a communication map, which consists of interaction layers to
match the processors. For p processors, it can be shown that the
communications can be achieved in p — 1 steps, as depicted in
Fig. 5 for a 6-process case. After the processors are paired, the
following operations are performed on the receiver and sender
sides.

« The sender and receiver determine the cluster-cluster inter-
actions involving the basis clusters on the sender side and
testing clusters on the receiver side.

« The radiated fields of the basis clusters are sent one by one.

* When the radiated field of a basis cluster is received by the
receiver, all of the translations involving this basis cluster
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of radius 24\ discretized with 2 111 952 unknowns.

and the testing clusters owned by the receiver are per-

formed. This ensures that the same data is not transferred

more than once.
To improve the efficiency of the translations, we use non-
blocking send and receive operations of MPI to transfer the
data. In the shared levels, all the translations are performed
without any communication since the fields are distributed
among the processors and a processor is assigned to the same
portion of the radiated or incoming fields for all clusters.

4) Disaggregation Stage: The disaggregation stage is gener-
ally the inverse of the aggregation stage. The incoming fields are
calculated at the center of each cluster from the top of the tree
structure to the lowest level using the anterpolation and shift
operations. For a cluster in level { < L, the incoming field is
the combination of the translated field from the far-field clus-
ters and the incoming field to the center of its parent. In the
shared levels, anterpolation produces samples in the coarse grid,
some of which should be sent to the “neighboring” processors.
This is illustrated in Fig. 6, where processor 2 performs the an-
terpolation operation on the samples of cluster P for its sub-
cluster C. Some of the resulting data in the coarse grid is used
locally, while the rest are sent to other processors, i.e., exactly
the reverse of the interpolation. As the disaggregation opera-
tion proceeds down to LoD, the partitioning is changed via an
all-to-all communication. Then, the disaggregation is performed
from LoD to the lowest level without any communication. In the
lowest level, each processor performs the angular integrations
and produces a partition of the output vector .

To sum up, Table Il lists the communications required at each
stage of the MVMs.
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TABLE Il

SOLUTIONS OF LARGE SPHERE PROBLEMS WITH MLFMA PARALLELIZED INTO 16 PROCESSES

Diameter 160X 192X 220X
Unknowns 23,405,664 33,791,232 | 41,883,648
CLUSTERING
Number of Levels 9
Smallest Cluster Size 0.16A 0.19A 0.21X
Number of Clusters 5,769,254 5,904,951 5,975,507
Lowest-Level Clusters 4,225,343 4,344,205 4,405,952
Near-Field Sparsity 3.27x107% | 3.27x1076 | 3.28x10~¢
Truncation Number 5 to 457 6 to 546 6 to 623
Tree Size 1.68x10% 2.29%x10° | 251x109

PROCESSING TIME

(Intel Xeon 5355 processors connected via an Infiniband network)

Setup Times (minutes) 94 183 274
BiCGStab Iterations 17 21 19
MVM Time (seconds) 270 372 441
Solution Time (minutes) 155 264 290
MEMORY USAGE

Translation Operators 1.5 GB 2.1 GB 2.7 GB

Radiation and Receiving Patterns 25.8 GB 574 GB 71.2 GB

Near-Field Interactions 13.4 GB 27.8 GB 429 GB

BD Preconditioner 1.3 GB 2.6 GB 4.0GB

MVM 403 GB 55.9 GB 65.3 GB
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IV. RESULTS

First, we demonstrate the efficiency of MLFMA paralleliza-
tion for the solution of a scattering problem involving a sphere
of radius 24\. The problem is discretized with 2 111 952 un-
knowns and solved on a cluster of Intel Xeon processors con-
nected via an Infiniband network. Fig. 7 depicts the efficiency
(with respect to the solution with a single processor) when the
solution is parallelized into 2, 4, 8, 12, and 16 processes. The
parallelization efficiency is defined as

T

£p o7, (10)
where T, is the processing time of the solution with p pro-
cesses. Fig. 7(a) shows that the overall efficiency (setup and it-
erative solution) is above 85% when the number of processes
is 16. In this case, efficiency ratios for the setup and the so-
lution parts are about 97% and 80%, respectively. We observe
in Fig. 7(a) that the setup part is parallelized very efficiently,
since this part is communication-free and the computations (es-
pecially the near-field interactions) are perfectly distributed to
the processors using a load-balancing algorithm.

In Fig. 7(b), we present the parallelization efficiency for the
aggregation, translation, and disaggregation stages, in addition
to the overall efficiency for the MVVMs. The near-field stage
is not considered because of its negligible time. We observe
that aggregation and disaggregation stages are parallelized with
about 87% efficiency, while efficiency for the translation stage

is 59% for the 16-process case. To further investigate the paral-
lelization, Fig. 8 presents processing time and efficiency (with
respect to the solution with 2 processors) for various categorized
parts of the MVMs. Our observations are as follows.

» Aggregation and disaggregation stages in the distributed
levels (I = 1,2,3,4 for this problem) constitute the sig-
nificant part of the processing time of MVVM. These stages
are perfectly parallelized, thanks to the load-balancing al-
gorithm for distributed levels.

» The parallelization efficiency of the aggregation and dis-
aggregation stages in the shared levels (from [ = 5 to
[ = I, = 7 in this problem) is also quite high. However,
the efficiency drops to about 80% for the 16-process case.
This is due to the increasing amount of one-to-one com-
munications for interpolations and anterpolations.

 Parallelization efficiency of the communication-free (in-
traprocessor) translations is in the 80%-100% range. All
of the translations in the shared levels and some of those in
the distributed levels are communication-free.

» Translations that are performed with communications
(interprocessor translations) and all-to-all communica-
tions performed at LoD exhibit reduced efficiency as the
number of processes increases. Since they take longer
processing time, the interprocessor translations affect the
overall efficiency more than the all-to-all communications.

In general, interprocessor translations are the bottleneck of the
parallelization. Since these translations are performed in the dis-
tributed levels, their negative contributions can be minimized



2342

by increasing the number of shared levels. However, aggrega-
tion and disaggregation in low levels cannot be performed effi-
ciently by partitioning the coarsely sampled fields. As discussed
in Section 111, we carefully determine the number of distributed
and shared levels to optimize the parallelization efficiency for
the solution of each problem.

In Table 111, we present the solutions of very large scattering
problems involving spheres of radii 80, 96, and 110, which
are discretized with 23 405 664, 33 791 232, and 41 883 648 un-
knowns, respectively. For all three problems, 9-level MLFMA
is employed and parallelized into 16 processes. The numbers
of distributed and shared levels are 6 and 3, respectively.
Using a top-down strategy, the cluster size in the lowest level
is 0.16A-0.21X. Each of the tree structures contains about
six million clusters and most of them are used in the lowest
level. The number of near-field interactions increases with the
problem size and the sparsity of the near-field matrix is almost
constant. The near-field interactions are calculated with 1%
error. The smallest and largest truncation numbers are also
listed in Table Il when the far-field interactions are calculated
with two digits of accuracy.

Table 111 shows that the setup time increases proportionally to
N2 since the sparsity of the near-field matrix is constant and the
number of near-field interactions is proportional to N2, On the
other hand, the processing time for the MVVMs, which is related
to the tree size, increases more slowly than O(N log N). As dis-
cussed in Section 11, these local deviations from the asymptot-
ical estimates are expected depending on the clustering tech-
nique used for the tree structure. As depicted in Fig. 1, the tree
size and the number of near-field interactions oscillate around
the O(Nlog N) and O(N) curves, respectively. Local varia-
tions of these quantities corresponding to the three large prob-
lems in Table 11l are magnified in the inset of Fig. 1. We ob-
serve that the tree size (hence the computational requirements
for the MVVMs) increases slower than the asymptotical estimate
of O(N log N). On the other hand, due to a top-down clustering
scheme, the number of near-field interactions (hence the com-
putational requirements for the near-field part) grows faster than
O(N). We emphasize that this behavior is local and depends
on the strategy to construct the tree structure, the overall com-
plexity of MLFMA is still O(N log N).

We also observe in Table 11l that the maximum number of
biconjugate-gradient-stabilized (BiCGStab) iterations to reduce
the residual error below 10~ is 21. Using the BDP, iterative
solution of the 42-million-unknown problem requires only 290
min, while each MVVM is performed in 441 s. Table 111 also lists
the total memory usage for different parts of the algorithm using
the single-precision representation for the complex numbers.

In Fig. 9, we further present the details of the solution of
the 23-million-unknown problem involving a sphere of radius
80A. In Fig. 9(a), the total processing time is depicted for
all processes from 1 to 16. After the input and the clustering
part("), computations of the translation operators(*> and the
radiation/receiving patterns® require negligible time. Cal-
culation of the near-field interactions® dominates the setup
time, which is about 94 min. Then the solution part(®, in-
volving a total of 34 MVMs, is performed in about 155 min.
The processing time for a MVM s depicted in Fig. 9(b),
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Fig. 9. Time diagrams for the solution of a scattering problem involving
a sphere of radius 80\ discretized with 23 405 664 unknowns. (a) Overall
time includes the input and clustering parts(*, calculation of the translation
matrices(®), calculation of the near-field interactions(*), calculation of the radi-
ation and receiving patterns(*), and the iterative solution(®. (b) Matrix-vector
multiplications include the near-field stage(*), aggregation in the distributed
levels(®, all-to-all communications in LoD(3:®), aggregation in the shared
levels(¥), translations without communications(®), translations with commu-
nications(®?, disaggregation in the shared levels(™?, and disaggregation in the
distributed levels followed by the receiving operation(®). In the diagrams, white
areas correspond to waits before the operations that require synchronization.

including the near-field stage(), aggregation/disaggregation
in the distributed levels>®, all-to-all communications-*,
aggregation/disaggregation in the shared levels(*:”), communi-
cation-free (intraprocessor) translations(®, and interprocessor
translations(®’. The most problematic parts in terms of par-
allelization efficiency, i.e., all-to-all communications and
interprocessor translations, require negligible time compared
to other parts of the MVVM. This is commonly observed with
large-sized problems and supports the conclusion that the par-
allelization efficiency for a fixed number of processes usually
increases as the problem size grows.

To present the accuracy of the solutions, Fig. 10 depicts
the normalized bistatic radar cross section (RCS/A2) values
in decibels (dB) for a sphere of radius 110X discretized with
41 883 648 unknowns. We believe this is the solution of the
largest integral-equation problem ever reported. Solutions of
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Fig. 10. Bistatic RCS (in dB) of a sphere of radius 110X discretized with 41 883 648 unknowns from 160° to 180°, where 180° corresponds to the forward-

scattering direction.

integral-equation problems with 20 million and 33 million
unknowns were reported in [8] and [13], respectively. Ana-
lytical values obtained by a Mie-series solution is plotted as
a reference from 160° to 180°, where 180° corresponds to
the forward-scattering direction. Fig. 10 shows that the com-
putational values sampled at 0.1° are in agreement with the
analytical curve. For more gquantitative information, we define
a relative error as

_1A=Cl;
R

11
AT D

where A and C are the analytical and computational RCS
values, respectively, ||.||> is the {2-norm defined as

2|2 = (12)

and S is the number of samples. The relative error is 3.87%,
4.67%, and 4.67% in the 160°-170°, 170°-180°, and 0°-180°
ranges, respectively. We note that the relative error in the RCS
values is about 5%, although we calculate the near-field and
far-field interactions with 1% error. The extra error is due to
the low-order discretization of CFIE. For the same discretiza-
tion of a scattering problem with the RWG functions, MFIE
(thus, CFIE) is consistently inaccurate to calculate the scattered
fields compared to EFIE, even MFIE (and CFIE) is better condi-
tioned than EFIE [29]. A remedy to this accuracy problem is to
use higher-order basis functions, such as the linear-linear basis
functions discussed in [17].

Finally, we present the solution of a real-life problem in-
volving the Flamme, which is a stealth airborne target, as de-
tailed in [30]. The scattering problem is solved at 16 GHz and
the maximum dimension of the Flamme is 6 m, corresponding
to 320\. Using A/10 triangulation, the problem is discretized
with 24 782 400 unknowns. Fig. 11 presents the bistatic RCS
values in dBm? when the target is illuminated by a plane wave
propagating in the x-y plane at a 30° angle from the = axis
(from ¢ = 30°). Both 6 and ¢ polarizations are considered.
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Fig. 11. Bistatic RCS (in dBm?) of the stealth airborne target Flamme at 16
GHz. Maximum dimension of the Flamme is 6 m corresponding to 320A. The
target is illuminated by a plane wave propagating in the -y plane at a 30° angle
from the x axis, as also depicted in the inset.

The copolar RCS values are plotted on the -y plane as a func-
tion of the bistatic angle ¢. In the plots, 30° and 210° corre-
spond to the back-scattering and forward-scattering directions,
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respectively. Solution of this problem is performed by a 10-level
MLFMA (6 distributed and 4 shared levels) parallelized into
16 processes. After the setup, which takes about 104 min, the
problem is solved twice (for two polarizations) in about 490
min. Using BiCGStab and BDP, the numbers of iterations to re-
duce the residual error below 1072 are 42 and 35, respectively,
for the # and the ¢ polarizations of the plane-wave excitation.
Both near-field and far-field interactions are calculated with 1%
error and the total memory usage is 139 GB using the single-pre-
cision representation.

V. CONCLUDING REMARKS

In this paper, we consider fast and accurate solutions of large-
scale scattering problems discretized with tens of millions of
unknowns using a parallel MLFMA implementation. We inves-
tigate the parallelization of MLFMA and improve the efficiency
of the implementations. Some of the major steps for the efficient
parallelization of MLFMA are as follows.

« Distribute the near-field interactions equally among the

processors using a load-balancing algorithm.

* Determine the shared and distributed levels appropriately
by choosing an optimal LoD.

« Distribute the clusters in LoD among the processors by
considering the combined load of all descendants of each
cluster.

« Assign each cluster and its subclusters to the same pro-
cessor for the levels below LoD.

« Distribute the samples of the fields among the processors
using a load-balancing algorithm (to reduce one-to-one
communications) for the levels above LoD.

* Use a communication map to pair the processors for the
translations in the distributed levels. Transfer the required
data using nonblocking send and receive operations.

We demonstrate the accuracy of our implementations by con-
sidering a canonical scattering problem involving a sphere of
radius 110X discretized with 41 883 638 unknowns. To the best
of our knowledge, this is the largest integral-equation problem
ever solved.2 In addition to the solution of various extremely
large canonical problems, we also demonstrate the effective-
ness of our implementation on a real-life problem involving the
Flamme geometry with a size larger than 300).
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A Hierarchical Partitioning Strategy for an
Efficient Parallelization of the Multilevel
Fast Multipole Algorithm

Ozgur Erguil, Sudent Member, IEEE, and Levent Gurel, Fellow, |IEEE

Abstract—We present a novel hierarchical partitioning strategy
for the efficient parallelization of the multilevel fast multipole al-
gorithm (MLFMA) on distributed-memory architectures to solve
large-scale problems in electromagnetics. Unlike previous paral-
lelization techniques, the tree structure of MLFMA is distributed
among processors by partitioning both clusters and samples
of fields at each level. Due to the improved load-balancing, the
hierarchical strategy offersahigher parallelization efficiency than
previous approaches, especially when the number of processors
is large. We demonstrate the improved efficiency on scattering
problems discretized with millions of unknowns. In addition, we
present the effectiveness of our algorithm by solving very large
scattering problems involving a conducting sphere of radius 210
wavelengths and a complicated real-life target with a maximum
dimension of 880 wavelengths. Both of the objects are discretized
with more than 200 million unknowns.

Index Terms—L arge-scale problems, multilevel fast multipole
algorithm, parallelization, scattering problems, surface integral
equations.

|I. INTRODUCTION

URFACE integral equations are commonly used to

formulate scattering and radiation problems involving
three-dimensional conducting bodies with arbitrary shapes[1].
The application of boundary conditions for the electric field
and the magnetic field on the surface of an object leads to the
electric-field integral equation (EFIE) and the magnetic-field
integral equation (MFIE), respectively. For closed surfaces,
EFIE and MFIE can be combined to obtain the combined-field
integral equation (CFIE), which is free of the internal-reso-
nance problem [2]. Numerical solutions of integral equations
require the discretization (e.g., triangulation) of surfaces. Then,
unknown surface currents are expanded in a series of basis
functions, and integral equations are tested by employing a
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set of testing functions. Finally, solutions of resulting N x N
dense matrix equations provide the expansion coefficients,
which can be used to compute the scattered or radiated electric
and magnetic fields everywhere.

Surface integral eguations provide accurate results when
they are discretized appropriately by using small elements with
respect to wavelength. Therefore, when a problem involves
a large object with dimensions of several wavelengths, its
accurate discretization leads to a large matrix equation with
hundreds of thousands of unknowns. Such alarge problem can
be solved iteratively, where the required matrix-vector multi-
plications (MVMs) are performed efficiently by the multilevel
fast multipole algorithm (MLFMA) [3]. For an N x N dense
matrix equation, MLFMA reduces the complexity of MVMs
from O(N?) to O(N log N), alowing for the solution of large
problems with limited computational resources. On the other
hand, accurate solutions of many real-life problems require
discretizations with millions of elements, leading to matrix
equations with millions of unknowns, which cannot easily be
solved with sequential implementations of MLFMA running on
a single processor. To solve such large problems, it is helpful
to increase computational resources by assembling parallel
computing platforms and, at the same time, by paralelizing
MLFMA.

The parallelization of MLFMA is not trivial because of the
complicated structure of this algorithm. Simple parallelization
techniques usually fail to provide efficient solutions, due to
communications among processors, poor load-balancing of the
workload, and unavoidable duplications of computations over
multiple processors. Advanced parall€elization techniques have
been developed to improve the paralelization of MLFMA by
using novel partitioning strategies, load-balancing algorithms,
and optimizations for communications [4]-{11]. This way, it
has become possible to solve problems with tens of millions of
unknowns on relatively inexpensive computing platforms with
distributed-memory architectures [4]-{6], [9], [10].

Recently, we developed a hierarchical partitioning strategy
that iswell suited for the multilevel structure of MLFMA [12].
With the enhanced load-balancing offered by the hierarchical
strategy, parallelization of MLFMA can be improved signifi-
cantly. Inthis paper, we provide the detail s of our parallelization
algorithm. We employ canonical problemsinvolving sphere ge-
ometries of various sizes for the comparison of the hierarchical
strategy with previous approaches. We show that the efficiency
of the parallélization is improved drastically, especialy when
the number of processorsislarge. Improved efficiency provided

0018-926X/$25.00 © 2009 |EEE
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by the hierarchical strategy is also demonstrated on scattering
problems discretized with more than 100 million unknowns. Fi-
nally, we present the solutions of very large scattering problems
involving a sphere of radius 210X and a stealth airborne target
with amaximum dimension of 880, which are discretized with
204,823,296 and 204,664,320 unknowns, respectively, and A
denotes the wavelength.

Therest of the paper isorganized asfollows. In Section |1, we
summarize an efficient implementation of MLFMA, focusing
on the main stages of the algorithm. Section II1 presents the
parallelization of MLFMA using the hierarchical partitioning
strategy. We investigate the communi cations among processors
in Section IV and compare our parallelization techniquewith the
previous approachesin Section V. Finally, numerical resultsare
presented in Section VI, followed by our concluding remarksin
Section VII.

Il. MULTILEVEL FAST MULTIPOLE ALGORITHM

For perfectly-conducting objects, discretizations of surface
integral equationslead to N x N dense matrix equationsin the
form of

N
ZZmnan:Um, m=1,2,...,N (@0}
n=1

where the matrix elements 7,,,,, form,n =1,2,..., N canbe
interpreted as electromagnetic interactions of discretization ele-
ments, i.e., basis and testing functions. The matrix equation (1)
can besolvediteratively viaaKrylov subspace algorithm, where
the required MV Ms are performed efficiently by MLFMA [3].
In general, MLFMA splits MVMs as

Z~$:ZNF~I+ZFF'.’L' (2)

where near-field interactions denoted by Z y - are cal cul ated di-
rectly and stored in memory to perform the partial multiplica-
tions Z y r - =, while multiplications involving far-field interac-
tions, i.e., Z r -z, are performed approximately and efficiently.
In this section, we briefly describe an efficient implementation
of MLFMA by summarizing the main stages of the algorithm.

A. Discretization of the Object

Without losing generality, we consider a smooth object
with an electrical dimension of k7>, where k = 2/ is the
wavenumber. Discretization (triangulation) of the object with
/10 mesh size leadsto N unknowns, where N = O(k2D?).
As basis and testing functions, we use Rao-Wilton-Glisson
(RWG) [13] functions defined on planar triangles.

B. Clustering

To calculate electromagnetic interactions in a multilevel
scheme, atree structure is constructed by placing the object in
acubic box and recursively dividing the computational domain
into subdomains, until the box sizeisabout 0.25X. A multilevel
tree structure with (L + 2) = O(log(kD)) = O(log N ) levels
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is obtained by considering nonempty boxes (clusters)l. At level
{ from 1 to L, the number of clusters can be approximated as

]Vg ~ 4(1_I)N1 (3)

where Ny = O(N). In other words, the number of clusters
decreases approximately by a factor of four from alevel to the
next upper level.

The tree structure in MLFMA can be constructed by using
a top-down or a bottom-up strategy [10]. In the top-down
strategy, the size of the largest cube enclosing the object is
minimized, while the size of the smallest boxes at the lowest
level depends on the size of the object and the number of levels.
In the bottom-up strategy, however, the size of the smallest
boxesisfixed to somevalue (such as0.25)), and the sizes of the
boxes at higher levels are recursively doubled until the whole
object is enclosed by the largest box. For a given problem, one
of the two strategies can be preferable in terms of efficiency
and accuracy.

C. Sampling

For each cluster in the tree structure, radiated and incoming
fields are defined and sampled on the unit sphere. We choose
samples regularly spaced in the ¢ direction and use the
Gauss-Legendre quadrature in the @ direction [14]. For level
[ =1,2,..., T, the number of samplesis $¢ = (7; + 1) and
Sl‘ZS = 2(T;+ 1) dlong ¢ and ¢ directions, respectively, where T;
is the truncation number determined by the excess bandwidth
formula[15], i.e.,

Ty &~ 1.73kay + 2.16(do)?/> (kay) /3. (%)

In (4), a; isthe box size at level [, and dj is the desired digits
of accuracy. The sampling rate depends on the cluster size as
measured by the wavelength (ka; = 2ma;/A), and the total
number of samples can be approximated as

Sp= 8787 ~ 2U-D gy o=Dg? — yl=Dg,  (5)

where S; = O(1).

D. Far-Field Interactions

In MLFMA, far-field interactions are calculated in a
cluster-by-cluster manner using the diagonalization and fac-
torization of the homogenous-space Green's function [14]. In
each MVM, three main stages, i.e., aggregation, trandation,
and disaggregation, are performed as described below.

1) Aggregation: In this stage, radiated fields of clusters are
calculated from the bottom of the tree structure to the highest
level (I = L). At the lowest level, radiation patterns of basis
functions, which are cal culated during the setup of MLFMA, are
multiplied with the coefficients provided by the iterative solver

1n this paper, L represents the number of effective levels, where MLFMA
stages, i.e., aggregation, trand ation, and disaggregation, are performed. The ac-
tual number of levelsis (L + 2), but the highest two levels are not used directly
in MLFMA.
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and combined to obtain the radiated fields of the smallest clus-
ters. Then, the radiated fields of clusters at higher levels are ob-
tained by shifting and combining the radiated fields of clusters
at lower levels. During the aggregation stage, we use a local
Lagrange interpolation between successive levels to match dif-
ferent sampling rates for fields.

2) Trandation: Inthisstage, radiated fields computed during
the aggregation stage are translated into incoming fields. For
each cluster at any level, there are O(1) clusters to trandate
the radiated field to. In addition, using the symmetry of cubic
(identical) clusters, the number of different trandl ation operators
is O(1), independent of the level [4]. Translation operators are
calculated during the setup of MLFMA in O(N) processing
time using local interpolation methods [16].

3) Disaggregation: This stage involves the calculation of
total incoming fields at cluster centers from the top of the tree
structure to the lowest level. At the highest level, the total in-
coming field for a cluster is obtained by the combination of
incoming fields due to trandations. At lower levels, however,
the incoming field to the center of a cluster involves a contribu-
tion from the incoming field to the center of its parent cluster.
We use transpose interpolation (anterpolation) between consec-
utive levels during the disaggregation stage to match different
sampling rates of the levels [17]. Following the disaggregation
operations at the lowest level, incoming fields are received by
the testing functions. Similar to the radiation patterns of basis
functions, receiving patterns of testing functions are also cal cu-
lated during the setup of MLFMA.

Considering the three stages of MLFMA, the processing time
and memory required for all operations at level { is proportional
to the product of the number of clusters and the number of sam-
ples, i.e,

NSy = 40O N 40D s = NS = O(N). (6)
We note that all levels of MLFMA have equal importance with
O(N) complexity in terms of processing time and memory.

E. Near-Field Interactions

In MLFMA, there are also O(N?2/N;) = O(N) near-field
interactions, which are calculated directly in the setup stage of
the program and stored in memory to be used multiple times
during the iterations. These interactions are between the basis
and testing functions that are located close to each other. We
use singularity extraction techniques [18]-{21] and Gaussian
quadratures [22] in order to calculate the near-field interactions
accurately and efficiently.

I1l. HIERARCHICAL PARALLELIZATION OF MLFMA

The main task in the parallelization of MLFMA on dis-
tributed-memory architecturesis partitioning the multilevel tree
structure among processors. Simple parallelization techniques,
based on distributing clusters among processors, usually fail
to provide efficient solutions. This is mainly due to dense
communications between processors, duplication of compu-
tations, and unbalanced distribution of the workload among
processors [7], [8]. Since such problems arise mostly at the
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Fig. 1. Distribution of afour-level tree structure among eight processors using
the hierarchical partitioning strategy.

higher levels of MLFMA, a hybrid paralelization technique,
which applies different partitioning strategies for the lower
and the higher levels, is developed to improve the efficiency
[7]-20]. In this technique, processor assignments are made on
the basis of fields of clusters at the higher levels. In other words,
each cluster at higher levels is shared by all processors, while
each processor is assigned to the same portion of fields for
al clusters. Even though the hybrid parallelization technique
increases the parallelization efficiency significantly, compared
to simple paralelization approaches, the improvement can be
insufficient, especially when the number of processorsislarge.

In this section, we provide the details of the hierarchical par-
alelization of MLFMA for the efficient solution of large-scale
problems. The hierarchical parall€elization is based on the simul-
taneous partitioning of clusters and their fields at all levels. We
adjust the partitioning in both directions (clusters and samples
of fields) appropriately by considering the number of clusters
and the number of samples at each level. Asan example, Fig. 1
depictsafour-level tree structure (L, = 4), wherelevelsare rep-
resented by two-dimensional rectangles. Horizontal and vertical
dimensions of rectangles correspond to clusters and ¢ samples
of fields, respectively. The tree structure is partitioned among
eight processors labeled 1 to 8. At the lowest level, clusters are
distributed among eight processors, and each cluster is assigned
to a single processor, without any partitioning of field samples.
Then, at the next level (I = 2), field samples are partitioned
among two groups of processors, i.e., (1,3,5,7) and (2,4,6,8),
while the number of cluster partitionsis reduced to four. At this
level, samples of each cluster are shared by two processors. As
we proceed to the higher levels, the number of partitions for
clusters and samples of fields are systematically decreased and
increased, respectively.

In the following subsections, we present the hierarchical par-
alelization of MLFMA in detail by considering the main stages
of the algorithm.

A. Partitioning of the Tree Sructure

We consider the parallelization of MLFMA on a cluster of p
processors, where p = 2¢ for some integer i. Using the hierar-
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Fig. 2. Aggregation operations from level 3 to level 4 for the partitioned tree
structure in Fig. 1.

chical partitioning strategy, the number of partitionsfor clusters
at level [ is chosen as

pt,c:HIa.X{%,l} :Hla.X{p 2(1-:)71}. @

We note that clusters are not partitioned for levelsi > log,(p),
if such alevel exists. The number of clusters assigned to each
processor can be approximated as

a-u
Nlp ~ Ni ~ prNla [ < log, (p) ) )
Pl 4(17£)N1, > Ing(p)

In addition, samples of the fields are divided into

= min{2("Y p} ©)

b
Pts =
p

l,c

partitionsalong the ¢ directionfor level [. Field samplesare par-
titioned only along the # direction for an easy implementation
of interpolation/anterpolation operations [7]. The number of 4
samples assigned to each processor is

4 59, [<lo
SPP St ~ { 2(171%5{9 < logs (p) } (10)
r

PLs , 1> logy(p)

Also considering the sampling in the ¢ direction, the total
number of samples per processor can be written as

2U=1DG1, 1 <logy(p) } (11)

SP = §9Pg? ~ { PP
TR T A > loga(p)

Finally, the size of the local data at each processor is

NP SV =~ NSy

(12)

forl =1,2,..., L.

B. Aggregation Sage

For the partitioned tree structure in Fig. 1, aggregation oper-
ations from level 3 to level 4 are depicted in Fig. 2 and can be
listed as follows.

1) One-to-One Communications for Data Inflation: During
aggregationsfrom alevel to the next higher level, interpolations
are required to increase the sampling rate for radiated fields.
Using local Lagrange interpolation, each target point in the fine
grid has contributions from a set of neighboring points in the
coarse grid. Therefore, when samples of fields are partitioned
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among processors, interpolations in each processor need sam-
ples located in other processors. Consequently, before interpo-
|ations, one-to-one communications are required between pairs
of processorsto inflate thelocal data, in accordance with thein-
terpolation requirements.

For the partitioned tree structure in Fig. 1, aggregation from
level 3 to level 4 requires one-to-one communications within
two separate groups of processors that are located in the same
columns, i.e, (1,2,3,4) and (5,6,7,8), as depicted in Fig. 2. As
an important advantage of the hierarchical partitioning strategy,
distribution of the § samples into large numbers of partitions
isavoided. Therefore, communications are required mostly be-
tween pairs of processors located “next to each other.” For ex-
ample, processor 3 communicates mainly with processors 1 and
2, but not with processor 4. Processors 3 and 4 would need
to communicate with each other if the number of the § sam-
ples required for the interpolation is larger than the number of
the & samples per processor. However, using the hierarchical
strategy, the number of partitions along the # direction, hence
the number of the # samples per processor, can be adjusted such
that those secondary communi cations between “ distant” proces-
Sors are avoided.

2) Interpolation and Shifting: When therequired datais pre-
pared by one-to-one communications for a cluster, its radiated
fieldisinterpolated and shifted to the center of its parent cluster.
Temporary levels involving parent clusters and field samples
after the interpolation and shifting operations are denoted asin-
termediate levels. As an example, for the partitioned tree struc-
tureinFig. 1, level 3.5isdepicted in Fig. 2. Following theinter-
polation, the number of samples along the é direction assigned
to each processor is doubled, i.e.,

2589, [ <lo
Szgﬁ 9 2519711 ~ 2‘51" < logs(p)
+/ b, 1> logy(p)

At the same time, the number of clustersin each processor can

(13)

be written as ()
NP ~ llp ~ %7 [ S IOgZ(p) (14)
2T T 4O, 1> '
1 > logs(p)

Intermediate levels are defined temporarily and used to arrange
the data in each processor, before communications are per-
formed to modify the partitioning according to the hierarchical
strategy.

3) Data Exchanges: From an intermediate level (I + 1/2)
to the next level (I + 1), datais exchanged among processors,
if I < log,(p). As depicted in Fig. 2, processors are paired
according to their positions in the partitioning scheme. Each
processor performs the following communications.

» Send half of the field samples of each cluster at the inter-

mediate level;

* Receivethecomplementary data, whichinvolvesfield sam-

ples of some clusters, from the associated processor.
With data exchanges, the number of clusters in each processor
is doubled with respect to the number of clusters at the interme-
diatelevel, while the number of samplesaong the directionis
halved. Then, we have

2(*’)]\71
J

P . (I +1) <logy(p)
Nl+1 ~ {4(_l)N1, (15)

(I +1) > logs(p)
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Fig. 3. One-to-one communications during the translation stage at levels 2 and
3 of the partitioned tree structure in Fig. 1.

and

(16)

[4
[SEP 51
41~ 2 SL

P Y

(I+1) <logy(p) }
(I+1) > logs(p)

which agree with the expressionsin (8) and (10), respectively.

C. Trandation Stage

Using the hierarchical partitioning strategy, one-to-one com-
munications are al so required during the transl ation stage, since
clustersare partitioned, and sometransl ations are needed among
clusters located in different processors. These communications
are achieved by pairing the processors and transferring the radi-
ated fields of clusters between the pairs. As depicted in Fig. 3,
communications are required only among the processors that
are located in the same row of the partitioning. For example,
communications at level 2 are performed within two separate
groups of processors, i.e., (1,3,5,7) and (2,4,6,8). In general, for
“inter-processor” translations at level [, each processor ispaired
one by onewiththeother (p; .—1) processors. Onceapairingis
established, radiated fields of clusters are transferred, and trans-
lations are performed by the receiver processor.

In addition to inter-processor trandations, there are also
“intra-processor” translationsthat are related to clusterslocated
in the same processor. These trandations can be performed
independently in each processor, without any communication.

D. Disaggregation Stage

The parallelization of the disaggregation stage is very sim-
ilar to the parallelization of the aggregation stage. In general,
operations in the aggregation stage are performed in a reverse
manner.

1) Data Exchanges. When incoming fields are calculated at
cluster centers at level [, partitioning is modified via data ex-
changes among the processors. This way, the partitioning at
level (I — 1/2) is generated as required for anterpolation and
shifting operations.

2) Anterpolation and Shifting: Incoming fields at the centers
of clusters are anterpolated and shifted to the centers of their
subclusters at level (I — 1).

3) One-to-One Communications for Data Deflation: Since
the anterpolation is the transpose of the interpolation, some of
the samples obtained from an anterpol ation operation should be
sent to other processors. This is because interpolations during
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the aggregation stage are performed using the inflated data
prepared by one-to-one communications among processors.
As the reverse of this process, anterpolations produce inflated
data, which must be deflated via one-to-one communications.
Following an anterpolation operation, some of the resulting
data are used locally, while the rest are sent to other processors.
Similar to the communications during interpolations, data are
transferred mostly among neighboring processors in the same
column of the partitioning scheme.

IV. COMMUNICATIONS IN THE HIERARCHICAL
PARALLELIZATION OF MLFMA

Using the hierarchical partitioning strategy, computations on
the tree structure are distributed among processors with im-
proved load-balancing, compared to previous strategies based
on partitioning with respect to only clusters or only samples
of fields. However, there are still unavoidable communications
among processors, which may reduce the efficiency of the paral-
Ielization. In this section, we investigate these communications
in detail.

A. Communications in the Aggregation/Disaggregation Stages

During an interpolation operation in a processor at level [ =
2,3,...,(L — 1), the amount of data required from other pro-
cessorsfor each cluster isproportional to the number of samples
in the ¢ direction. Considering also the number of clusters per
processor, the communication time for interpolations at level {
can be written as

2(1-D
Fint 1 O 2(!71)5? ) ) [ < IOgZ(p)
40-DN 1> logy(p)
NS¢
B { —, 1< logy(p) }
T ) Nus?
sy 1> logy(p)

NS¢
<L (1=2,3,...,L-1).

17
We note that the communication time ¢;,. ; tends to decrease
with the increasing number of processors p.

To switch the partitioning scheme from level to level, each
processor exchanges half of its data produced during the aggre-
gation stage. The processing timefor these communi cations can
be expressed as

NS,
foy o 4 P [ <log,(p)
' OJ [ > 10g2 (p)

NS
<L g=1,2,...,L-1)
P

(18)

where the upper bound is again inversely proportional to the
number of processors p. The processing time required for com-
munications during the disaggregation stage is the same as the
time required for communi cations during the aggregation stage.

B. Communicationsin the Trandlation Stage

During the tranglation stage, each processor is paired one by
one with (p; . — 1) = max{p2' =" — 1,0} processors to per-
form inter-processor trandations. For each pair, the number of
cluster-cluster interactions required to be performed is propor-
tional to the number of clusters per processor. In addition, the
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size of the data transferred in each interaction is proportional to
the number of local samples per cluster, i.e., S7. Therefore, the
communication time for tranglations can be written as

ttransJ X max {pQ(T_Z) -1, O} Nlpslp

NS5t

_m, ([:1,2,

, ). (29
The communication time for trandations can be significant, es-

pecialy at the lower levels of MLFMA.

V. COMPARISONS WITH PREVIOUS PARALLELIZATION
TECHNIQUES

In this paper, we compare the hierarchical parallelization
technigue with two previous approaches, namely, the simple
and the hybrid parallelization techniques. As mentioned in Sec-
tion I, the simple parallelization of MLFMA is based on the
distribution of clusters among processors at all levels. A major
disadvantage of this technique is the difficulty in distributing a
small numbers of clusters at the higher levels of the tree struc-
ture [8]. When the number of processorsislarge, those clusters
must be duplicated over multiple processors. Otherwise, alarge
amount of data is required to be communicated during the
aggregation and disaggregation stages. In addition, when using
the simple parallelization technique, trandlations involve dense
communications among processors [7], [8].

The hybrid parallelization technique was successfully de-
veloped to improve the parallelization of MLFMA [7]. In this
technique, the lower (distributed) levels of MLFMA are parti-
tioned as in the simple technique, i.e., clusters are distributed
among processors. In the higher (shared) levels, however,
samples of fields are distributed, instead of clusters. Unlike
the hierarchical parallelization, samples in a shared level are
distributed among all processors, without any partitioning of
clusters. Distributing samples provides improved |load-bal-
ancing and communication-free trandations for the higher
levels of the tree structure. On the other hand, problems arise
for some levels at the middle of the tree, whereit is not efficient
to distribute either fields or clusters among processors [10].

The hierarchica parallélization technique provides two im-
portant advantages, compared to simple and hybrid techniques.

» Improved load-balancing: Partitioning both clusters and
samples of fields leads to an improved load-balancing
of the workload among processors at each level. Conse-
quently, duplication of computations, which may occur in
the simple parallelization, and waits for the synchroniza-
tion of processors are minimized.

* Reduced communications: Although the hierarchical par-
titioning increases the types of communi cations, compared
to simple and hybrid approaches, the amount of datatrans-
ferred is decreased. In addition, due to the improved |oad-
balancing, the average package size is enlarged, and the
number of communication events is reduced. As a result,
the communication time is significantly shortened.

Finaly, another important advantage of the hierarchical
parallelization algorithm appears when MLFMA is employed
on a cluster with multiprocessor nodes. Most of the main-
boards built recently have multiple processors connected via
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high-speed buses. Then, parallel computers are constructed by
clustering a number of multiprocessor computing units (nodes),
instead of processors. Resulting parallel computers are highly
nonuniform, since communications among processors in the
same node are significantly faster than those among processors
located in different nodes. Using multicore processors further
complicates the situation, since communications within nodes
also have diverse rates, depending on whether the inter-core
communications are taking place in the same processor or
between two processors in the same node. The hierarchical par-
allelization techniqueis suitable for such parallel platforms. As
an example, let the tree structure in Fig. 1 be partitioned among
two nodes, each having four processors, i.e., processors 1-4
and processors 5-8 are located in two different nodes. Then,
al communications during the aggregation and disaggregation
stages from level 1 to level 3 are performed “inside” nodes.
Inter-node communications are required only for trandations
and data exchanges during the aggregation/disaggregation
stages between level 3 and level 4. In general, the hierarchical
partitioning strategy facilitates the processor arrangements in
nonuniform platforms to minimize inter-node communica
tions. However, in this paper, we do not use this advantage
directly; hence, the improved efficiency obtained with the
hierarchical parallelization is general and valid for al types of
distributed-memory architectures.

V1. RESULTS

The results of this paper can be categorized into three
parts. First, we demonstrate the improved efficiency provided
by the hierarchical paralelization strategy, compared to the
previous parallelization approaches, on scattering problems
involving spheres of various sizes discretized with millions of
unknowns. Second, parallelization efficiency is demonstrated
on large-scal e scattering problems involving a sphere (a canon-
ical object) and an airborne target Flamme [23] (a complicated
object). Finally, we present the solution of very large scattering
problems involving a sphere of radius 210\ and the Flamme
with a maximum dimension of 880X, which are discretized
with 204,823,296 and 204,664,320 unknowns, respectively.
These are the solutions of the largest problems of their classes
ever reported in the literature, to the best of our knowledge.

A. Formulation and Solution Parameters

In this paper, scattering problemsinvolve closed conductors,
which can be formulated with CFIE. Matrix equations provided
by CFIE are usually better conditioned than those obtained with
EFIE and MFIE [24], [25]. Using CFIE, iterative convergence
is achieved rapidly, and it can be further accelerated by em-
ploying simple preconditioners, such as a block-diagonal pre-
conditioner (BDP). In all solutions, problems are discretized
with about /10 mesh size, and near-field interactions are cal-
culated with maximum 1% error. For small problemsinvolving
1.5-13.5 million unknowns, tree structures are constructed by
using a bottom-up strategy, and far-field interactions are cal-
culated with three digits of accuracy. For large problems (in-
volving more than 100 million unknowns), we use a top-down
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strategy to construct the tree structures, while the far-field inter-
actions are calculated with two digits of accuracy. During the
aggregation stage, interpolations from alevel to the next higher
level are performed using 6 x 6 samples in the coarse grid for
each sample in the fine grid. Finaly, iterative solutions are per-
formed using the biconjugate-gradient-stabilized (BiCGStab)
algorithm [26] accelerated with BDP, and the residual error for
the iterative convergence is set to 10~ and 103 for small and
large problems, respectively.

B. Parallel Computing Platforms

Scattering problems are solved on three different parallel

clusters, each involving 16 computing nodes.

» Tigerton Cluster: Each node has 32 gigabytes (GB) of
memory and two quad-core Intel Xeon Tigerton proces-
sors with 2.93 GHz clock rate;

» Harpertown Cluster: Each node has 32 GB of memory
and two quad-core Intel Xeon Harpertown processors with
3.00 GHz clock rate;

e Dunnington Cluster: Each node has 48 GB of memory
and four six-core Intel Xeon Dunnington processors with
2.40 GHz clock rate.

In al three clusters, memory in anode is available to al cores
in the node. The nodes are connected via Infiniband networks,
whilethe processorsin anode are connected through high-speed
mainboard buses. In the context of parallelization, we use the
terms “processor” and “core” synonymously. For a solution on
p processors, we use the maximum number of nodes available,
i.e., the number of processes per node is minimized. In other
words, if acodeis parallelized into 2* processes, and if 2 < 16,
then we use 2* nodes, each running only one process. When
2¢ > 16, however, the solution is parallelized over 16 nodes,
and 2¢/16 processors are employed per node.

C. Paralle Efficiency Results and Comparisons

The solutions presented in this subsection are performed on
the Tigerton cluster. Fig. 4 presentsthe parall €lization efficiency
obtained for the solution of a scattering problem involving a
sphere of radius 20 discretized with 1,462,854 unknowns. Fig.
4(a) depictsthe efficiency for the total time (including the setup
and iterations), when the solution is paralelized onto 2, 4, 8,
16, 32, 64, and 128 processors. The parallelization efficiency is
defined as

T

Ep = T, (20)
where T, is the processing time of the solution with p proces-
sors. Fig. 4(a) shows that the hierarchical scheme improves the
parallelization efficiency significantly, compared to simple and
hybrid approaches, especially when the number of processorsis
large. The hybrid parallelization performs better than the simple
parallelization; however, its efficiency dropsrapidly for p > 32,
and it becomes inefficient, compared to the hierarchical paral-
lelization. Using 128 processors, the hierarchical parallelization
technique provides 58% efficiency, corresponding to a 74-fold
speedup with respect to the single-processor solution.
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Fig. 4. Paralelization efficiency with respect to the number of processors for
the solution of ascattering problem involving asphere of radius 20\ discretized
with 1,462,854 unknowns. (a) Overall efficiency including setup and iterations,
when the solution is parallelized by using simple, hybrid, and hierarchical tech-
niques. (b) Efficiencies for MLFMA stages, i.e., aggregation, translation, and
disaggregation, using the hierarchical technique.

Fig. 4(b) presents the parallelization efficiency for the three
stages of MV Ms, i.e., aggregation, trandation, and disaggrega-
tion, using the hierarchical strategy. We observe that the trans-
lation stageis amajor bottleneck in the hierarchical paralleliza-
tion of MLFMA. For a solution on 128 processors, the paral-
lelization efficiency of trandlations drops below 30%. This is
because the communi cation time for tranglations, given in (19),
does not scale with the number of processors p, unlike the com-
munication time for the aggregation and disaggregation stages.
In addition, many communications required for inter-processor
translations occur among processors located in different nodes.
Then, the rate of communications during the trandation stage
is mostly limited by the speed of the Infiniband network. Nev-
ertheless, even the parallelization of trandations is improved
with the hierarchical parallelization technique, and the overall
efficiency provided by the hierarchical algorithmis consistently
higher than those obtained with simple and hybrid approaches.

Fig. 5 presents the parallelization efficiency for solutions of
scattering problems involving spheres of radii 40\ and 60X
discretized with 5,851,416 and 13,278,096 unknowns, respec-
tively, where the efficiency is defined with respect to solutions
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Fig. 5. Perallelization efficiency for the solution of scattering problems in-
volving (a) a sphere of radius 40 discretized with 5,851,416 unknowns and
(b) asphere of radius 60\ discretized with 13,278,096 unknowns. Parallel effi-
ciency is defined with respect to two and four processors, respectively.

with two and four processors. Similar to the previous results,
the parallelization efficiency is increased significantly by using
the hierarchical parallelization technique.

Even though Figs. 4 and 5 compare the rel ative performances
of different parallelization techniques, we emphasize that they
do not provide the complete information for the efficiency of
solutions. In general, one should also consider the following
factors.

e Clock Rate of the Processors: Although using faster pro-
cessors leads to faster solutions, the parallelization effi-
ciency can be degraded asthe computation timeis reduced.
This is because the communication time becomes more
significant when the processing time for computations is
small.

» Efficient Implementation of the Algorithm: We care-
fully implement MLFMA by minimizing the processing
time, which may also have an adverse effect on the
parallelization efficiency. For example, as opposed to
common implementations of MLFMA,, we calculate and
store radiation and receiving patterns of basis and testing
functions during the setup of the program, and we use
them efficiently during iterations. Calculating the patterns
on the fly in each MVM without storing them is also a
common practice for low-memory implementations. That
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TABLE |
SOLUTIONS OF SPHERE PROBLEMS
Sphere Radius 20X 40X 60X
Unknowns 1,462,854 | 5,851,416 | 13,278,096
Number of Iterations 27 30 43
SETUP TIME (seconds)
Simple 184 1065 2630
Hybrid 89 356 812
Hierarchical 88 348 797
SOLUTION TIME (seconds)
Simple 512 2467 5400
Hybrid 442 1162 3122
Hierarchical 184 804 2257
TABLEII

TOTAL PROCESSING TIME AND PARALLELIZATION EFFICIENCY FOR
THE SOLUTION OF SCATTERING PROBLEMS DISCRETIZED
WITH MORE THAN 100 MILLION UNKNOWNS

SPHERE (Radius: 360, Number of Unknowns: 135,164,928)

64 Processors
292
84%

32 Processors
511
96%

16 Processors
975
100%

Total Time (minutes)

Efficiency

FLAMME (Length: 720, Number of Unknowns: 134,741,760)

64 Processors
345
86%

32 Processors
646
92%

16 Processors
1186
100%

Total Time (minutes)

Efficiency

would increase the processing time, but the parallelization
efficiency would also increase, since those calculations
can be parallelized very efficiently.

» Accuracy Parameters: The accuracy of solutions also af-
fects the parallelization efficiency. For example, most of
the communications during the aggregation and disaggre-
gation stages could be avoided by reducing the number of
interpolation points. This would increase the paralleliza-
tion efficiency, but the accuracy of the solutions would de-
teriorate.

We note that parallel-efficiency results presented in Figs. 4 and
5 are obtained under strict circumstances, using an efficient and
accurate implementation of MLFMA on a cluster of proces-
sorswith arelatively high clock rate. To quantify the efficiency
of the solutions, Table | lists processing times, when the three
problems are solved on 128 processors. Using the hierarchical
parallelization technique, the largest problem with 13,278,096
unknowns is solved in less than one hour.

D. Paralld Efficiency for Large-Scale Problems

Table Il presents the solution of scattering problems dis-
cretized with more than 100 million unknowns. A sphere of
radius 180 is discretized with 135,164,928 unknowns and
solved by a 10-level MLFMA. We aso consider a steath
airborne target, namely, the Flamme [23], having a maximum
dimension of 6 meters (720 at 36 GHZ) and discretized with
134,741,760 unknowns. This problem is solved by an 11-level
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Fig. 6. Bistatic RCS (in dB) of a sphere of radius 210\ discretized with
204,823,296 unknowns (a) from 0° to 180° and (b) from 174° to 180°, where
0° and 180° correspond to back-scattering and forward-scattering directions,
respectively.

MLFMA. Both of the objects are illuminated by a plane wave,
and solutions are performed on 16, 32, and 64 processors of
the Harpertown cluster. The number of iterations is 23 and
44 for the sphere and the Flamme, respectively. Table Il lists
the total processing times including the setup and iterative
solution parts, and the parallelization efficiency obtained for
32 and 64 processors with respect to 16 processors. Using 64
processors, parallelization efficiency is more than 80% for both
problems. Dueto this relatively high efficiency provided by the
hierarchical partitioning strategy, we are able to perform each
solution in five to six hours.

E. Solutions of Very Large Problems

Finaly, we present the solutions of very large scattering
problems discretized with more than 200 million unknowns.
A sphere of radius 210X is discretized with 204,823,296 un-
knowns and solved on 64 processors of the Dunnington cluster.
Fig. 6(a) presents the normalized bistatic radar cross section
values (RCS/ma?, where o istheradius of the spherein meters)
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Fig. 7. Normalized co-polar bistatic RCS (RCS/A? in dB) of the stedlth air-
borne target Flamme at 44 GHz. Maximum dimension of the Flammeis 6 me-
ters, corresponding to 880A. The target is illuminated by plane waves propa-
gating in the z-y plane at (a) 30° and (b) 60° angles from the = axis, with the
electric field polarized in ¢ direction (horizontal polarization).

in decibels (dB) from 0° to 180° such that 0° correspondsto the
back-scattering direction. Fig. 6(b) presents the same results
from 174° to 180°. We observe that computational valuesarein
agreement with the analytical values obtained by a Mie-series
solution. The solution of the problem using the hierarchical
parallelization strategy requires 645 minutes. Following the
setup, which takes about 280 minutes, the iterative solution
involving 25 iterations is performed in 360 minutes.

Fig. 7 presents the solution of a scattering problem involving
the complicated target Flamme at 44 GHz. The maximum di-
mension of the Flamme is 880X at this frequency. Discretiza-
tion of the problem with /10 mesh size leads to 204,664,320
unknowns. As depicted in the insets of Fig. 7, the nose of the
Flamme is directed towards the = axis, and it isilluminated by
two plane waves (individually) propagating in the z-y plane at
30° and 60° angles from the = axis. The electric field is polar-
ized in the ¢ direction (horizontal polarization). After the setup,
which takes 265 minutes, the problem is solved twicefor thetwo
excitationsin about 1300 minutes. The number of iterations for
30° and 60° illuminations are 38 and 42, respectively. Fig. 7
presents the normalized co-polar bistatic RCS (RCS/AZ in dB)
onthez-y plane asafunction of the bistatic angle ¢. For the 30°
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illuminationin Fig. 7(a), 30° and 210° correspond to back-scat-
tering and forward-scattering directions, respectively. We ob-
serve that the back-scattered RCS of the Flamme is extremely
low; it is 90 dB less than the forward-scattered RCS. This is
also observed for the 60° illumination in Fig. 7(b), where the
back-scattered RCS at 60° is significantly lower than the for-
ward-scattered RCS at 240°, due to the stealth property of the
Flamme.

VI1I. CONCLUSION

We present the details of a hierarchical partitioning strategy
for the efficient parallelization of MLFMA on relatively inex-
pensive computing platformswith distributed-memory architec-
tures. Our algorithm is based on partitioning both clusters and
field samplesamong processorsat all levelsof themultilevel tree
structure. This way, load-balancing is improved significantly,
compared to previous parallelization approaches based on par-
titioning with respect to only clusters or only samples of fields.
We demonstrate the improved efficiency provided by the hier-
archical technique on large scattering problems discretized with
millions of unknowns. We a so present the solution of very large
scattering problems discretized with more than 200 million un-
knowns. For accurate investigations of complicated targets, such
asthe Flamme, solutions obtained with parallel MLFMA are ex-
tremely important. This is because approximate methods, such
as physical optics (PO), may not provide accurate results for
those problems, even when objects are large.
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